Устройство и принципы работы асинхронных двигателей
Устройство и принципы работы асинхронных двигателей
Рейтинг 2.9/5 (81 голосов)
Линейный двигатель является электрической машиной, принцип работы которой основан на использовании энергии бегущего магнитного поля. Основное преимущество таких двигателей состоит в отсутствии кинематических цепей для преобразования вращательного движения в линейное, что существенно упрощает конструкцию приводимого в движение механизма и повышает его КПД. Существует большое разнообразие линейных двигателей. В настоящее время больший интерес проявляется к асинхронным линейным двигателям как относительно простым по конструкции.
Эти двигатели можно представить как разрезанную по образующей и развернутую в плоскость обычную асинхронную машину вращательного движения. Развернутый в плоскость статор асинхронного двигателя является первичным элементом, а развернутый ротор вторичным элементом линейного двигателя (рис. 1).
Стальной сердечник первичного элемента выполняется шихтованным, а в его пазах укладывается многофазная (обычно трехфазная) обмотка. Вторичный элемент выполняется с короткозамкнутой обмоткой, уложенной в пазы стального сердечника, или представляет собой сплошную токопроводящую пластину. Пластина изготовляется из меди, алюминия или ферромагнитной стали. При включении обмотки первичного элемента в многофазную сеть образуется магнитное поле, которое перемещается вдоль магнитопровода со скоростью
где τ — полюсное деление;
f1 — частота питающего напряжения.
При своем перемещении магнитное поле индуктирует во вторичном элементе машины ЭДС. Эта ЭДС вызывает токи, от взаимодействия которых с магнитным полем образуется механическая сила (тяговое усилие), стремящаяся сдвинуть элементы относительно друг друга.
В линейном двигателе в зависимости от его конструкции и назначения возможно относительное перемещение как первичного, так и вторичного элемента. Как и в обычном асинхронном двигателе, перемещение элемента происходит с некоторым скольжением относительно поля
S = (v1 — v) / v1
где v — скорость движения элемента.
Номинальное скольжение линейного двигателя равно 2-6%.
На работу линейного двигателя оказывают существенное влияние краевые эффекты, возникающие из-за конечных размеров разомкнутых магнитопроводов элементов. Это приводит к ухудшению таких характеристик, как тяговое усилие, коэффициент мощности и КПД.
Линейные двигатели могут быть успешно применены на ленточных и тележечных конвейерах, в приводах эскалаторов и движущихся тротуаров, в металлорежущих и ткацких станках, где рабочие органы совершают возвратно-поступательное движение. Большие перспективы имеет применение линейных двигателей для транспорта. Основным преимуществом линейного двигателя в этом случае является
возможность получения высоких скоростей движения до 400-500 км/ч.
Принцип работы АД (асинхронного двигателя) с фазным ротором
Асинхронный двигатель (АД) с фазным ротором представляет собой многофункциональную силовую установку, которая поддерживает регулировку с помощью внесения в роторную цепь добавочных сопротивлений. От классических моделей с короткозамкнутым ротором агрегат отличается более высоким пусковым моментом и низким пусковым током. Классификация устройств осуществляется с учетом их свойств и конструкции.
- Общая информация
- Технические характеристики
- Устройство и конструкция
- Принцип работы
- Плюсы и минусы
- Сферы применения
Общая информация
Чтобы понять, как работает асинхронный двигатель с фазным ротором, необходимо внимательно изучить особенности его пуска. При запуске установки ее ротор параллельно переходит из состояния покоя в медленное и равномерное вращение. При этом система уравновешивает момент сил сопротивления посредством собственного вала.
Во время запуска начинается усиленное потребление энергетических ресурсов, что связано с преодолением тормозного момента и компенсацией потерь внутри силовой установки. Нередко параметры начального пускового момента далеки от требуемых, поэтому асинхронный двигатель не способен перейти в режим полноценной работы. В таком случае ускорение приостанавливается, а постоянное воздействие чрезмерного тока приводит к перегреву внутренних узлов установки.
