1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство и принцип работы двигателя клема

Двигатель Ричарда Клемма. Теория и практика.

Насколько мы знаем, Ричард Клем умер от сердечного приступа вскоре после того, как подписал договор с угольной компанией. Его мастерскую посетили представители властей и все его записки и рисунки были изъяты.

Местный житель Далласа разработал двигатель закрытого типа, который якобы производит мощность 350 лошадиных сил и работает сам по себе.
Двигатель весит около 200 фунтов и содержит растительное масло при температуре 300 F (150 С).
Внутри двигателя находится конус, закрепленный на горизонтальной оси.
Вал, на котором укреплен конус, пустой внутри и переходит в спиральные полые каналы внутри конуса. Они обвивают конус и заканчиваются у его основания соплами (форсунками).

Жидкость подается в центральную ось под давлением 300–500 фунтов на квадратный дюйм, проходит по спиральным каналам и выпрыскивается через форсунки, что заставляет конус вращаться. Чем больше давление жидкости, тем быстрее вращается конус.
При дальнейшем увеличении скорости жидкость нагревается, что требует наличия теплообменника и фильтра. При некоторой скорости конус начинает самостоятельное вращение, независимое от двигателя. Скорость вращения вала достигает 1800–2300 оборотов в минуту.
Как только у изобретателя случился сердечный приступ и его документы были изъяты, его сын отвез один действующий двигатель на ферму неподалеку от Далласа. Там он залил его бетоном на глубине 10 футов, и двигатель продолжал работать на этой глубине в течение нескольких лет.
Из дальнейшего разговора следовало, что мотор был проверен корпорацией Bendix. Тест заключался в присоединении двигателя к динамометру для измерения мощности на валу.
Измерения показали, что двигатель устойчиво производил 350 лошадиных сил в течение 9 дней, что поразило инженеров фирмы Bendix. Они пришли к выводу, что источник, который может вырабатывать столько энергии в закрытой системе в течение столь длительного времени, может быть только ядерным.
Конструкция двигателя не содержит нетрадиционных деталей, за исключением конуса со спиральными каналами и пустотелого вала.
Ричард Клем работал в области тяжелого машиностроения в одном из пригородов Далласа. Он заметил, что определенные типы мощных насосов продолжали работать некоторое время после того, как отключалось питание.
Его любопытство по поводу этого явления привело к изобретению двигателя.

Вырезка из газеты: Сверх-единичный мотор Клема
В 1972 году Ричард Клем объявил об изобретении автомобильного двигателя, работающего на растительном масле.
Он продолжает настаивать на этом по сей день, несмотря на то, что его первый прототип мотора сломался и он обошел как минимум 15 компаний, прежде чем нашел финансовую поддержку.
48-летний Клем, оператор тяжелых машин в городе Далласа на пол-ставки, говорит, что если бы автомобилестроение взяло его изобретение на вооружение, водителям пришлось бы только менять 8 галлонов (30 литров) растительного масла на каждые 150 тысяч миль пробега и никогда не покупать бензин.
Клем говорит, что использовал растительное масло, потому что его двигатель работает при температуре 150 С, при которой вода выкипает, а обычное моторное масло разрушается. Хотя он и не хотел бы разглашать детали устройства двигателя, его единственным дополнительным источником энергии является 12-вольтовая батарея.
Когда Клем соорудил первый масляный двигатель в 1972 году, он предпринял пробное путешествие длиной в 600 миль до Эль-Пасо на моторе, который он сделал на свою зарплату. Перед тем, как все валы и все прочее погнулось, ему удалось доехать только до Абилина.
Он объяснил неудачу несовершенством конструкции, слишком маленьким размером вала и использованием цепей вместо шестеренок. Не унывая, он решил попробовать снова, но сказал, что ему нужны деньги, чтобы сделать эту вещь лучше.
Ни автомобильная промышленность, ни 15 других компаний, куда он писал,— даже в Тайвань — не были заинтересованы в финансировании и изготовлении его двигателя.
В последний год, как он сказал, одна угольная компания предложила ему помощь. Клем отказался назвать имя спонсора, но сообщил, что компания подписала контракт на продажу двигателей энергетическим компаниям в качестве тяговых турбин. Клем предполагает закончить работу над мотором к концу этого года (1972).

