0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизатор бортовой сети автомобиля

Стабилизатор напряжения бортовой сети автомобиля

Предлагаемый широтно-импульсный стабилизатор напряжения бортовой сети автомобиля содержит те же узлы, что и его прототип [1], но за счёт применения микросхемы К561ТЛ1 (четыре триггера Шмитта) удалось мультивибратор и формирователь коротких импульсов собрать всего на одном её элементе, кроме того, использование мощного полевого p-канального транзистора позволило упростить узел управления выходным ключом.

Схема стабилизатора напряжения бортовой сети автомобиля показана на рисунке. Оно содержит стабилизатор напряжения питания микросхемы DD1 на стабилитроне VD1 и резисторе R4; генератор коротких импульсов низкого логического уровня с частотой следования 300…600 Гц на элементе DD1.1; времязадающий конденсатор С4, подключенный параллельно участку коллектор-эмиттер транзистора VT1; управляемый генератор тока на транзисторе VT2; измерительное устройство, как и в прототипе, с фильтром нижних частот, содержащее резистивный делитель напряжения R8—R10, стабилитрон VD5 и конденсатор С5; выходной мощный полевой транзистор VT3 и защитный диод VD6.

После подачи питания конденсатор С1 заряжается через резистор R4 до напряжения стабилизации стабилитрона VD1, начинает работать генератор коротких импульсов с частотой следования 300…600 Гц.

Рассмотрим один период работы стабилизатора, начиная с того момента, когда на выходе триггера DD1.1 появляется низкий логический уровень. Транзистор VT1 открывается током зарядки конденсатора СЗ и подаёт на входы элемента DD1.2 высокий уровень, одновременно разряжая конденсатор С4. На выходе элемента DD1.2 появляется низкий уровень, открывающий полевой транзистор VT3. Ток с вывода «15″ стабилизатора протекает через вывод «67″ и обмотку возбуждения генератора. По окончании импульса на выходе DD1.1 появляется высокий уровень, транзистор VT1 закрывается. Далее начинается зарядка конденсатора С4 током от управляемого генератора на транзисторе VT2 через резистор R5. Когда напряжение на конденсаторе С4 достигнет нижнего порога переключения триггера Шмитта DD1.2, он переключится, и на его выходе появится высокий уровень, закрывающий транзистор VT3. Дальнейшая зарядка конденсатора С4 (напряжение на нём ограничено диодом VD4 для защиты входных цепей микросхемы DD1) не. вызывает переключения элемента DD1.2.

Далее, когда на выходе генератора вновь формируется импульс низкого уровня, процессы повторяются.

Стабилизация напряжения осуществляется изменением относительной длительности включённого состояния полевого транзистора VT3 — этим процессом управляют измерительное устройство и генератор тока. При увеличении напряжения на выводе «15″ стабилизатора относительно вывода «Общий» увеличивается ток коллектора транзистора VT2. Конденсатор С4 начинает заряжаться быстрее, а относительная продолжительность включённого состояния транзистора VT3 уменьшается и, следовательно, уменьшается средний ток, протекающий через обмотку возбуждения генератора, — выходное напряжение генератора уменьшается.

В случае понижения напряжения на выводе «15″ устройства ток коллектора транзистора VT2 уменьшается, а время зарядки конденсатора С4 увеличивается. Относительная длительность включённого состояния транзистора VT3 и средний ток, протекающий через обмотку возбуждения генератора, увеличиваются, следовательно, увеличивается и выходное напряжение генератора.

Конструкция и детали стабилизатора напряжения

В стабилизаторе напряжения можно применить постоянные резисторы МТ, МЛТ, ОМЛТ, С2-23, С2-33, подстроечный резистор СП5-16, СП5-2, СП5-3, СП5-2В, СП5-ЗВ, СП5-2ВА, СП5-ЗВА или как в [1 ] СПО-05.

Конденсатор С1 — импортный фирм Jamicon, Samsung, Gloria, CapXon, остальные — плёночные К73-17 на напряжение 63 В.

Диоды 1N4148 можно заменить на КД522Б, КД510А, Д219А, Д223А, Д223Б, 1 N4001 — 1 N4007, диод КД209А — на КД212А, КД237А, КД213А.

Вместо транзистора КТ315Г можно использовать КТ315 А—КТЗ15В, КТ315Д—КТ315И, КТ3117А, а вместо КТ361Г — КТ361А— КТ361В, КТ361Д—КТ361И, КТ313А, КТ313Б.

Полевой транзистор RFP8P08 заменим на IRF5210, IRF6215, IRF9530, IRF9540, IRF9140.