По этой причине частота запусков двигателя ограничивается несколькими включениями. Если агрегат работал от электрической сети с низкой мощностью, тогда подобное явление может снизить общее напряжение и нарушить работу других приборов, присоединенных к этой линии.
Наличие в роторной цепи пусковых резисторов снижает показатели электрического тока, но при этом поднимает начальный пусковой момент, пока он не достигнет пиковой отметки. Запуск силовой установки бывает легким, нормальным или тяжелым.
В зависимости от этого фактора можно определить оптимальные параметры сопротивления резисторов.
После успешного запуска остается поддерживать стабильный вращающий момент на этапе разгона ротора, что сократит продолжительность перехода из спокойного состояния в стадию вращения и снизит вероятность нагрева. Для этого необходимо уменьшить показатели сопротивления резисторов.
Переключение разных резисторов происходит из-за подключения контакторов ускорения в последовательном порядке. Отключать двигатель от электрической сети можно только при накоротко замкнутой роторной цепи. Если это требование проигнорировать, то появится риск существенного перенапряжения в обмоточных фазах статора.
Технические характеристики
Существуют установленные требования, гарантирующие качественную работу асинхронных двигателей с фазным ротором. От них зависят базовые параметры и характеристики системы, включая:
- Размеры и мощность установки, соответствующие техническому регламенту.
- Защиту от внешних воздействий. Ее степень определяется окружающими условиями, в которых будет расположена машина. Дело в том, что одни установки предназначаются для работы внутри помещения, в то время как другие способны функционировать и на улице. К тому же доступные на рынке агрегаты отличаются климатическими особенностями. Например, существуют двигатели, которые выдерживают экстремальный холод или, наоборот, сильную жару. В зависимости от условий использования они обладают характерным исполнением и защитой.
Степень изоляции. Асинхронные двигатели с фазным ротором должны быть устойчивыми к высоким температурным показателям и возможным нагревам внутренних механизмов. Для предотвращения воспламенений их защищают специальными изоляционными слоями.
- Соответствие установленным стандартам и режимам функционирования.
- Наличие мощной охладительной системы, которая соответствует рабочему режиму двигателя.
- Уровень шума во время запуска на холостом ходу. Он соответствует второму классу или ниже.
Устройство и конструкция
Желая купить асинхронный электродвигатель с фазным ротором, необходимо хорошо разбираться в его устройстве и конструкционных особенностях. В первую очередь нужно знать, что к основным частям установки относятся статор, который является неподвижным, и ротор — вращающийся механизм внутри статора. Между обоими элементами расположен воздушный зазор, а их поверхность покрыта специальной обмоткой.
Обмотка статора подключена к электрической сети с переменным напряжением, которое передается на обмотку ротора. Взаимодействие узлов обусловлено магнитным потоком.
Что касается корпуса статора, то в качестве него используется корпус двигателя, внутри которого расположен запрессованный сердечник. В последнем находятся проводники обмотки, защищенные от замыкания изоляцией. Обмотка сердечника состоит из нескольких секций, заключенных в катушки.
В роторе установлены вал и сердечник из набранных пластин. Последний элемент создается на основе высокотехнологичной стали и обладает симметричными пазами с проводниками. При работе вал ротора передает крутящий момент к приводу установки. В зависимости от типа ротора выделяют две разновидности двигателей:
- С короткозамкнутым ротором.
- С фазным ротором.
В первом типе роторов присутствуют алюминиевые стержни, которые находятся внутри сердечника и замкнуты на торцах кольцами. Их также называют «беличьим колесом». Обычно пазы установки обрабатываются алюминием, что повышает их прочность.
Фазный ротор асинхронного двигателя существенно отличается от предыдущей разновидности. Число катушек, установленных под конкретным углом, в таких моделях определяется количеством парных полюсов. При этом пары полюсов в роторе такого типа всегда сопоставимы с аналогичными статорными парами.