Приглашаю всех кто занимается вихревыми технологиями к обсуждению данного проекта.

Схема генератора автомобиля

    66 9 65k
    261 2 289k

Калькулятор перевода силы тока в мощность

Перевести сколько ампер у квт онлайн. Калькулятор перевода силы тока ампер в мощность ватт

Самая основная функция генераторазарядка батареи аккумулятора и питание электрического оборудования двигателя.

Генератор – механизм, который превращает механическую энергию в электрическую. Генератор имеет вал, на который насажен шкив, через который и получает вращения от коленчатого вала двигателя.

  1. Аккумуляторная батарея
  2. Выход генератора «+»
  3. Выключатель зажигания
  4. Лампа-индикатор исправности генератора
  5. Помехоподавляющий конденсатор
  6. Положительные диоды силового выпрямителя
  7. Отрицательные диоды силового выпрямителя
  8. «Масса» генератора
  9. Диоды обмотки возбуждения
  10. Обмотки трех фаз статора
  11. Питание обмотки возбуждения, опорное напряжение для регулятора напряжения
  12. Обмотка возбуждения (ротор)
  13. Регулятор напряжения

Автомобильный генератор используют для питания электропотребителей, таких как: система зажигания, бортовой компьютер, автомобильная светотехника, система диагностики, а также есть возможность заряжать автомобильный аккумулятор. Мощность генератора легкового автомобиля составляет приблизительно 1 кВт. Автомобильные генераторы достаточно надежные в работе, потому что обеспечивают бесперебойную работу множеству приборов в автомобиле, а поэтому и требования к ним соответствующие.

Устройство генератора

Устройство автомобильного генератора подразумевает наличие собственного выпрямителя и регулирующей схемы. Генерирующая часть генератора с помощью неподвижной обмотки (статора) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.

Устройство генератора: 1.Гайка. 2.Шайба. 3.Шкив. 4.Передняя крышка. 5.Дистанционное кольцо. 6.Ротор. 7.Статор. 8.Задняя крышка. 9.Кожух. 10.Прокладка. 11.Защитная втулка. 12.Выпрямительный блок с конденсатором. 13.Щеткодержатель с регулятором напряжения.

Располагается генератор в передней части двигателя автомобиля и запускается с помощью коленчатого вала. Схема подключения и принцип работы генератора автомобиля одинаковый для любых автомобилей. Есть конечно некоторые отличия, но они, как правило, связаны с качеством изготовленного товара, мощностью и компоновкой узлов в моторе. Во всех современных автомобилях устанавливают генераторные установки переменного тока, которые включают не только сам генератор, но и регулятор напряжения. Регулятор равносильно распределяет силу тока в обмотке возбуждения, именно за счет этого и происходит колебание мощности самой генераторной установки в тот момент, когда напряжение на силовых клеммах выхода остается неизменным.

Принцип работы генератора авто

Схема подключения генератора ВАЗ 2110-2115

Схема подключения генератора переменного тока включает такие составляющие:

  1. Аккумулятор.
  2. Генератор.
  3. Блок предохранителя.
  4. Ключ зажигания.
  5. Приборная панель.
  6. Выпрямительный блок и добавочные диоды.

Принцип работы достаточно простой, при включении зажигания плюс через замок зажигания идет через блок предохранителей, лампочку, диодный мост и выходит через резистор на минус. Когда лампочка на приборной панели загорелась, далее плюс идет на генератор (на обмотку возбуждения), далее в процессе запуска двигателя шкив начинает вращаться, также вращается якорь, за счет электромагнитной индукции вырабатывается электродвижущая сила и появляется переменный ток.

Далее в выпрямительный блок через синусоиду в левое плечо диод пропускает плюс, а в правое минус. Добавочные диоды на лампочку отсекают минусы и получаются только плюсы, далее он идет на узел приборной панели, а диод, который там стоит он пропускает только минус, в итоге лампочка гаснет и плюс тогда идет через резистор и выходит на минус.