Стабилитроны Д818Е можно заменить на Д818Д, КС191Д, КС 191Р, КС191Н, КС 191 У, КС191П, КС190В, КС190Г, КС190Д, а микросхему К561ТЛ1 — на К561ТЛ1 А, 564ТЛ1 или импортный аналог.

Вследствие простоты стабилизатор собран на отрезке макетной платы, который размещён в корпусе от реле-регулятора РН1. Возможно использование корпусов от регуляторов 12.3702, РН-2 [2]. Плата закреплена на стойках. Мощный полевой транзистор VT3 необходимо установить через изолирующую теплопроводящую прокладку на основание корпуса, предварительно смазав поверхности теплопроводящей пастой.

Налаживание стабилизатора напряжения

Для налаживания стабилизатора необходимы мультиметр, регулируемый стабилизированный источник питания с выходным напряжением 12… 15 В и максимальным током нагрузки не менее 1 А и осциллограф.

Стабилизатор напряжения подключают к источнику питания с установленным выходным напряжением 12 В. Осциллографом проверяют наличие импульсов частотой 300…600 Гц на выходе элемента DD1.1. Длительность коротких импульсов низкого уровня должна быть 100…300 мкс. Если частота и длительность импульсов выходят за указанные пределы, подбирают конденсатор С2. Далее проверяют наличие на коллекторе транзистора VT1 пилообразных импульсов с максимальным положительным напряжением около 9 В и отрицательным 0,5…0,7 В (относительно вывода 7 микросхемы DD1). Затем вход осциллографа подключают к выходу элемента DD1.2 — должны наблюдаться прямоугольные импульсы размахом около 9 В. Плавно повышают напряжение источника питания — в определённый момент длительность импульса высокого уровня должна резко увеличиться. Это значит, что напряжение, установленное на выходе источника питания, очень близко к напряжению стабилизации стабилизатора.

Проверяют длительности перепадов импульсов — они должны быть в пределах 5…20 мкс; короткие перепады вызывают излишний нагрев генератора Г221, а длинные — нагрев мощного транзистора VT3. При необходимости подбирают резистор R7. Это может потребоваться в случае замены полевого транзистора RFP8P08 другим, из числа рекомендованных из-за другой ёмкости затвор—исток.

Далее между выводом «67″ и общим проводом (корпусом) подключают лампу накаливания на напряжение 12 В мощностью 15 Вт. На выходе источника питания устанавливают напряжение 14,2 В. Вращая движок подстроечного резистора R9, находят момент резкого изменения яркости свечения лампы. Оставляют движок в положении, когда лампа погаснет.

Далее стабилизатор устанавливают на автомобиль и окончательно налаживают, как рекомендовано в [1].

1. Тышкевич Е. ШИ регулятор напряжения.

2. Синельников А. X. Электронные приборы для автомобилей.

Автомобильный стабилизатор напряжения — как он устроен?

  • Автомобильный стабилизатор напряжения — как он устроен?
  • 1. Конструкция и детали стабилизатора напряжения
  • 2. Налаживание стабилизатора напряжения
  • 3. Принцип работы стабилизатора напряжения

Стабилизатор напряжения являет собою электронное (электрическое) или электромеханическое устройство, которое имеет выход и вход по напряжению и предназначается для того, чтобы поддерживать выходное напряжение во всех узких пределах, при условии существенного изменения выходного тока нагрузки и входного напряжения.

Сразу же стоит заметить, что по типу выходного напряжения устройства стабилизаторов делятся на:

— стабилизаторы переменного напряжения;

— стабилизаторы постоянного напряжения.

Как аксиома, что на входе стабилизатора и его выходе вид напряжения всегда будет совпадать. Тем не менее, некоторые конструкции стабилизаторов предусматривают разные вариации данных видов.

1. Конструкция и детали стабилизатора напряжения

Вследствие своей конструктивной простоты, самый элементарный стабилизатор напряжения будет собираться на отрезке макетной платы, который будет всегда располагаться на особом месте в корпусе от реле-регулятора. Конструктивный элемент платы закрепляется в устройстве посредством стоек, так как именно плата будет обеспечивать контроль и надежную работу всего устройства.

Важно заметить, что устройство имеет в наличие и мощный полевой транзистор, который устанавливается через изолирующую и теплопроводящую прокладку на базисную основу корпуса. Данная часть в обязательном порядке предусматривает смазывание поверхности теплопроводящей пастой.