Принцип работы
Изучив устройство АД с фазным ротором и его запуск, можно приступать к более подробному рассмотрению работы такой установки. Её можно разделить на несколько пунктов:
- На статор с тройной обмоткой подается трехфазное напряжение от электрической сети с переменным током.
- Затем начинается образование магнитного поля, которое приводит к вращению ротора. По мере ускорения вращательных движений скорость оборотов ротора существенно растет.
- По достижении определенных показателей отдельные линии полей обоих узлов пересекаются, что вызывает появление электродвижущей силы. Она воздействует на роторную обмотку, за счет чего в ней формируется электрический ток.
- В определенный момент времени между магнитным полем статора и током в роторе начинается взаимодействие, образующее крутящий момент. Именно за счет него и осуществляется работа асинхронного двигателя.
Плюсы и минусы
В последнее время асинхронные агрегаты пользуются большой популярностью. Она связана с массой преимуществ, которыми они обладают. В их числе:
- Высокие значения при начальном вращающем моменте.
- Способность принимать любые механические перегрузки без существенного изменения КПД или нарушения стабильной работы установки. Даже если в системе возникают разнообразные перегрузки, агрегат продолжает функционировать с заданной скоростью и практически не отклоняется от базового режима.
Сниженный пусковой ток. В отличие от других асинхронных моделей, например, с короткозамкнутым ротором, у этих двигателей сравнительно низкие показатели пускового тока.
- Возможность полной автоматизации работы.
- Простота конструкции.
- Простая схема запуска.
- Сравнительно невысокая цена.
- Отсутствие необходимости сложного и дорогостоящего обслуживания.
Кроме множества плюсов у двигателей этого типа имеются и недостатки. К ключевым минусам относят довольно крупные габариты, из-за которых монтаж и дальнейшая эксплуатация системы усложняются, а также сниженный КПД по сравнению со многими аналогами.
По последнему показателю устройства с короткозамкнутым ротором более продуктивные.
Сферы применения
В настоящее время многие промышленные двигатели являются асинхронными. Их популярность обусловлена вышеперечисленными плюсами и доступностью. Сферы применения таких агрегатов очень обширные, поэтому их активно используют для работы автоматизированных устройств из телемеханической сферы, бытового и медицинского оборудования и звукозаписывающих установок. Асинхронный двигатель — это полезное изобретение нынешнего времени, которое упрощает жизнь человека и обеспечивает хороший КПД при минимальных затратах электроэнергии.
Двигатель асинхронный трехфазный: устройство и принцип действия.
Трехфазный асинхронный двигатель является наиболее распространённым типом моторов. В таком электродвигателе на статоре устанавливается трехфазная обмотка, что обуславливает его название.
КОНСТРУКЦИЯ ТРЕХФАЗНОГО асинхронного ДВИГАТЕЛЯ
Основная задача двигателя — это превращение электрической энергии в механическую. Конструкция его состоит из двух основных элементов таких как ротор (подвижная часть) и статор (неподвижная часть).
Между ними находиться воздушный зазор. Оба этих элемента имеют в себе сердечники, где размещается специальные витки обмотки. В роторе они располагаются на валу, а в статоре в специальных пазах на корпусе.
Пазы, на которых крепиться обмотка имеют угловое расстояние между собой в 120 градусов. Наиболее распространённым является система с короткозамкнутым ротором или как ее называют «беличье колесо». В этом случае обмотка крепиться на каркас цилиндрической формы, а стержни соединяются с сердечником ротора и накоротко замыкаются с торцов.
Помимо короткозамкнутого также используются и двигатели с фазным ротором. В этом случае фазы обмотки присоединяется к специальным контактным кольцам, а их концы изолируются друг от друга и от вала. При всем этом статоры в обоих представленных видах могут не отличаться конструкционно.
Существует несколько схем соединения трехфазных обмоток между собой. Основными способами являются т.н. «звезда» и «треугольник». Иногда устанавливаются и комбинированные варианты. Подбор схемы зависит от напряжения питания в сети. В первом случае концы фаз обмоток соединены в одной точке. Во втором — конец каждой фазы поочередно соединяется с началом следующей.