Читать еще:  Давление в системе охлождения двигателя

Принцип работы автомобильного генератора постоянного, можно объяснить так: через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.

Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Далее рассмотрим схему подключения автомобильного генератора на примере автомобиля ВАЗ-2107.

Схема подключения генератора на ВАЗ 2107

Схема зарядки ВАЗ 2107 зависит от того, какой применяется тип генератора. Чтобы подзарядить аккумуляторную батарею на таких авто, как: ВАЗ-2107, ВАЗ-2104, ВАЗ-2105, которые стоят на карбюраторном двигателе, будет необходим генератор типа Г-222 или его аналог с максимальным током отдачи в 55А. В свою очередь автомобили ВАЗ-2107 у которых инжекторный двигатель используют генератор 5142.3771 или его прототип, который называется генератором повышенной энергии, с максимальным током отдачи 80-90А. Также можно устанавливать более мощные генераторы с током отдачи до 100А. Абсолютно во все виды генераторов переменного тока встраиваются выпрямительные блоки и регуляторы напряжения, они, как правило, изготовлены в одном корпусе со щетками либо съемные и крепятся на самом корпусе.

Схема зарядки ВАЗ 2107 имеет незначительные отличия в зависимости от года изготовления автомобиля. Самым главным отличием есть наличие или отсутствие контрольной лампы заряда, которая расположена на панели приборов, также способ ее подключения и наличие либо отсутствие вольтметра. Такие схемы в основном используются на карбюраторных автомобилях, тогда как на авто с инжекторными двигателями схема не меняется, она идентична с теми автомобилями, которые изготовлялись ранее.

Обозначения генераторных установок:

  1. “Плюс” силового выпрямителя: “+”, В, 30, В+, ВАТ.
  2. “Масса”: “-”, D-, 31, B-, M, E, GRD.
  3. Вывод обмотки возбуждения: Ш, 67, DF, F, EXC, E, FLD.
  4. Вывод для соединения с лампой контроля исправности: D, D+, 61, L, WL, IND.
  5. Вывод фазы:

, W, R, STА.

  • Вывод нулевой точки обмотки статора: 0, МР.
  • Вывод регулятора напряжения для подсоединения его в бортовую сеть, обычно к “+” аккумуляторной батареи: Б, 15, S.
  • Вывод регулятора напряжения для питания его от выключателя зажигания: IG.
  • Вывод регулятора напряжения для соединения его с бортовым компьютером: FR, F.
  • Схема генератора ВАЗ-2107 типа 37.3701

    1. Аккумуляторная батарея.
    2. Генератор.
    3. Регулятор напряжения.
    4. Монтажный блок.
    5. Выключатель зажигания.
    6. Вольтметр.
    7. Контрольная лампа заряда аккумуляторной батареи.

    При включении зажигания плюс от замка идет к предохранителю № 10, а затем уже поступает на реле контрольной лампы заряда аккумуляторной батареи, потом идет к контакту и на вывод катушки. Второй вывод катушки взаимодействует с центральным выводом стартера, где соединяются все три обмотки. Если контакты реле замыкаются, то и контрольная лампа горит. При запуске двигателя генератор вырабатывает ток и на обмотках появляется переменное напряжение 7В. Через катушку реле проходит ток и якорь начинает притягиваться, при этом контакты размыкаются. Генератор № 15 через предохранитель № 9 пропускает ток. Аналогично через генератор напряжения щетки получает питание обмотка возбуждения.