2. Налаживание стабилизатора напряжения

Для того, чтобы максимально точно и успешно произвести налаживание устройства стабилизатора напряжения автомобилисту потребуются некоторые устройства и инструменты:

— регулируемый стабилизированный источник питания, который будет иметь выходное напряжение от 12 до 15 В;

— максимальный ток нагрузки не менее 1 А;

Стабилизатор напряжения необходимо подключить непосредственно к источнику питания, где выходное напряжение будет установлено на 12 В. Посредством устройства осциллографа нужно проверить наличие импульсов, частота которых будет составлять от 300 до 600 Гц на выходе. Длительность импульсов коротких низкоуровневых должна составлять от 100 до 300 мкс. Если же длительность и частота импульсов будут выходить за вышеуказанные пределы, то следует подобрать второй конденсатор. После этого на самом коллекторе необходимо проверить наличие транзистора пилообразных импульсов, максимальное положительное напряжение которого будет составлять 9 В, а отрицательное – от 0,5 до 0,7 В, касательно вывода микросхемы.

После этого необходимо подключить вхож осциллографа к выходу элемента, вследствие чего будут наблюдаться прямоугольные импульсы, размах которых равен 9 В. Далее следует достаточно плавно повышать и увеличивать напряжение в источнике питания, вследствие чего в определенный момент длительность импульса высокого уровня будет резко увеличена. Если это произойдет, то следует знать, что напряжение, которое устанавливается на выходе источника питания, будет достаточно близким к напряжению, которое относится к стабилизации устройства стабилизатора.

Читать еще:  Английские марки машин

Также следует затронуть и проверку длительности перепадов импульсов, которые должны колебаться в пределах от 5 до 20 мкс; короткие перепады будут вызывать лишнее перегревание генератора, а длинные будут предопределять нагревание мощного транзистора. Если существует необходимость, то нужно подобрать резистор. Это может быть необходимым тогда, когда существует необходимость в замене полевого транзистора.

После всего проведенного посредство вывода и общего провода нужно подключить лампу накаливания на напряжение 12 В, которое имеет мощность 15 Вт. При выходе источника питания необходимо установить напряжение в 14,2 В. Посредством вращения движка подстроенного резистора нужно найти момент в резком изменении яркости свечения лампы. Движок необходимо оставить в положении, когда сама лампа уже погаснет. Именно после этого устройство стабилизатора можно устанавливать на автомобиль и окончательно налаживать.

3. Принцип работы стабилизатора напряжения

Схема стабилизатора напряжения бортовой сети транспортного средства является достаточно простой. Она содержит в себе стабилизатор напряжения питания микросхемы на резисторе и стабилитроне; устройство генератора коротких импульсов с низким логическим уровнем, частота следования которого не превышает 600 Гц; устройство времязадающего конденсатора, который подключается параллельно в соответствии с участком коллектор-эмиттера транзистора; устройство управляемого генератора тока на транзисторе; измерительное устройство, такое же, как и в прототипе, которое имеет в своем арсенале фильтр нижних частот и содержит резистивный делитель напряжения; стабилитрон и конденсатор. Кроме того к системе будет относиться и мощный полевой транзистор, защитный диод.

Вслед за подачей питания устройство первого конденсатора будет заряжаться посредством четвертого резистора до устройство напряжения стабилизации первого стабилитрона. Кроме того, приведется в работу и генератор коротких импульсов, частота следования которого не будет превышать 600 Гц.

Для предопределения общей картины в голове автомобилиста, следует разобрать еще один период работы стабилизатора, что будет начинаться с того момента, когда непосредственно на выходе первого триггера будет возникать низкий логический уровень. Первый транзистор будет открываться посредством тока зарядки третьего конденсатора и подавать на входы второго триггера высокий уровень, при чем будет происходить одновременное разряжение четвертого конденсатора. Именно на выходе второго элемента будет возникать и низкий уровень, посредством которого будет открываться третий полевой транзистор.

Кроме того будет возникать и возбуждение генератора. По завершении импульса на первом выходе возникнет высокий уровень, а первый транзистор замкнется. После этого будет начата зарядка четвертого конденсатора посредством тока, который исходит из управляемого генератора на втором транзисторе через пятый резистор. После того, как на четвертом конденсаторе напряжение достигнет нижнего порога переключения второго триггера, он переключится, а на его выходе возникнет новый уровень, посредством которого третий транзистор будет закрыт.

Вся дальнейшая зарядка четвертого конденсатора не будет вызывать переключения второго элемента. После этого, когда на выходе генератора уже будет находится ново сформированный импульс низкого уровня, все процессы будут повторяться. Процедура стабилизации напряжения будет осуществляться посредством изменения относительной длительности задействованного состояния третьего полевого транзистора; именно этим процессом будут управлять измерительные устройства и генератор тока.

Если детально изучить и рассмотреть стабилизатора напряжения для автомобиля, вникнуть в саму сущность и схему данного устройства, то можно выяснить, что оно не является таким сложным и нереальным, как это могло бы показаться на первый взгляд.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Автоблоги

Популярные публикации

Последние комментарии

Как продлить ресурс автомобильных светодиодных ламп без применения стабилизаторов

Предупреждение: Будет много букв, но вроде все по делу. Статья рассчитана на новичков, умеющих пользоваться паяльником.

Часть 1. Предисловие

Наверное, многие из вас меняли штатные лампы накаливания в плафонах салона, в подсветке номера, в габаритных огнях, в приборной панели и т.д., на светодиодные лампы.

Как правило, при подобных заменах используются уже готовые автомобильные светодиодные лампы, рассчитанные на напряжение 12 вольт.

По сравнению с лампами накаливания, преимущества светодиодных ламп известны, это малое энергопотребление, большой выбор цветов свечения, меньший нагрев, а также существенно больший срок службы.

Однако, для долгой и счастливой жизни светодиода весьма важно, чтобы протекающий через него ток не превышал заданных производителем величин. При превышении максимально допустимого тока, происходит быстрая деградация кристаллов светодиодов, и лампа выходит из строя.

Поэтому, в «правильные» светодиодные лампы уже встроен стабилизатор тока (драйвер). Но такие лампы, как правило, стоят недешево. В связи с этим, в автолюбительской среде гораздо большее распространение получили дешевые светодиодные лампы, не имеющие встроенного стабилизатора. Примеры таких ламп на фото 1:

Из-за отсутствия стабилизатора, такие лампы весьма чувствительны к скачкам напряжения в бортовой сети автомобиля. Кроме того, хитрые узкоглазые производители ламп рассчитывают их параметры, как правило, на максимальное напряжение 12В. Однако, как известно, при работе двигателя напряжение в бортсети составляет 13.5-14.5В. В итоге, светодиодные лампы, не имеющие стабилизатора, часто служат даже меньше, чем обычные лампы накаливания. Особенно это заметно при использовании светодиодных ламп в подсветке номера и в габаритных огнях, когда светодиоды работают в течение длительного времени. Месяц-другой, реже полгода, и лампа начинает мигать, а вскоре и совсем гаснет.

Один из способов продлить жизнь таким лампам — это подключение их через стабилизаторы напряжения, которые защитят лампы от скачков напряжения в бортовой сети автомобиля и подадут на лампы стабильные 12В. Однако, такой способ имеет ряд существенных недостатков:

Недостаток 1. Для установки стабилизаторов требуется вмешательство в электропроводку автомобиля, на что пойдет не каждый автовладелец, особенно в гарантийный период.

Недостаток 2. По схемотехнике, стабилизаторы делятся на линейные и импульсные. Линейные довольно сильно греются при относительно небольших токах, а импульсные генерируют высокочастотные помехи, которые влияют на качество приема радио.

Недостаток 3. Ламп в автомобиле много, и на каждую (пусть даже группу ламп) поставить стабилизатор проблематично.

Недостаток 4. Возврат к штатным лампам накаливания может потребовать демонтажа ранее установленных стабилизаторов.

Поэтому, в данной статье я предлагаю способ, как существенно продлить срок службы светодиодных ламп, без использования стабилизаторов. Речь пойдет о простой доработке самих светодиодных ламп.

Часть 2. Немного теории

Мне приходилось разбирать множество автомобильных светодиодных ламп. Несмотря на разный внешний вид, тип цоколя и габаритные размеры, практически все недорогие лампы конструктивно похожи, с небольшими вариациями, которые я отмечу далее.

Итак, среднестатистическая автомобильная светодиодная лампа выполнена по типовой схеме, представленной на рис. 2 (приведен пример для 9 светодиодов):

Обозначение элементов на схеме, слева направо:

R0 : Резистор-обманка для систем контроля исправности ламп. О нем я, возможно, сделаю отдельный материал, здесь его пока не рассматриваем. Этот резистор может присутствовать, а может и нет. I0 — ток через резистор R0.

VDS1 : Диодный мост. Так как для светодиодов важна полярность подключения, диодный мост позволяет подключать лампу как обычную лампу накаливания, не думая о полярности. Самые дешевые лампы не имеют диодного моста, но, в последнее время, он часто присутствует даже в малогабаритных бесцокольных лампах. Диодный мост установлен в лампу чисто для удобства пользователя.

R1-R3 : Токоограничивающие резисторы для цепочек из трех светодиодов HL1.1-HL1.3 и т.д. Эти резисторы задают ток, протекающий через каждую из цепочек светодиодов. Чем больше сопротивление резистора, тем меньше ток через светодиоды.

HL1.1-HL1.3 : Цепочка из трех светодиодов. В разных по конструкции светодиодных лампах, количество цепочек и количество светодиодов в цепочке может быть различным, но часто используются именно цепочки из трех светодиодов. На данной схеме для примера показана лампа с тремя цепочками по три светодиода в каждой. Есть лампы, состоящие вообще из одного светодиода, но схемотехника у них такая же.

I1-I3 : ток через цепочки, например, I1 — ток через цепочку R1-HL1-HL2-HL3 и т.д. Суммарный ток, потребляемый лампой, равен сумме токов Iобщ=I0+I1+I2+I3.

Чтобы повысить надежность работы лампы, правильно ставить на каждую из цепочек отдельный токоограничивающий резистор R1-R3. В этом случае выход из строя светодиодов в одной из цепочек не повлияет на ток через другие цепочки. Однако, в целях экономии, производители дешевых ламп ставят один общий резистор на все цепочки. Такие лампы менее надежны, но выяснить это суждено уже покупателю. Упрощенная схема лампы с одним токоограничивающим резистором приведена на схеме на рис. 3:

Читать еще:  Как красить диски

От теории перейдем к практике. Я не буду грузить вас сложными расчетами, просто покажу, что и как делать.

Часть 3. Доработка автомобильных светодиодных ламп, не имеющих встроенного стабилизатора тока

Для доработки ламп понадобятся:

1. Паяльные принадлежности — паяльник на 25-40 Вт, флюс, припой.
2. Наличие мультиметра и паяльного фена приветствуется.
3. Набор резисторов требуемой мощности и номиналов. Возможно, для определения типа и номиналов резисторов, придется предварительно разобрать одну лампу для изучения.

Пример 1: Цилиндрические лампы типа C5W или C10W

Отпаиваем металлические контактные колпачки, нагревая их феном или паяльником сбоку, в месте соприкосновения с платой. Под одним из колпачков видим резистор-обманку R0, о нем поговорим в следующей записи (фото 4):

На фото 5 слева направо видим диодный мост VDS1, две цепочки светодиодов HL1-HL2 по три светодиода в каждой, и общий токоограничивающий резистор R1. Это означает, что данная лампа выполнена по упрощенной схеме с одним резистором (см. рис. 3).

Для сравнения, на фото 6 приведена более «правильная» лампа, где используются три токоограничивающих резистора, по одному на каждую цепочку:

На фото 7 показана светодиодная лампа со светодиодной матрицей (технология COB). Такие лампы легко отличить по внешнему виду, на них не видно отдельных светодиодов. Для матрицы COB используется один токоограничивающий резистор R1. В данном конкретном случае, это не удешевление:

Доработка лампы очень простая и сводится к замене токоограничивающих резисторов на резисторы большего номинала. Тем самым мы уменьшаем ток через светодиоды, в результате они меньше греются и дольше служат.

Я провел ряд измерений на различных светодиодных лампах, и для себя сделал следующие выводы:

Вывод 1: Большинство дешевых ламп рассчитаны производителем на максимальное напряжение 12В, не более. При работе в реальных условиях, при напряжении в бортсети порядка 13.5-14.5В, светодиоды работают с перегрузкой и быстро выходят из строя.

Вывод 2: Увеличение номинала токоограничивающего резистора в 2-3 раза не сильно сказывается на яркости свечения лампы, но пропорционально снижает ток через светодиоды, чем существенно продлевает их ресурс.

Вывод 3: Даже при уменьшении тока в 3-5 раз по сравнению с исходным, светодиодные лампы светят ярче, чем аналогичные лампы накаливания.

Отпаяв колпачки и получив доступ плате, выпаиваем заводской резистор и вместо него впаиваем свой, с увеличенным сопротивлением.

На фото 8 заводской резистор сопротивлением 22 Ом заменен на резистор сопротивлением 100 Ом (почти в 5 раз больше):

Подбором номинала резистора можно изготовить лампы для различных применений, например, для освещения салона сделать поярче, в подсветку номера — поменьше яркостью и т.д. Например, на фото 9, для подсветки номера, я поставил резисторы сопротивлением 150 Ом (в 7 раз больше штатного 22 Ом), яркость все равно осталась больше штатных ламп накаливания:

Пример 2. Бесцокольные лампы T10 W5W

Отгибаем контактные усики и разбираем лампу (фото 10):

Видим, что лампа имеет простейшую конструкцию, без диодного моста, питание на светодиоды подается через один токоограничивающий резистор (фото 11):

Еще одна распространенная разновидность лампы W5W, с одним мощным светодиодом. Разбирается аналогично предыдущему примеру (фото 12):

Здесь в конструкции питание подается через два последовательно включенных резистора. Это сделано для того, чтобы резисторы поменьше грелись (фото 13):

Пример 3. Малогабаритные лампы T5 для приборной панели

Как правило, из-за ограниченного размера, в конструкции таких ламп оставлен лишь один светодиод и один токоограничивающий резистор. Разбираются аналогично лампам W5W, путем отгибания усиков (фото 14-15):

14. Лампы для приборной панели

Все рассмотренные лампы дорабатываем аналогично, просто заменяем штатные резисторы на свои, с увеличенным в 2-3-5 раз номиналом. Сопротивление резистора подбираем, в зависимости от требуемой яркости свечения.

Часть 4. Некоторые практические советы

Совет 1. В лампах различного размера и конструкции, могут использоваться различные по типу и размеру элементы. Как правило, компоновка деталей лампы довольно плотная, поэтому запаять вместо штатных другие типоразмеры часто бывает затруднительно, из-за ограниченного свободного места. Поэтому, заранее подбирайте подходящие детали, но при этом чтобы мощность нового резистора не была меньше мощности штатного (фото 16):

Совет 2. При работе с паяльным феном, легко повредить горячим воздухом соседние детали, например, светодиоды. Поэтому, перепаивая резисторы, закрывайте другие детали от воздействия горячего воздуха. Я, например, просто прикрывал светодиоды пинцетом (фото 17):

Совет 3. При выпаивании колпачков ламп C5W и C10W, часть припоя может вытечь. При сборке лампы, для надежной пайки колпачков, можно заранее добавить припоя на контактные пятачки платы, тогда при нагреве припой надежно соединит плату и колпачок.

Совет 4. Некоторые лампы со светодиодными матрицами COB, для красоты прикрыты декоративными пластиковыми стеклами. Эти стекла ухудшают теплоотвод, рекомендую их снять, на внешний вид подсветки по факту это никак не влияет, а охлаждаться лампа будет лучше (фото 19):

И в завершение, небольшой прикол. Интересно, откуда на лампе взялась надпись «КОЛЯ», нанесенная промышленным способом? (фото 20):

Данная простая доработка позволяет существенно продлить ресурс автомобильных светодиодных ламп, даже без использования стабилизаторов тока или напряжения.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Стабилизатор бортовой сети автомобиля

перечитал много тем но возник вопрос и практическое применение к теме стабилизаторов в авто.
имеем авто.
параметры задачи:
1) в нем борт сеть имеет напряжение от 10 до 14.5 вольт ( падение на АКБ при кручении стартером, до работы генератора в борт сеть)
2) скачки напряжения до 100 вольт ( гдето ктото об этом писал)
3) нагрузка для стабилизатора 12V 1-3A
4) максимально простое но в тоже время по максимуму эффективное устройство.
5) отсутствие помех в радио диапазоне, и по питанию.

теперь попробую развернуть .

1) просто использование стабилизаторов типа Step-Up/Down не удовлетворит запрос по причине технической, напряжение стабилизации будет в среднем диапазоне входного что не соответствует условиям собственно данных типов импульсных стабилизаторов.
остается использовать вариант преобразователя по схеме допускающей как увеличение так и уменьшение напряжения, либо SEPIC либо Buck-Boost, либо Flyback.
интересно именно в свете максимально дешевых и распространенных микросхем типа к примеру 34063 ( их у нас в магазинах как гавна по 50 р)
2) от скачков напряжения можно ли применять супрессоры, и если можно то каковы их схемы включения.
так как с данными деталями в сути не знаком вообще, хотя пытался понять в просторах инета, всеже интересует мнение специалиста простыми словами, выполнят ли они роль ограничения данных высоковольтных* выбросов в сети питания стабилизатора для недопущения их в нагрузку стабилизатора, или же они могут работать только для того чтоб сжечь предохранитель .
3) нагрузка будет разношерстная, и независимо от нее стабилизация должна быть очень ровной, без просадок при добавлении нагрузки, и отключения ( частичной)
4) по сути не хочется строить устройство размером с БП от компа, в тоже время применения смд элементов невозможно по причине сложности с радиозапчастями.
интернет магазины по причине почтовых пересылок неудобны, не хочется затягивать процес из за отсутствия каких то элементов все хочется приобрести тут, или по возможности тотже дросель можно намотать в ручную, ( дросселей у нас нет вообще)
5) очень важный фактор, если к примеру по питанию както можно помехи убрать с помощью фильтров то по радио диапазону не хотелось бы фонить, я всетаки люблю слушать радио в машине.

и желательно защита нагрузки по питанию,

кто может подсказать желательно без флуда направление копания и поиска
гугл пользую вполне сносно, но то что чаще всего там есть отсутствует у нас в виде микросхем вообще, н а рынке радиодеталей в магазинах имеется в основном тока разные 34063 и 2576,
ничего другого не смог выпытать у продавцов, а из всяких вариантов более менее достойных для построения стабилизаторов в наличии нет и под заказ не вариант, через инет проще — но чесно говоря устраивать заказ на 2 недели както не хочется.
доставка будет дорогая )))

Читать еще:  Замена масла в двигателе ВАЗ-2114 своими руками

в общем на основе 34063 есть варианты типа вот этот :

нада только изменить R1, R2 под нужное напряжение
вопрос данная схема выполнит условия 1,3 ?

как добавить в схему супрессоры?
во входные цепи питания

схема включения

достаточно ли будет одностороннего, или лучше двусторонний ставить?
какие оптимальные параметры для авто будут приемлемы?

P.S. прошу прощения за столько глупых вопросов но я всеже ен профессионал, и хотелось бы оптимальные параметры под конкретные задачи в 1 теме получить, чем искать все по кусочкам.
платы схему сделаю без проблем, рассчитаю некоторые параметры также, но основные направления всеже хочется услышать мнение профессионалов.

вообще схема желательна чтоб была по универсальней и имела диапазон входных напряжений от 10 до 30 вольт, для использования также в Фурах.
но в фуру можно уже сделать вариант step/down . конешно, но универсальность теряется(
универсальность удобнее что вытащил с легковой, сунул в прикуриватель* грузового и получил что нада .

Простой стабилизатор для светодиодов в авто

Светодиоды не любят колебания напряжения, это факт. Не любят они это по причине того, что светодиоды ведут себя не так как лампы или другие линейные приборы. Их ток меняется в зависимости от напряжения нелинейно, поэтому например двухкратное увеличение напряжения увеличивает ток через светодиоды далеко не в 2 раза. Из за чего они перегреваются, быстро деградируют и выходят из строя.

Большинство диодов, применяемых в автомобиле, имеют встроенное сопротивление, которое рассчитано на напряжение 12 вольт. Но напряжение бортовой сети автомобиля никогда не бывает 12 вольт (разве что с разряженным аккумулятором), плюс ко всему оно далеко не такое стабильное, как хотелось бы. Если использовать недорогие китайские диодные приборы в автомобиле без предварительной их стабилизации то они достаточно быстро начнут мигать а затем и вовсе перестанут светить.

Вот и я столкнулся с такой проблемой — светодиоды в габаритах начали мигать, так как я когда-то поленился их стабилизировать.

Существует множество готовых схем-стабилизаторов для 12-вольтовых приборов. Чаще всего на прилавках можно найти микросхему КР142ЕН8Б или подобные ей. Данная микросхема расчитана на ток до 1.5А, но для большего эффекта нужно включение с применением входных и выходных конденсаторов.

Стандартная схема предполагает применение 0.33 и 0.033мкФ конденсаторов (если память не изменяет). Но лично я решил сделать включение с применением 4-х конденсаторов: 470мкФ и 0.47мкФ на вход и соответственно в 10 раз меньшая емкость на выход. Я уже не помню, но где-то на форумах я встречал именно такое включение, решил его применить.

Чтобы все это можно было легко внедрить в авто, я решил напаять все элементы непосредственно на микросхему.

Микросхема с элементами

Микросхема с элементами

К микросхеме припаяны, помимо конденсаторов, два провода, соответственно вход и выход. Масса будет приходить через крепление микросхемы. Средняя нога микросхемы задействована только под ножки конденсаторов. Выводить провод от нее я не стал, так как она объединена с корпусом схемы.
Для прочности всей конструкции я решил залить все это клеем, затем завернуть в термоусадку.

Микросхема и термоусадка

В автомобиле можно крепить через саморез к кузову.

Пост не претендует на что-то супер-мега технологичное, но мало ли кому может пригодиться 🙂

Вместо КР142ЕН8Б можно использовать L7812CV, схема включения аналогичная. Если взглянуть на стандартную схему и сравнить с моей то возникают вопросы “зачем именно такие емкости?”.

Поясняю: штатная схема включения подразумевает только стабилизацию напряжения, но никак не спасает от просадки (кратковременной) напряжения, поэтому в схему были введены электролиты достаточно большой емкости для сглаживания таких просадок.

По идее конечно АКБ в машине должен выполнить роль фильтра просадок напряжения, но иногда случаются просадки, которые АКБ просто не успевает уловить. Например при подаче искры на свечу зажигания через катушку проходит нехилый ток, который отлично просаживает напряжение в бортсети.

Стабилизатор напряжения 12 вольт для светодиодов в авто своими руками схема

Светодиодная подсветка все глубже внедряется в нашу жизнь. Капризные лампочки выходят из строя и красота сразу меркнет. И все потому, что светодиоды не могут работать просто от включения в электросеть. Они обязательно подключаются через стабилизаторы (драйверы). Последние препятствуют перепадам напряжения, выходу из строя компонентов, перегреву и т. п. Об этом и о том, как собрать простую схему своими руками, и пойдёт речь в статье.

Выбор стабилизатора

В бортовой сети автомашины рабочее питание составляет примерно от 13 В, большинству же светодиодов подходит 12 В. Поэтому обычно ставят стабилизатор напряжения, на выходе которого 12 В. Таким образом, обеспечиваются нормальные условия для работы светотехники без ЧП и преждевременного выхода из строя.

На этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Выбрать нужно тот, что достоин любимого транспортного средства и, кроме того:

  • действительно будет работать;
  • обеспечит безопасность и защищенность светотехнике.

Самый простой стабилизатор напряжения, сделанный своими руками

Если у вас нет желания покупать готовое устройство, тогда стоит узнать, как сделать простенький стабильник самому. Импульсный стабилизатор в авто сложно изготовить своими руками. Именно поэтому стоит присмотреться к подборке любительских схем и конструкций линейных стабилизаторов напряжения. Самый простой и распространенный вариант стабильника состоит из готовой микросхемы и резистора (сопротивления).

Сделать стабилизатор тока для светодиодов своими руками проще всего на микросхеме LM317. Сборка деталей (см. рисунок ниже) осуществляется на перфорированной панели или универсальном печатном плато.

Устройство позволяет сохранить равномерное свечение и полностью избавить лампочки от моргания.

Схема 5 амперного блока питания с регулятором напряжения от 1,5 до 12 В.

Для самостоятельной сборки такого устройства понадобятся детали:

  • плато размером 35*20 мм;
  • микросхема LD1084;
  • диодный мост RS407 или любой небольшой диод для обратного тока;
  • блок питания, состоящий из транзистора и двух сопротивлений. Предназначен для отключения колец при включении дальнего или ближнего света.

При этом светодиоды (в количестве 3 шт.) соединяются последовательно с токоограничивающим резистором, выравнивающим ток. Такой набор, в свою очередь, параллельно соединяется со следующим таким же набором светодиодов.

Стабилизатор для светодиодов на микросхеме L7812 в авто

Стабилизатор тока для светодиодов может быть собран на базе 3-контактного регулятора напряжения постоянного тока (серии L7812). Устройство навесного исполнения отлично подходит для питания, как светодиодных лент, так и отдельных лампочек в автомобиле.

Необходимые компоненты для сборки такой схемы:

  • микросхема L7812;
  • конденсатор 330 мкф 16 В;
  • конденсатор 100 мкф 16 В;
  • диод выпрямительный на 1 ампер (1N4001, к примеру, или аналогичный диод Шоттки);
  • провода;
  • термоусадка 3 мм.

Вариантов на самом деле может быть много.

Схема подключения на базе LM2940CT-12.0

Корпус стабилизатора можно выполнить практически из любого материала, кроме дерева. При использовании более десяти светодиодов, рекомендуется к стабильнику приделать алюминиевый радиатор.

Может кто-то пробовал и скажет, что можно запросто обойтись без лишних заморочек, напрямую подключив светодиоды. Но в этом случае последние большую часть времени будут находиться в неблагоприятных условиях, посему прослужат недолго или вовсе сгорят. А ведь тюнинг дорогих авто выливается в довольно крупную сумму.

А по поводу описанных схем, их главное достоинство – простота. Для изготовления не требуется особых навыков и умений. Впрочем, если схема слишком сложная, то собирать её своими руками становится не рационально.

Заключение

Идеальный вариант подключения светодиодов – через стабилизатор тока. Устройство уравновешивает колебания сети, с его использованием уже не будут страшны броски тока. При этом необходимо соблюдать требования к электропитанию. Это позволит подстроить свой стабилизатор под сеть.

Аппарат должен обеспечивать максимальную надежность, устойчивость и стабильность, желательно на долгие годы. Стоимость собранных устройств зависит от того, где все необходимые детали будут покупаться.

Ссылка на основную публикацию
Adblock
detector