ПРИНЦИП ДЕЙСТВИЯ
Работа асинхронного двигателя основывается на вращении магнитных полей. С помощью тока в обмотке статора создается движущееся магнитное поле, которое воздействует на контур ротора и индуцирует в нем электродвижущую силу. Если этот показатель выше силы трения, то вал приводиться в движение.
Ротор увеличивает частоту вращения пытаясь догнать скорость вращения магнитных полей обмотки статора. Однако, когда этот параметр сравниваеться то электродвижущая достигает нулевого значения и магнитное воздействие пропадает.
Поэтому частота вращение вала никогда не совпадает (не синхронна) с частотой движущихся магнитных полей. Из-за этого двигатель называют асинхронным.
РЕЖИМЫ РАБОТЫ
Трехфазный электродвигатель асинхронного типа имеет несколько возможных режимов работы:
- Пуск.
- Двигательный режим.
- Холостой ход.
- Генераторный режим.
- Электромагнитное торможение.
Пуск является начальным этапом работы любого двигателя. В этом режиме на обмотку пускается ток и создаются вращающиеся магнитные поля. В момент, когда сила трения меньше электродвижущей — ротор начинает вращение.
Двигательный режим выполняет основную задачу электродвигателя, то есть превращает электродвижущую силу в механическое вращение вала.
Холостой ход происходит, когда на валу отсутствует нагрузка, то есть он не подсоединен к другим устройствам.
Генераторный режим включается, когда обороты вала принудительно, например, с помощью другого двигателя, превышают скорость вращения электромагнитного поля. В этом случае электродвижущая сила имеет обратный вектор и двигатель превращается в источник активной энергии.
Электромагнитное торможение происходит, когда искусственно изменяют направление вращения электромагнитного поля и ротора на противоположные. Происходит довольно быстрое торможение. Применяется только в экстренных случаях, так как выделяется огромное количество тепла.
ПРЕИМУЩЕСТВА ТРЕХФАЗНОГО АСИНХРОННОГО ДВиГАТЕЛЯ
Трёхфазный двигатель также может работать в однофазном режиме, когда это потребуется. Однако номинальная мощность при этом понижается приблизительно вдвое.
В случае пропадания одной из фаз двигатель продолжит работу и даже будет возможен запуск, но с пониженной мощностью. Относительная дешевизна, хороший КПД и надежность поспособствовали тому, что такие моторы заслужили наибольшую популярность во всем мире.
На нашем сайте вы сможете найти электродвигали для любых ситуаций. В каталогах представлены моторы таких мировых лидеров как Siemens, ABB, Lenze, а также VEM motors.
На страницах нашего блога также можно также ознакомиться с другими типами асинхронных моторов >>>ОДНОФАЗНЫЕ АСИНХРОННЫЕ ДВИГАТЕЛИ >> ВИДЫ ЭЛЕКТРОДВИГАТЕЛЕЙ
Что такое асинхронный двигатель и как он работает
Асинхронный двигатель простой и надежный и от этого очень часто используется на производстве и в бытовой технике, от привода задвижек до вращения барабана в стиральной машине. В этой статье мы простыми словами расскажем о том какие бывают асинхронные электродвигатели, что это такое и как работает данный тип электрических машин.
- Виды
- Устройство
- Принцип работы
- Скольжение и скорость вращения
- Сфера применения
Асинхронные двигатели (АД) делятся на две основные группы:
- с короткозамкнутым ротором (КЗ);
- с фазным ротором.
Если опустить нюансы, то отличие заключается в том, что у АД с короткозамкнутым ротором нет щеток и выраженных обмоток, он менее требователен в обслуживании. Тогда как в асинхронных двигателях с фазным ротором есть три обмотки, соединенные с контактными кольцами, ток с которых снимается щетками. В отличие от предыдущего лучше поддаётся регулированию момента на валу и проще реализуется плавный запуск для снижения пусковых токов.