    Схема зарядки ВАЗ с инжекторными двигателями

    Такая схема идентичная схемам на других моделях ВАЗов. Она отличается от предыдущих, способом возбуждения и контроля на исправность генератора. Он может быть осуществлен при помощи специальной контрольной лампы и вольтметра на панели приборов. Также через лампу заряда происходит первоначальное возбуждение генератора в момент начала работы. Во время работы генератор работает “анонимно”, то есть возбуждение идет напрямую с 30-го вывода.Когда включается зажигание, то питание через предохранитель №10 идет на лампу зарядки в панели приборов. Далее через монтажный блок поступает на 61-й вывод. Три дополнительные диода обеспечивают питание регулятору напряжения, а он в свою очередь передает его на обмотку возбуждения генератора. В этом случае контрольная лампа будет гореть. Именно в тот момент, когда генератор будет работать на обкладках выпрямительного моста напряжение будет гораздо выше, чем у аккумуляторной батареи. В этом случае контрольная лампа не будет гореть, потому что напряжение с ее стороны на дополнительных диодах будет ниже, чем со стороны статорной обмотки и диоды закроются. Если во время работы генератора контрольная лампа горит в пол накала, то это может означать, что пробиты дополнительные диоды.

    Проверка работы генератора

    Проверить работоспособность генератора можно несколькими способами применяя определенные методы, например: можно проверить напряжение отдачи генератора, падение напряжения на проводе, который соединяет токовый вывод генератора с аккумуляторной батареей или проверить регулируемое напряжение.

    Для проверки будет необходим мультиметр, автомобильный аккумулятор и лампа с припаянными проводами, провода для подключения между генератором и аккумулятором, а еще можно взять дрель с подходящей головкой, так как возможно придется крутить ротор за гайку на шкиве.

    Элементарная проверка лампочкой и мультиметром

    Схема подключения: выходная клемма (В+) и ротор (D+). Лампу нужно подключить между основным выходом генератора В+ и контактом D+. После этого берем силовые провода и подключаем “минус” к минусовой клемме аккумулятора и к массе генератора, “плюс” соответственно к плюсу генератора и к выходу В+ генератора. Закрепляем на тиски и подключаем.

    Включаем тестер в режим (DC) постоянного напряжения, цепляем один щуп на аккумулятор к “плюсу”, второй также, но к “минусу”. Далее, если все в рабочем состоянии, то должна загореться лампочка, напряжение в этом случае будет 12,4В. Затем берем дрель и начинаем крутить генератор, соответственно лампочка в этом момент перестанет гореть, а напряжение уже будет 14,9В. После чего добавляем нагрузку, берем галогенную лампу H4 и вешаем ее на клемму аккумулятора, она должна загореться. После чего в аналогичном порядке подключаем дрель и напряжение на вольтметре будет показывать уже 13,9В. В пассивном режиме аккумулятор под лампочкой дает 12,2В, а когда крутим дрелью, то 13,9В.

    Схема проверки генератора

    Строго не рекомендуется:

    1. Проводить проверку на работоспособность генератора путем короткого замыкания, то есть “на искру”.
    2. Допускать, чтобы генератор работал без включенных потребителей, также нежелательна работа при отключенном аккумуляторе.
    3. Соединение клеммы “30” (в некоторых случаях B+) с “массой” или клемму “67” (в некоторых случаях D+).
    4. Проводить сварочные работы кузова автомобиля при подключенных проводах генератора и аккумулятора.

    Устройство и принцип работы батарейного зажигания

    Развернутая схема батарейного зажигания показана на рисунке. Она представляет собой типичную автомобильную однопроводиую систему соединения источников тока с потребителями, когда вторым проводом служит металлическая масса агрегатов самого автомобиля. Источники питания — генератор и аккумуляторная батарея — обычно включаются параллельно. При пуске и на режиме работы с малыми оборотами вала питание осуществляется от батареи, а на средних и больших скоростях включается генератор, который питает потребителей тока и одновременно обеспечивает подзарядку аккумулятора 22.

    Своевременное подключение того или иного источника питания и поддержание необходимого режима работы системы при изменении оборотов вала достигается с помощью двух реле, регулирующих напряжение и ограничивающих силу тока в сети и реле обратного тока, которое защищает батарею от разрядки через якорь генератора, что опасно также и для последнего. Все три реле обычно объединяют в один прибор, называемый реле-регулятором.

    Пусковой электродвигатель постоянного тока (стартер), обеспечивающий проворачивание коленчатого вала, не относится к элементам системы зажигания, но электромагнитный включатель его (тяговое реле) входит в сеть зажигания и управляется через замок (выключатель) 15. Связано со стартером и устройство для закорачивания добавочного сопротивления 18 катушки зажигания. Сила тока, потребляемого стартером, при пуске двигателя возрастает до 200—500 а и более. Поэтому аккумуляторная батарея для автомобилей подбирается в зависимости от мощности стартера с учетом специфики ее работы. А так как большие разрядные токи при относительно умеренном падении напряжения на зажимах лучше Других выдерживают свинцовые (кислотные) аккумуляторы, то эти так называемые стартерные батареи в основном и применяются для систем зажигания автомобилей. Плюсовая клемма их соединяется с сетью, а минусовая — на массу (в старых моделях автомобилей на массу соединяли клемму со знаком плюс).

    Рис. Схема батарейного зажигания 8-цилиндрового двигателя

    Катушка зажигания 14 представляет собой сердечник, набранный из отдельных пластин трансформаторного железа, изолированных друг от друга окалиной, и двух обмоток: толстой (d=0,72 мм) первичной 13 с небольшим числом витков и тонкой (d=0,07 мм) вторичной 12 с большим числом витков. Первичная обмотка одним концом через клемму Р соединена с клеммой 11 прерывателя, а другим — через клемму ВК, добавочное сопротивление 18, клемму ВКБ и контакты 16, 17 замка 15 с источником тока. Вторичная обмотка 12 одним концом присоединена к первичной, а вторым — выведена к разносной пластине 4 бегунка (ротора) распределителя через его центральный ввод.

    Прерыватель тока низкого напряжения имеет два контакта: неподвижный 7 и подвижный 8. Первый из них приклепан к стойке (наковальне), соединенной с массой, а второй закреплен на рычажке (молоточке) 10, изолированном от массы. Молоточек нагружен пластинчатой пружиной и соединен с клеммой 11 сети зажигания. Размыкание контактов осуществляется кулачком 6, скорость вращения которого в четырехтактных двигателях в два раза меньше скорости вращения коленчатого вала. Вследствие вращения кулачка 6 контакты 7 и 8 периодически размыкаются и замыкаются.

    Когда зажигание включено и контакты прерывателя замкнуты, ток от плюсовой клеммы батареи 22 идет через зажим 19, выключатель зажигания 15 и добавочное сопротивление 18 в первичную обмотку катушки 14. Далее на замкнутые контакты прерывателя и массу, по которой он возвращается к минусовой клемме батареи 22, как показано стрелками на проводах схемы. В результате прохождения тока по первичной обмотке 13 в катушке возникает магнитное поле, силовые линии которого замыкаются через ее сердечник и пронизывают витки обеих обмоток. При замкнутых контактах магнитное поле постоянно и ток во вторичной обмотке не индуктируется. Но в момент размыкания контактов силовые линии исчезающего магнитного поля пересекают витки обмоток, вследствие чего в них индуктируется ток, величина электродвижущей силы которого пропорциональна скорости изменения магнитного потока. Число витков вторичной обмотки подбирают так, чтобы общая э. д. с. тока достигала в ней 18 тыс. в и гарантировала пробой искрового зазора между электродами свечи.

    Ток высокого напряжения из вторичной обмотки 12 по центральному проводу высокого напряжения, как показало пунктирными стрелками на схеме, через подавителыюе сопротивление 5 поступает на разносную пластину 4 бегунка распределителя, проскакивает в виде искры на соответствующий (ближайший) неподвижный электрод 3 и через сопротивление 2 поступает на центральный электрод свечи L откуда, пробивая искровой промежуток, проскакивает на боковой ее электрод и через массу автомобиля, батарею 22, выключатель 15, сопротивление 18 по первичной обмотке 13 возвращается во вторичную обмотку 12.

    При размыкании контактов прерывателя и исчезновении магнитного потока в сердечнике катушки зажигания в первичной обмотке возникает ток самоиндукции, э. д. с. которого достигает 200—300 в. Ток самоиндукции имеет при этом одинаковое направление с первичным током, что затягивает время его исчезновения и вызывает появление дуги между контактами прерывателя. Образование «мостика» между контактами не только снижает скорость убывания тока в первичной цепи, но вызывает еще и быстрое обгорание контактов, нарушая работу системы зажигания. Чтобы устранить вредное действие э. д. с. самоиндукции, параллельно контактам прерывателя включают конденсатор 9.