В остальном двигатели классифицируют:
- по количеству питающих фаз — однофазные и двухфазные (используются в быту при питании от сети 220В), и трёхфазные (получили наибольшее распространение на производстве и в мастерских).
- по способу крепления — фланцевое или на лапах.
- по режиму работы — для длительного, кратковременного или повторно-кратковременного режима.
И ряду других факторов, которые влияют выбор конкретного изделия для использования в конкретных условиях.
Об однофазных электродвигателях можно сказать много: некоторые из них запускаются через конденсатор, а некоторым требуется и пусковая и рабочая ёмкость. Есть и варианты с короткозамкнутым витком, которые работают без конденсатора и применяются, например, в вытяжках. Если вам интересно — пишите в комментариях и мы напишем об этом статью.
Устройство
По определению «асинхронным» называют двигатель переменного тока, у которого ротор вращается медленнее чем магнитное поле статора, то есть несинхронно. Но это определение не слишком информативно. Чтобы его понять нужно разобраться как устроен этот двигатель.
Асинхронный двигатель, как и любой другой состоит из двух основных частей — ротор и статор. «Для чайников» в электрике расшифруем:
- Статором называют неподвижную часть любого генератора или электродвигателя.
- Ротором называют вращающуюся часть двигателя, которая и приводит в движение механизмы.
Статор состоит из корпуса, торцы которого закрываются подшипниковыми щитами, в которых установлены подшипники. В зависимости от назначения и мощности двигателя используют подшипники скольжения или качения. В корпусе расположен сердечник, на нём установлена обмотка. Её называют обмоткой статора.
Так как ток переменный, чтобы снизить потери из-за блуждающих токов (токи Фуко) сердечник статора набирают из тонких стальных пластин, изолированных друг от друга окалиной и скрепленных лаком. На обмотки статора подают питающее напряжение, ток протекающий в них называют током статора.
Количество обмоток зависит от числа питающих фаз и конструкции двигателя. Так у трёхфазного двигателя минимум три обмотки, соединённых по схеме звезды или треугольника. Их количество может быть больше, и оно влияет на скорость вращения вала, но об этом мы поговорим далее.
А вот с ротором дела обстоят интереснее, как уже было сказано он может быть или короткозамкнутым, или фазным.
Короткозамкнутый ротор — это набор металлических стержней (обычно алюминиевых или медных), на рисунке выше обозначены цифрой 2, впаянных или залитых в сердечник (1) замкнутых между собой кольцами (3). Такая конструкция напоминает колесо, в котором бегают одомашненные грызуны, отчего её часто называют «беличьей клеткой» или «беличьим колесом» и такое название не жаргонное, а вполне литературное. Для уменьшения высших гармоник ЭДС и пульсации магнитного поля, стержни укладывают не вдоль вала, а под определенным углом относительно оси вращения.
Фазный ротор отличается от предыдущего тем, что на нем уже есть три обмотки, как на статоре. Начала обмоток подключаются к кольцам, обычно медным, они напрессованы на вал двигателя. Позже мы кратко объясним зачем они нужны.
В обоих случаях, один из концов вала соединяют с приводимым в движение механизмом, он выполняется конической или цилиндрической формы с проточками или без, для установки фланца, шкива и других механических приводных деталей.
На «задней» части вала закрепляют крыльчатку, которая необходима для обдува и охлаждения, поверх крыльчатки на корпус надевается кожух. Таким образом холодный воздух направляется вдоль ребер асинхронного двигателя, если эта крыльчатка по какой-то причине не будет вращаться — он перегреется.
Конструкция первого асинхронного двигателя была разработана М.О. Доливо-Добровольским и запатентовал он её в 1889 г. Без особых изменений дожила до настоящего времени.
Принцип работы
Асинхронные электрические машины часто называют индукционными, это связано с их принципом действия. Любой электродвигатель приводится во вращение в результате взаимодействия магнитных полей ротора и статора, а также благодаря силе Ампера. Магнитное поле, в свою очередь, может существовать либо вокруг постоянного магнита, либо вокруг проводника, через который протекает ток. Но как работает именно асинхронная машина?
В асинхронном двигателе в отличие от других нет как таковой обмотки возбуждения, тогда как у него появляется магнитное поле? Ответ прост: асинхронный электродвигатель – это трансформатор.
Рассмотрим принцип его работы на примере трёхфазной машины, так как именно они встречаются чаще остальных.
На рисунке ниже вы видите расположение обмоток на сердечнике статора трёхфазного асинхронного двигателя.
В результате протекания трёхфазного тока в обмотках статора появляется вращающееся магнитное поле. Из-за сдвига фаз ток протекает то по одной, то по другой обмотке, в соответствии с этим возникает магнитное поле, полюса которого направлены согласно правилу правой руки. И в соответствии с изменением тока в той или иной обмотке полюса направляются в соответствующую сторону. Что иллюстрирует следующая анимация:
В простейшем (двух полюсном) случае обмотки уложены таким образом, что каждая из них смещена на 120 градусов относительно предыдущей, как и угол сдвига фаз напряжения в сети переменного тока.
Скорость вращения магнитного поля статора принято называть синхронной. Подробнее о том, как оно вращается, и почему вы узнаете из следующего видеоролика. Отметим, что в двухфазных (конденсаторных) и однофазных электродвигателях — оно не вращающееся, а эллиптическое или пульсирующее, а обмоток не 3, а 2.
Если рассматривать асинхронный электродвигатель с короткозамкнутым ротором, то магнитное поле статора индуцирует в его стержнях ЭДС, так как они замкнуты, то начинает протекать ток. Из-за чего также возникает магнитное поле.
В результате взаимодействия двух полей и силе Ампера, действующей на ротор, он начинает вращаться вслед за вращающимся магнитным полем статора, но при этом всегда немного отставая от скорости вращения МП статора, это отставание называют скольжением.
Если скорость вращения магнитного поля называют синхронной, то скорость вращения ротора уже асинхронной, от чего он и получил такое название.
У АД с фазным ротором дела обстоят подобным образом, за исключением того, что к его кольцам подключают реостат, который после того как двигатель выйдет на рабочий режим выводится из цепи и обмотки замыкаются накоротко. Это показано на схеме ниже, но вместо реостата использованы постоянные резисторы, подключаемые или шунтируемые контакторами КМ3, КМ2, КМ1.
Такой подход позволяет осуществлять плавный запуск и снижать пусковые токи, за счет увеличения активного электрического сопротивления ротора.
Подведем итоги:
- Ток в обмотках статора порождает магнитное поле.
- Магнитное поле приводит к возникновению тока в роторе.
- Ток в роторе к возникновению поля вокруг него.
- Так как поле статора вращается, то из-за своего поля ротор начинает вращаться за ним.
Скольжение и скорость вращения
Частота вращения магнитного поля статора (n1) больше, чем частота вращения ротора (n2). Разница между ними называется скольжением, а обозначается латинской буквой S и вычисляется по формуле:
Скольжение не является недостатком этого электродвигателя, поскольку если бы его вал вращался с той же частотой, что и магнитное поля статора (синхронно), то в его стержнях не индуцировался бы ток, и он бы просто не стал вращаться.
Теперь о более важном понятии — частота вращения ротора асинхронного электродвигателя. Она зависит от 3 величин:
- частота напряжения питающей сети (f);
- число пар магнитных полюсов (p);
- скольжение (S).
Число пар магнитных полюсов определяет синхронную скорость вращения поля и зависит от числа обмоток статора. Скольжение зависит от нагрузки и конструкции конкретного электродвигателя и лежит в пределах 3-10%, то есть асинхронная скорость совсем немного меньше синхронной. Ну а частота переменного тока у нас фиксирована и равняется 50 Гц.
Поэтому частоту вращения вала асинхронного двигателя сложно регулировать, вы можете воздействовать лишь на частоту питающей сети, то есть установив частотный преобразователь. Можно и понижать напряжение статора, но тогда уменьшается мощность на валу, тем не менее такой приём применяют при пуске АД с переключением обмоток со звезды на треугольник для уменьшения пусковых токов.
Частота вращения поля статора (синхронная скорость) определяется по формуле:
Так в двигателе с одной парой магнитных полюсов (два полюса) синхронная скорость равна:
Наиболее распространены следующие варианты электродвигателей с:
- одной парой полюсов (3000 об/мин);
- двумя (1500 об/мин);
- тремя (1000 об/мин);
- четырьмя (750 об/мин).
Реальная скорость вращения ротора будет несколько ниже, на реальном асинхронном двигателе она указывается на шильдике, например, здесь – 2730 об/мин. Несмотря на это, в народе такой асинхронный двигатель будут называть согласно синхронной скорости или просто «трёхтысячник».
Тогда его скольжение равняется:
Сфера применения
Асинхронный электродвигатель нашел применение во всех сферах деятельности человека. Те что питаются от одной фазы (от 220В) можно встретить в исполнительных механизмах малой мощности или в бытовой технике и инструменте, например:
- в стиральной машине типа «малютка» и других старых советских моделей;
- в бетономешалке;
- в вентиляторе;
- в вытяжке;
- и даже в газонокосилках верхнего ценового сегмента.
На производстве в трёхфазных сетях:
- автоматические задвижки;
- грузоподъёмные механизмы (краны и лебедки);
- вентиляция;
- компрессоры;
- насосы;
- дерево- и металообрабатывающие станки и другое.
Также АД используется в электротранспорте, а в последнее время в интернете активно рекламируют асинхронный двигатель с обмоткой типа «Славянка» и, так называемое, мотор-колесо Дуюнова, о чем вы можете узнать из видеоролика разработчика.
Область применения асинхронных двигателей настолько обширна, что один только список будет длиннее чем эта статья, поэтому каждый электрик должен знать, как он устроен, для чего нужен и где применяется. Подведем итоги и перечислим плюсы и минусы этих устройств.
- Простая конструкция.
- Низкая стоимость.
- Почти не требуют обслуживания.
Главный недостаток — сложность регулировки оборотов, по сравнению с теми же двигателями постоянного тока или универсальными коллекторными машинами. Соответственно и сложно организовать плавный пуск больших машин, и чаще это делают с помощью дорогого частотного преобразователя.
На этом мы и заканчиваем рассмотрение асинхронных электродвигателей и их области применения. Надеемся, после прочтения статья вам стало понятно, что это такое и как работает данная электрическая машина!
Устройства защиты асинхронных электродвигателей
АВАРИЙНЫЕ СИТУАЦИИ И ИХ ПОСЛЕДСТВИЯ
АВАРИЙНЫЕ СИТУАЦИИ И ИХ ПОСЛЕДСТВИЯ
Обеспечение защиты асинхронных электродвигателей требуется при следующих аварийных ситуациях:
Обрыв фазы (ОФ) возникает в 50% случаев. Происходит это:
- При коротком замыкании на фазе;
- При перегрузке по току;
- При возгорании электрокабеля;
- Ввиду некачественного крепления контакта проводника фаз и его перегорания.
ОФ не всегда вызывает остановку двигателя, но, при увеличенных нагрузках на валу, электродвигатель перегревается, что приводит к его сгоранию и выходу из строя.
Остальные 50% аварийных случаев, приходятся на:
- Нарушение чередования фаз – возможно при ошибочно проведенных ремонтных работах в щитовой и кабельной системе;
- Слипание фаз – происходит при нарушении изоляции в кабеле питания, а также из-за положения проводов на столбах внахлест;
- Перекос фаз – когда нагрузка на фазах распределена неравномерно;
- Сбой в системе управления охлаждением двигателя;
- Другие технологические перегрузки.
УСТРОЙСТВА, ПРИМЕНЯЕМЫЕ ДЛЯ ЗАЩИТЫ ЭЛЕКТРОДВИГАТЕЛЯ ОТ ПЕРЕГРУЗОК
Контроллер электродвигателя, в зависимости от его типа, может осуществлять один или несколько видов защиты электродвигателя:
- От короткого замыкания;
- От замыкания на землю;
- Тепловую;
- Минимальной и максимальной токовой.
Компания Новатек предлагает следующие виды устройств защиты электродвигателя:
Блок защиты УБЗ-301
Представлен потребителям в трех модификациях, классификация которых обусловлена диапазоном номинального тока – 50-50А, 10-100А, 63-630А. Каждое из этих устройств выполняет защиту трехфазного двигателя от пропадания фазы; при недостаточном напряжении в сети и при других механических отклонениях. Работает прибор с высокой точностью и степенью надежности.
Прибор является микропроцессорным автоматическим устройством, не требующим оперативного питания. При аварийных ситуациях, возникших в сетевом напряжении, прибор, после восстановления всех параметров, автоматически выполняет повторное включение. Если же проблема возникла в самом двигателе, то устройство блокирует его повторный запуск.
Блок защиты УБЗ-302
Приоритетное предназначение прибора состоит в защите трехфазного двигателя от пропадания одной фазы и контроле других параметров трехфазных асинхронных двигателей. В набор его защит заложен полный комплекс параметров, реализованных в устройстве УБЗ-301. Помимо этого, устройство осуществляет дополнительную тепловую защиту электродвигателя, а также защиту от блокировки ротора и затянутого пуска.
Устройство для защиты трехфазных электродвигателей применяют с целью поддержания качественной работы различных инженерных и промышленных систем:
- Отопления и водоснабжения:
- Вентиляции и кондиционирования;
- Автоматического контроля и учета на производстве;
- Управления технологическим процессом.
Блок защиты УБЗ-302-01
Универсальный прибор, применяемый для двухскоростных электродвигателей, а именно для контроля параметров напряжения сети, показателей сопротивления изоляции устройства и активных значений линейных и фазных токов.
Набор параметров совершается с помощью программных задач, устанавливаемых пользователем. Допускается установка автоматического отключения или включения прибора, после настройки действующих параметров.
Блоки защиты УБЗ-304 и УБЗ-305
Релейная защита электродвигателей, совершаемая с помощью приборов УБЗ 304 и 305, которые работают с устройствами в диапазоне мощности от 2,5 до 315 кВт и при условии использования стандартных внешних трансформаторов с током на выходе 5А.
Эти универсальные устройства работают в изолированной сети и с глухозаземленной нейтралью. Разница между приборами состоит в их исполнении – щитовая для модели 304, а для 305 – DIN-рейка.
Блок защиты УБЗ-115
Данная модель устройства служит для защиты однофазного двигателя с мощностью до 5,5 кВт и силой тока до 25А. Прибором обеспечивается тепловая защита двигателя, а также защита электродвигателя, в случае таких аварийных ситуаций, как:
- Нарушение в сетевом напряжении;
- Затянутый пуск (есть функция плавного пуска, с возможностью дистанционного управления);
- «Сухой ход», когда исчезает нагрузка на валу электродвигателя»
- Механический перегруз.
Блок защиты УБЗ-118
Принцип работы данного прибора аналогичен работе устройства УБЗ-115, с той лишь разницей, что для УБЗ-118 мощность двигателя составляет до 2,6 кВт. Устройство предназначено для асинхронных однофазных двигателей, которые работают на одном фазосдвигающем конденсаторе, то есть, схема включения не предполагает пускового конденсатора.
Разобраться с принципом работы каждого из устройств более детально, рекомендуем, при помощи технической документации, которая представлена на сайте компании. В случае, дополнительных вопросов, возникших в процессе ее изучения, вы можете получить бесплатную консультацию наших специалистов в онлайн-режиме.
- Компания
- Оплата и доставка
- Гарантия
- Контакты
- Документация
- Прекращение работы сайта
Copyright © 1998-2020 Официальный интернет-магазин ООО «Новатек-Электро» Директор — Новиков Александр Валерианович, ОГРН1137847210918, ОКПО 20508249