    Конденсатор выполняется из двух тонких алюминиевых лент (обкладок), изолированных друг от друга специальной бумажной лентой и скатанных в трубочку. Одна из обкладок присоединяется к металлическому кожуху конденсатора, а вторая выводится на изолированный контакт 11 прерывателя-распределителя. При размыкании контактов ток самоиндукции из первичной обмотки отводится в конденсатор и заряжает его. Вследствие этого образование дуги почти полностью устраняется, а скорость убывания тока в первичной обмотке резко возрастает. Разряжается конденсатор через первичную обмотку при разомкнутых контактах.

    Конденсаторы трудно герметизировать, а в случае проникновения влаги и пробоя их система зажигания прекращает работу. Чтобы повысить надежность системы, в последнее время стали применять самовосстанавливающиеся конденсаторы. Они представляют собой свернутые в рулончик две полоски бумаги, одна сторона которых наметаллизирована слоем цинка толщиной около 1,5 мкм. При пробое бумаги тепло дуги испаряет с нее металл, поэтому вблизи повреждения она очищается от покрытия и электрическая прочность конденсатора восстанавливается. Такие конденсаторы имеют сравнительно небольшие габариты и могут размещаться внутри корпуса прерывателя-распределителя.

    Добавочное сопротивление 18 чаще всего применяют в системах зажигания напряжением 12 е. Изготовляют его из тонкой нихромовой или никелевой проволоки в виде спирали п включают последовательно с первичной обмоткой катушки. При пуске двигателя стартером, когда падение напряжения на зажимах батареи неизбежно, сопротивление автоматически отключается с помощью пружинной контактной пластины 20 и подвижного контакта 21, вмонтированных в тяговое реле стартера. Благодаря этому ток от батареи подводится непосредственно к клемме ВК катушки зажигания 14 и рабочее напряжение в ее обмотках повышается, что особенно необходимо для успешного пуска холодного двигателя, когда требуется повышенное пробивное напряжение на электродах свечи.

    Добавочное сопротивление может быть использовано также в качестве вариатора, обеспечивающего автоматическое регулирование сопротивления первичной цепи зажигания при изменении числа оборотов вала двигателя. С этой целью спираль изготовляют из тонкой стальной проволоки, которая легко прогревается до высокой температуры, и сопротивление ее возрастает. А так как время замкнутого состояния контактов прерывателя изменяется обратнс пропорционально скорости вращения вала, то с уменьшениек оборотов нагрев спирали, а следовательно, ее сопротивление и общее сопротивление цепи повышаются, а по мере увеличения оборотов вала — снижаются. В результате сила тока в первичной цепи возрастает на больших оборотах вала и уменьшается на малых, чте предохраняет катушку зажигания от перегрева.

    Реле контроля фазного напряжения

    Реле контроля фаз – это устройство, используемое при подключении оборудования к трехфазной сети и при необходимости соблюдения правильного чередования.

    Реле контроля фаз устанавливается в цепи питания ответственных потребителей . Прибор обеспечивает защиту от сгорания обмоток в электродвигателях при обрыве одной из фаз, перенапряжениях или резких падениях тока.

    Функциональные особенности реле контроля фаз

    Устройства защиты используются в различном оборудовании. В зависимости от условий эксплуатации, параметры РКФ могут отличаться. Важнейшими техническими характеристиками однофазного и трехфазного реле являются:

    • Рабочее напряжение.
    • Пределы регулировок срабатывания.
    • Условия использования.
    • Напряжение питания.

    Реле контроля призвано обеспечивать защиту промышленного и бытовой электрики в случае сбоев в работе питающей сети. Прибор следит за следующими параметрами:

    • контроль неисправностей электропитания
    • понижение (в т.ч. обрыв) или повышение напряжения любой из фаз
    • перекос (асимметрия) фаз
    • «слипание» фаз
    • нарушение порядка чередования фаз
    • обрыв нейтрали (косвенный контроль)
    • контроль линии электропитания электродвигателя на обрыв по ГОСТ Р 53325 2012 (для оборудования систем противопожарной защиты).
    • разнесения времени включения агрегатов при восстановлении электропитания на объекте с равномерным случайным распределением (при необходимости).

    Трехфазное реле контроля фаз применяется для защиты асинхронных электрических двигателей. Эти устройства не могут работать в случае обрыва одной из трех фаз, так как в таком режиме быстро выходят из строя. Реле контроля автоматически отключает мотор при исчезновении одной из фаз.

    Устройство и принцип работы

    Большинство устройств данного типа монтируются в электрические шкафы защищаемого оборудования. Корпус реле контроля фаз оснащен специальной защелкой для крепления на дин-рейку. На приборе можно выставить значение отклонения от номинального в процентах иотключить все или одну мз основных функций благодоря дип-переключателю.

    Можно обозначить следующие конструктивные особенности современных РКФ:

    • Реле, разрабатываемые в Советском Союзе, крепились к монтажной области с помощью двух винтов. Современные приборы имеют крепеж под DIN-рейку. Благодаря такой конструкции процесс ремонта и разработки электрических шкафов стал намного проще.
    • Еще одним элементом реле являются винтовые клеммники, предназначенные для подключения проводов.
    • Регуляторы настройки рабочих параметров реле. Они расположены на передней стороне панели и позволяют изменить параметры функционирования устройства без его демонтажа из электрического щита. Регуляторы изготовлены на основе подстроечных резисторов и дип переключатнлей
    • На некоторых моделях типа УКН-63 имеется дисплей и кнопки, предназначенные дляболее тонких настроек реле.
    • Маркировки на клеммах. Каждый вывод имеет соответствующую маркировку и обозначение согласно инструкции по эксплуатации.

    Принцип работы данного контрольного оборудования основан на постоянном мониторинге состояния сети. При выходе напряжения или угла между фазами за допустимую отметку реле контроля отключит электрический прибор.

    • Регулируемые. Такие приборы оснащены функцией выставления необходимой уставки срабатывания по напряжению и времени (ЕЛ-11, ЕЛ-12, ЕЛ-13, ЕЛ-15).

    Пределы настроек РКФ

    Разные реле фазного контроля имеют различные пределы регулировок. Если электроустановки предназначены для работы с точными параметрами питающего напряжения (например, электродвигатели), то подойдет реле с диапазоном регулирования от 5% -25%.Данными параметрами обладает реле РНЛ-1

    Задержка включения/отключения

    Большое число промышленных потребителей электроэнергии имеют нелинейную пусковую характеристику. В тот момент, когда происходит запуск двигателя или ТЭНа, отмечается превышение пускового коммутируемого тока в несколько десятков раз. Поэтому при включении оборудования напряжение «просаживается». Для того, чтобы устройство не отключило прибор от сети, оно оснащается функцией задержки срабатывания. Во время запуска двигателя напряжение падает ниже минимально допустимой отметки, однако реле не отключает питание в течение установленного времени. Для РНЛ-1 время сработки установлено стандартно и составляет от 0,3 сек. до 5 сек в зависимосиъти от отклонения и заданного параметра.

    Рабочая температура РКФ

    Слишком низкие или высокие температуры негативно отражаются на компонентах электронной схемы реле. Жара или сильный мороз могут стать причиной дрейфа характеристик внутренних радиокомпонентов устройства, что приведет к ложным срабатываниям и отключениям. Резкое охлаждение может вызвать конденсацию паров воды внутри прибора, вследствие чего реле выйдет из строя. Поэтому очень важно соблюдать температурный режим эксплуатации устройства. Реле РНЛ-1 имеет температурные пределы от минус 40 до плюс 80 градусов. Использовать реле РНЛ-1 не рекомендуется в географических точках со слишком морозными зимами, без дополнительного обогрева оболочки в которой монтируется РКФ.

    Правила хранения РКФ

    Каждый электронный прибор должен храниться в определенных условиях. Обычно правила хранения схожи с рекомендациями по использованию. Любое реле контроля фаз напряжения в период, когда оно не эксплуатируется, должно находиться в заводской упаковке. Следует избегать экстремальных температур и попадания влаги на устройство. Реле лучше не бросать и не трясти.

    Схема подключения реле контроля фаз напряжения РНЛ-1

    В обесточенном состоянии реле все внутренние контакты реле имеют показанное на схеме положение. Клемма «L» отключена от клеммы «L2», а клемма «E» подключена к клемме «L2». Замкнуты сигнальные контакты «12» и «11».

    При подаче на реле напряжения питания от четырёхпроводной сети с нейтралью, реле проверяет, что все контролируемые параметры напряжения сети находятся в диапазоне допустимых значений (напряжение исправно), и что электродвигатель подключён к схеме и линии питания двигателя не имеют обрыва (линия исправна).

    До окончания проверки реле выдаёт напряжение фазы «L2» на клемму «E» для работы внешнего индикатора «Авария» и не выдаёт напряжение на клемму «L» для питания цепей управления двигателем. Сигнальные контакты «12» и «11» остаются замкнутыми.

    Если напряжение исправно, то реле выдаёт фазу «L2» на клемму «L» для питания цепей управления двигателем.

    Если напряжение исправно и линия исправна, то реле дополнительно снимает напряжение фазы «L2» с клеммы «E» (отключается внешний индикатор «Авария») и переключает сигнальные контакты, размыкая «12» и «11» и замыкая «11» и «14».

    Если линия исправна, а напряжение неисправно, то реле выдаёт напряжение фазы «L2» на клемму «E» для работы внешнего индикатора «Авария» и не выдаёт напряжение на клемму «L» для питания цепей управления двигателем. Сигнальные контакты «12» и «11» замкнуты.

    Если к схеме не подключён проводник нейтрали (обрыв нейтрали), а в цепи управления есть какой-либо потребитель (например, внешний индикатор «Авария»), данная неисправность может быть определена реле как отклонение или как перекос напряжения фаз.

    Отключение реле при диагностике какой-либо неисправности контролируемой сети, а также включение реле после устранении неисправности происходит за одинаковое фиксированное время (смотри Технические характеристики). Если переключатель функции «разнесение времени включения» находится в левом положении [случайное время включения с равномерным распределением], то включение реле после подачи электропитания (или после устранения неисправности) будет происходить за время, равное сумме фиксированного времени включения и случайной величины из диапазона от 0 до 12 с. При восстановлении после аварии электроснабжения объекта, имеющего большое количество различных агрегатов, каждый из которых защищён реле с данной функцией, пуски этих агрегатов будут разнесены по времени, и не возникнет суммарный пусковой ток, перегружающий сеть и вызывающий срабатывание аппаратов защиты.

    Как выбрать реле контроля фаз напряжения?

    Любое промышленное предприятие оснащено сотнями тысяч трехфазных двигателей. Если одна из питающих фаз пропадет, то мотор непременно сгорит независимо от страны и года производства. Цена больших двигателей с высокой мощностью достигает отметки стоимости автомобиля. Поэтому целесообразно будет установить трехфазное реле контроля фаз напряжения во избежание крупных финансовых потерь в будущем. Для данного вида защиты подойдет реле контроля напряжения РНЛ-1.

    Качество напряжения важно не только для промышленных предприятий, но и для многоквартирного и частного дома. Контрольное реле устанавливается в электрический щит. При коротком замыкании и упадке напряжения в одной линии электрические приборы могут выйти из строя и сгореть. РКФ предназначено для того, чтобы отключить от сети электроустройства при критическом перекосе значения напряжения и защитить бытовую технику жителей дома от порчи. Для данного вида защиты подойдет устройство контроля напряжения УКН-63.

    Таким образом, реле контроля фаз напряжения – это важное защитное устройство, которое не теряет своей актуальности для любых объектов и потребителей

    Заказать качественное контрольное реле можно по телефону, указанному на главной странице нашего сайта, или у наших диллеров в регионах. Дежурный специалист даст ответ на любой интересующий вас вопрос и предоставит информацию о наличии стоимости продукции.

    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector