0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Центробежный регулятор оборотов двигателя своими руками

Регуляторы скорости вращения вентилятора: виды и правила подключения

В этой статье мы поговорим о том, какие виды контроллеров существуют, и поговорим о том, как подключить регулятор скорости вентилятора самостоятельно.


Существуют следующие виды регуляторов вентиляторов, различающиеся между собой по принципу действия:

  • тиристорные;
  • симисторные (наиболее распространенные в бытовых приборах);
  • частотные;
  • трансформаторные.

Тиристорные контроллеры используются для регулировки числа оборотов однофазных вентиляторов переменного тока. Скорость вращения лопастей меняется в большую или меньшую сторону в зависимости от величины среднеквадратичного напряжения, поступающего от регулятора.

Инвертор Omron – пример частотного регулятора скорости вращения вентилятора.

Второй тип — частотные регуляторы (преобразователи частоты) получили свое название благодаря своей способности изменять частоту тока, что приводит к пропорциональному изменению скорости вращения вентилятора. При этом они помимо частоты тока могут изменять также и напряжение от 0до 480В, а также угол сдвига фаз между током и напряжением, что позволяет регулировать не только частоту вращения, но и такой важный параметр как вращающий момент электродвигателя вентилятора. Благодаря этому значительно расширяется диапазон регулировки частоты вращения вентилятора, обеспечивается его долговременная работа на всех режимах работы. Такие элементы устанавливаются в основном в промышленных объектах, а в быту их можно встретить, например, в кондиционерах большой мощности; Основные достоинства таких регуляторов: возможность работы с 3-фазным оборудованием, точное регулирование частоты и момента вращения с возможностью управления с компьютера, возможность регулирования по сложным алгоритмам с использованием внешних датчиков, меньший уровень помех и высокая долговечность вентилятора по сравнению с предыдущим типом регулятора. Стоит упомянуть, что меньший уровень помех и высокая долговечность обеспечиваются только в том, случае, если частотный преобразователь оборудован синусоидальным фильтром. В противном случае надежность системы окажется даже ниже, чем у тиристорного регулятора. Основной недостаток частотных регуляторов — высокая стоимость и большие размеры. Поэтому их применяют в дорогом оборудовании, как правило большой мощности.

Примеры синусоидальных фильтров для частотных преобразователей — дроссели Skybergtech.

Третий тип — регуляторы трансформаторного типа, являются оптимальным решением для большинства ситуаций, где нужно регулировать частоту вращения вентилятора вручную. Изменение напряжения на выходе происходит вследствие переключения обмоток трансформатора переключателем. При этом не происходит искажения формы синусоиды питающего напряжения и, в следствии этого, не возникают помехи, влияющие как на другие устройства, так и двигатель самого вентилятора. Более того, пониженное выходное напряжение такого регулятора приводит к увеличению ресурса вентилятора, а не к его понижению, как в случае с тиристорным регулятором. Умеренная стоимость и самая большая из всех видов регуляторов надежность, позволяет использовать этот тип во всех приложениях с мощностью от нескольких ватт до нескольких киловатт. Отличительной особенностью таких устройств является возможность долговременной непрерывной работы на необслуживаемых объектах и устойчивость к перегрузкам. Допускается работа таких регуляторов с однофазным или трехфазным электрическим током. Особо стоит подчеркнуть уникальную возможность некоторых моделей давать гальваническую развязку с сетью, что позволяет использовать такие регуляторы, например, в медицинских учреждениях. Регуляторы такого типа как правило имеют габариты и вес, сравнимые с частотными преобразователями. К недостаткам таких регуляторов можно отнести сложность внешнего управления. Но при стационарном размещении с ручным управлением этот недостаток полностью перекрывается их преимуществами. Также, по сравнению с частотным регулятором, надо отметить снижение момента вращения с понижением скорости вращения, что может приводит к затруднениям при запуске в сложных условиях эксплуатации. Но это компенсируется в несколько раз меньшей ценой, что делает этот тип регулятора превосходным решением в большинстве бытовых и промышленных приложений.

Рассмотрим трансформаторные регуляторы скорости вращения вентиляторов на примере линейки ARW от европейского производителя Breve Tufvassons.

Данные регуляторы устанавливаются в промышленных вентиляционных и отопительных системах. Регулировка однофазных вентиляторных двигателей осуществляется путем изменения напряжения. Для пятиступенчатой настройки скорости вращения служит ручка на панели корпуса. Регуляторы оснащены независимым выключателем, который подсвечивается, когда регулятор работает, а также встроенным плавким предохранителем. Регулятор размещен в пластиковом корпусе, имеет степень защиты IP54 и способен работать при максимальной температуре окружающей среды до + 40 °C.

Подключение регулятора вращения вентилятора

Рассмотрев основные типы контроллеров и принцип их работы, перейдем к вопросу о том, как подключить регулятор скорости вращения вентилятора. Проще всего доверить эту работу специалистам, но такая задача не является слишком сложной, особенно в отношении обычных бытовых приборов. Если хотите сэкономить или любите заниматься подключением электромеханических приборов самостоятельно, то сможете обойтись без посторонней помощи.

Подключение регулятора скорости вентилятора производится после его монтажа. В зависимости от вида обслуживаемого оборудования и конструктивных особенностей установка регулирующих элементов может производиться:

· в стену или на нее (по типу накладной розетки);

· внутрь корпусной части оборудования (компьютера или другого аппарата);

· внутрь шкафа управления «умным домом» (в виде клеммной колодки).

Перед тем как подключить регулятор числа оборотов вентилятора, необходимо внимательно прочитать прилагаемую инструкцию. Каждый уважающий себя производитель включает ее в комплект поставки. В документе содержатся рекомендации, которые следует учитывать не только при подключении, но и при эксплуатации, а также техническом обслуживании прибора.

При креплении модели на стену или внутрь нее используются дюбели или шурупы. Крепежные элементы, как правило, тоже входят в комплект поставки. Схема подключения регулятора оборотов вентилятора внесена в приложенную инструкцию. Воспользовавшись ей, можно значительно облегчить свою задачу.

Обычно самостоятельно подключают бытовые, а не промышленные вентиляторы. Поэтому подробно рассматривать особенности установки и подключения контроллеров мощных устройств, используемых в промышленности, смысла нет. На рисунке ниже приведена простая схема подключения регулятора скорости вентилятора симисторного типа, которые, как уже говорилось, наиболее распространены в бытовой технике.

Подсоединение элемента к проводу питания производится в соответствии с приложенной схемой. Кабели (фазный, нулевой и заземляющий) разрезают, а затем в соответствии с инструкцией соединяют с клеммами входа и выхода. Если вентилятор оснащен отдельным выключателем, его нужно демонтировать и установить контроллер. На этом работа закончена. Как видно, подключение регулятора оборотов вентилятора – задача не слишком сложная.

При подборе проводов следует учесть, что их сечение должно соответствовать величине тока, на который рассчитан вентилятор.

При подключении контроллера к компьютеру нужно уточнить предельную температуру, на которую рассчитаны его комплектующие, иначе велик риск их выхода из строя в результате перегрева.

В интернет-магазине DIP8.ru вы можете приобрести по доступной цене качественные контроллеры вентиляторов, а также резисторы и другие электромеханические элементы. Ознакомившись с этим материалом, Вы сможете понять принцип работы регулятора вентилятора и произвести его подключение своими руками.

Читать еще:  В чем разница двигателей y20dth и x20dth

Как настроить регулятор оборотов на мотоблоке

Кто хорошо разбирается в двиг. мотоблоков?? | Автор топика: Константин

Меня интересует регулятор оборотов.

Артур Движек орать будет когда из земли вытаскиваеш. А регулятор автоматически сбрасывает или добавляет в зависимости от нагрузки поэтому и волнами.

Анатолий ниче страшного не будет
но на пахоте заипешся тросик шевелить

Мария Всережимники работают от противного. Натягиваешь тросик или тягу газульки, газулька тянет пружину, пружина тянет газ карбюратора. Завели двигатель, центробежный регулятор Степан начинает возвращать пружину назад до определенного момента, когда оба «плеча» уравновесятся. Равновесие в постоянных оборотах двигателя зависит от ПРУЖИНЫ Олег

Tags: Как настроить регулятор оборотов на мотоблоке

Простая доработка ЦР регулятора для повышения оборотов двигателя марки LIFAN117-b(HONDA GX270)

Регуляторы оборотов. — YouTube

27 ноя 2011 — 28 мин. — Добавлено пользователем Алексей Усадьбин 89182647773центробежный регулятор оборотов на мотоблоке мотогенераторе — Duration : . Мотоблок МБ-1 Луч. Регулятор оборотов на двигателе.

Процедура обучения холостого хода, адаптация дроссельной заслонки Митсубиси Лансер 9 | Автор топика: Fiona

Обучение нужно проводить после установки дроссельной заслонки:

0. Скинуть клемму аккумулятора на 5 минут.
1. Выключаем все потребители тока (лампы, кондей, магнитолу и т.п.).
2. Включем зажигание на 5 сек — выключаем зажигание.
3. Ждём минуту, заводим машину, ничего не трогаем.
4. Даём машине поработать 10 минут, в это время находиться лучше вне авто, что бы ничего случайно не нажать.
5. Глушим двигатель на 10 сек.
6. Включаем зажигание на 10 сек.
7. Выключаем зажигание, ждем минуту, заводим двигатель.
Если горит «Чек» — ехать на считывание ошибки.

Этой процедурой вы запускаете переадаптацию регулятора холостого хода.

Далее следует выставить шаги регулятора холостого хода в исходный диапазон с помощью дилерского диагностического прибора MUT-3. Этим вы продлите жизнь своему РХХ и настроите на адекватную работу в нужном диапазоне его шагов.

Aleksander (Horiana) Вернуться на главную страницу: vk.com/club74809181

Denis (Tawanda) Добрый вечер Александр, купил дросель с впресованым подшипником, поменял рхх, обучил рхх, а обороты на место не встают, байбасный винт замучился крутить, подскажите пожалуйста что делать.

Aleksander (Horiana) Денис, здравствуйте.
Проверьте прокладку, смотрит ушком в небо?
Скиньте фишку питания с первого лямбда зонда, обороты прийдут в норму?
Промойте от грязи датчик абсолютного давления для профилактики.
Ослабьте тросик газа, не должен быть натянут.
Установите оригинальный рабочий рхх.
В случае необходимости отрегулируйте sas винтом глубину закрытия пятака.
Байпасным винтом выставите шаги рхх с помощью дилерского диагностического прибора МУТ.
Если самостоятельно не получается справиться с проблемой обратитесь к тому у кого покупали дроссель или к диагносту Митсубиши.

Sabir (Iraja) Aleksander, Здравствуйте Александр, установил востановленную дз поменял Рхх обучил, обороты востановились.К концу дня начали плавать обороты, открыв капот увидел что нет фиксирующего винта(барашика газа), скрутил со старой дз.Вкрутил так чтобы не закусывал пятак.На прогретом двигателе обороты 800-900, а на холодном 400 и глохнет. Что можно предпринять?

Aleksander (Horiana) Сабир, здравствуйте. Что по этому поводу говорит тот у кого вы покупали дроссель?

Sergey (Erasmios) Добрый вечер! Менял у вас дз пару месяцев назад. По началу все было хорошо, но сейчас появилась проблема. при движении в пробке накатом начинают подниматься обороты примерно до 1500 или плавают быстро от 1000 до 1500. И при запуске холодного двигателя обороты встают на 1900-2000, и плавают, пока полностью не прогреется до раб. температуры. Может подскажете что!? Спасибо!

Aleksander (Horiana) Сергей, добрый вечер. Это может быть перетянутый тросик газа, неисправные регулятор холостого хода или первый лямбда зонд. Надо подключаться MUTом смотреть показания датчиков.

Sergey (Erasmios) Aleksander, сколько стоит данная процедура? p.s. РХХ китай!

Aleksander (Horiana) Сергей, обычно китай так и работает. 500 руб.

Sergey (Erasmios) Aleksander, стоит поменять рхх на оригинал??

Aleksander (Horiana) Сергей, безусловно стоит.

Sergey (Erasmios) Спасибо!

Kirill (Girish) Что такое рхх

Aleksander (Horiana) Кирилл, некоторые называют его пи икс икс. Вы с какой целью интересуетесь?

Andrei (Adeeb) Регулятор холостого хода

Andrei (Adeeb) Спасибо Моргану, всё получилось

Vadim (Abdulah) Здравствуйте. Поменял заслонку. Все вроде хорошо, на холостых держит

850-900 оборотов. Но после того, как проехаться немного, едешь накатом, либо стоишь на холостых и держит уже

650-700 оборотов. P.S. Процедуру, о которой написано выше не проводил. Она поможет?
P.S.S. Байпасный винт вообще не трогал.

Andrei (Adeeb) Попробуй, хуже не будет

Anton (Rhetta) Здравствуйте. Обороты были 1500-2000. Поменял дз. Стали 500. На холодную глохнет. Подскажите в чем может быть причина

Центробежный регулятор (Страница 3) — Двигатель — Форум .

может кто подскажет кто в Нижнем Новгороде поможет настроить этот ЦР . что цб регулятор оборотов настроен на на такие минимальные обороты .

Первые регуляторы паровых машин

Александр Микеров,
д. т. н., проф. каф.
систем автоматического управления
СПбГЭТУ «ЛЭТИ»

В предыдущей статье [1] рассматривались редкие примеры известных регуляторов с обратной связью от древних веков до XVIII в.: водяные часы, регуляторы температуры и давления, механизм разворота ветряного колеса мельниц. Однако широкого применения подобные регуляторы не нашли из-за своей сложности и дешевизны ручного труда человека, который легко справлялся с такими задачами управления. И только с началом промышленной революции потребовались регуляторы совсем другого рода — регуляторы скорости машин.

Рис. 1. Джеймс Уатт (1736–1819)

Промышленная революция в европейских странах началась в XVIII веке с широкого применения паровых машин для откачки воды из шахт, плавки металлов, приведения в движение станков и механизмов на заводах. Особенно много машин потребовалось в XIX в. на транспорте после изобретения Робертом Фултоном (Robert Fulton) парохода в 1808 г. и Джорджем Стефенсоном (George Stephenson) паровоза в 1825 г. Французский изобретатель Клемент Адер (Cl?ment Ader) построил в 1890 г. даже самолет с паровым двигателем.

Первым попытался использовать энергию пара для механического движения еще французский физик и изобретатель Дени Папен (Denis Papin), построивший в 1690 г. паровой цилиндр с поршнем, который был усовершенствован в 1705 г. кузнецом Томасом Ньюкаменом (Thomas Newcomen). Однако обе машины управлялись вручную, были крайне неэффективны и широкого распространения не получили. Паровую машину с автоматическим впуском и выпуском пара с помощью золотника построил английский механик, изобретатель и предприниматель Джеймс Уатт (James Watt) (рис. 1), получивший на нее первый патент в 1769 г. [ 2 , 3 ].

Кроме того, паровые машины оснащались другими автоматическими устройствами: клапаном Папена, рассмотренным в предыдущей статье [1] , и регулятором уровня воды в паровом котле. На рис. 2 показан поплавковый регулятор первой в России паровой машины, построенной изобретателем Иваном Ползуновым на Урале в 1765 г. [5]. Паровой котел 1, вмурованный в кладку 2 с топкой 3, имел водяную трубу 4 и патрубок 5, отводящий пар. Уровень воды регулировался поплавком 6.

Читать еще:  50 лошадей матиз какой объем двигателя

Рис. 2. Паровой котел Ползунова (1 — паровой котел; 2 — кладка; 3 — топка; 4 — водяная труба; 5 — патрубок, отводящий пар; 6 — поплавок)

Однако паровая машина стала вполне работоспособной и популярной только после того, как Уатт ввел в нее в 1788 г. центробежный регулятор скорости, устранивший нестабильную работу машины [4] . Уже к 1800 г. в Англии работали сотни машин Уатта (рис. 3). Центробежный регулятор паровой машины был настолько важной ее составной частью, что Уатт хранил его устройство в глубоком секрете и не патентовал.

Рис. 3. Паровая машина с регулятором Уатта (1 — паровой цилиндр; 2 — золотниковый распределитель; 3 — заслонка подачи пара; 4 — центробежный чувствительный элемент)

Центробежный чувствительный элемент, являющийся измерителем скорости машины, был заимствован Уаттом из водяных и ветряных мельниц, где он использовался для изменения усилия прижима жерновов при изменении скорости ветра. Его устройство было запатентовано механиком Томасом Мидом (Thomas Mead) в 1787 г. [ 5 , 6].

Рис. 4. Центробежный чувствительный элемент Уатта (1 — шкив; 2 — шары; 3 — ползун; 4 — рычаг)

Центробежный чувствительный элемент Уатта (рис. 4), приводимый во вращение от вала машины через шкив 1, содержит два массивных шара 2, соединенных с ползуном 3, связанным рычагом 4 с заслонкой паровой машины [7]. Центробежная сила, возникающая при вращении шаров, уравновешивается их весом таким образом, что каждому значению скорости соответствует определенное положение ползуна, а следовательно, и расхода или давления пара в цилиндре. В дальнейшем для улучшения регулировки такой элемент оснащался пружиной, компенсирующей вес шаров.

При увеличении момента нагрузки скорость машины слегка падает, поскольку для увеличения давления пара заслонка должна быть приоткрыта, что достигается движением ползуна вниз, т. е. опусканием грузов. Возникающая при этом ошибка регулирования скорости была названа неравномерностью регулятора, а все регуляторы такого типа назывались модераторами, т. е. устройствами, которые не устраняют ошибку регулирования, а только ее снижают. Современное название ошибки — статическая ошибка, а регулятора — статический регулятор.

Второй особенностью регулятора Уатта является прямое механическое действие чувствительного элемента на заслонку. Аналогично работал и рассмотренный в предыдущей статье [1] регулятор температуры Дреббеля, в котором энергия открывания вентиляции вырабатывалась спиртовым чувствительным элементом. Поэтому все регуляторы такого рода назывались регуляторами прямого действия.

Помимо коммерческого успеха, регулятор принес его автору и заслуженное признание. В его честь единица мощности в системе SI названа 1 Вт. Уатт был приглашен в Российскую академию наук, правда, от этой чести отказался. Центробежный регулятор скорости позднее нашел широкое применение также в телеграфных аппаратах, телескопах, граммофонах и т. д. [6].

В XIX в. изобретатели предложили ряд усовершенствованных центробежных регуляторов скорости. Так, английский математик и астроном Джордж Эри (Georg B. Airy) построил в 1840 г. телескоп с автоматическим приводом по азимуту и углу места с центробежным фрикционным регулятором, обеспечивающим равномерный поворот со скоростью вращения Земли [7].

На рис. 5а показан общий вид этого телескопа, а на рис. 5б — в упрощенном виде принцип действия регулятора привода без редукторов. Труба телескопа 1 поворачивается через блок механических редукторов 2 двигателем в виде барабана с грузом 3, снабженным фрикционным регулятором с расходящимися шарами 4, трущимися о поверхность неподвижной муфты 5 в случае, когда скорость вращения телескопа превышает заданную.

Рис. 5. а) Телескоп Эри; б) Фрикционный регулятор Эри. 1 — труба телескопа; 2— блок механических редукторов; 3 — двигатель; в виде барабана с грузом; 4 — фрикционный регулятор с расходящимися шарами; 5 — муфта

В данном регуляторе увеличение момента трения в опорах телескопа компенсируется уменьшением трения в регуляторе, однако это возможно лишь при некотором снижении скорости вращения, т. е. появлении статической ошибки регулирования.

Рис. 6. Регулятор Дженкина (1 — заслонка; 2 — груз; 3 — муфта; 4 — подпружиненные шары; 5 — вал; 6 — катаракт)

Более совершенным является регулятор паровой машины английского инженера Флиминга Дженкина (Fleeming Jenkin), построенный в середине XIX в. (рис. 6) [7].

В этом случае заслонка 1, регулирующая подачу пара в машину, поворачивается двумя устройствами: грузом 2, аналогичным двигателю Эри, и муфтой 3 фрикционного регулятора с подпружиненными шарами 4, приводимого во вращение от вала машины 5. В отличие от регулятора Эри, муфта 3 подвижная. Она прикрывает заслонку 1 тогда, когда шары вовлекают муфту во вращение.

Таким образом, когда скорость машины больше заданной, шары закрывают заслонку, а когда меньше, заслонка открывается грузом. При этом регулятор не имеет статической ошибки, поскольку, например, при увеличении нагрузки на машину и падении ее скорости груз приоткрывает заслонку до тех пор, пока скорость машины не вернется к заданному значению.

Регулятор Дженкина снабжен, как это видно на рис. 6, еще одним весьма важным регулирующим элементом 6, называемым катарактом, в виде цилиндра с маслом, в котором движется груз. Катаракт был применен впервые в регуляторе Эри [7]. Было обнаружено, что введение такого элемента, который со временем стал весьма популярным, существенно улучшает плавность и точность регулирования скорости. По современной терминологии катаракт — это устройство, формирующее отрицательную обратную связь по скорости, называемую тахометрической обратной связью, являющуюся мощным средством динамической коррекции систем автоматического управления.

Другие примеры успешных регуляторов, изобретенных в XIX в., приведены в обзоре [4].

Рис. 7. Регулятор непрямого действия (1 — заслонка; 2 — серводвигатель; 3 — золотниковый распределитель; 4 — центробежный регулятор с пружиной)

Все рассмотренные выше регуляторы являются регуляторами прямого действия, поскольку чувствительный элемент оказывает прямое силовое воздействие на заслонку или объект управления. Однако это возможно лишь в регулировании объектов малой мощности. Действительно, повернуть, например, затворы большой гидротурбины с помощью центробежного регулятора вряд ли удастся.

Французский инженер Джозеф Фарко (Joseph Farcot) предложил в 1873 г. ввести в регулятор дополнительный исполнительный элемент, названный им серводвигателем или сервомотором, усиливающим мощность чувствительного элемента [7, 8]. Такие регуляторы стали называть регуляторами непрямого действия. Пример такого регулятора приведен на рис. 7. В данном случае заслонка 1 двигается дополнительным паровым цилиндром – серводвигателем 2, золотниковый распределитель 3 которого управляется центробежным регулятором 4 с пружиной.

Нетрудно убедиться в том, что введение серводвигателя не только увеличивает выходную мощность чувствительного элемента, но и обеспечивает, в принципе, нулевую ошибку регулирования скорости, на которую настроен чувствительный элемент. Действительно, заслонка не движется только тогда, когда золотник перекрывает впускные каналы цилиндра. Регулятор настраивается таким образом, чтобы этому положению золотника соответствовала заданная скорость вращения шаров.

Читать еще:  Что такое инжекторный дизельный двигатель

Рис. 8. Регулятор Чиколева (1 — электроды; 2 — обмотка якоря; 3 и 4 — обмотки возбуждения)

При увеличении момента нагрузки скорость машины падает, золотник смещается вверх и сервомотор поднимает заслонку до нового положения, при котором скорость машины будет в точности равна заданной. По современной терминологии применение серводвигателя в регуляторе непрямого действия означает введение интегратора, превращающего статическую систему в астатическую.

Все рассмотренные регуляторы с обратной связью используют принцип регулирования по отклонению или по ошибке. Современная терминология относит их к П- или ПИ-регуляторам. Однако в XIX в. появились и другие устройства: с регулированием по возмущению и с регулированием по производной от ошибки. Регулирование по возмущению или по нагрузке (принцип инвариантности Понселе) было предложено в 1830 г. французским математиком и инженером Жаном-Виктором Понселе (Jean-Victor Poncelet), а регулирование по производной выполнял так называемый инерционный регулятор, изобретенный в 1845 г. братьями Вернером и Вильгельмом Сименсами (Verner, Wilhelm Siemens) в Германии [4, 7].

Принципы построения и конструкции различных регуляторов детально анализировались в лекциях 1846 г. знаменитого профессора Петербургских железнодорожного и технологического институтов Николая Федоровича Ястржембского [8].

К концу XIX в. стали появляться и первые электромеханические регуляторы. Примером может служить дифференциальный регулятор дуговых ламп для освещения московских площадей, построенный известным российским электротехником Владимиром Николаевичем Чиколевым в 1874 г. Схема регулятора, заимствованная из [9], показана на рис. 8, где штриховыми линиями обозначены соединительные провода.

Электроды 1 дуговой лампы сближаются через винтовую передачу электродвигателем постоянного тока с обмоткой якоря 2 и двумя обмотками возбуждения 3 и 4, причем обмотка 3 подключается прямо к источнику питания, а обмотки 2 и 4 соединяются с нижним электродом. Обмотки 3 и 4 создают потоки возбуждения двигателя противоположных знаков, причем их действие уравновешивается при нормальном зазоре между электродами. При увеличении зазора его сопротивление растет, а ток падает, что приводит к преобладающему действию обмотки 4 и вращению двигателя в сторону сближения электродов. При чрезмерном сближении электродов будет преобладать действие обмотки 3, обеспечивающей вращение двигателя в противоположную сторону и увеличение зазора.

Таким образом, новый этап развития систем автоматики, начавшийся с изобретения и внедрения паровой машины, отличался следующими основными особенностями:

  • Паровая машина потребовала ряда автоматических устройств, таких как клапан давления, регулятор уровня, золотниковый парораспределитель и регулятор скорости вращения, что поставило перед изобретателями первые серьезные задачи автоматического управления.
  • Наибольшее распространение получили центробежные регуляторы скорости прямого действия, в которых чувствительный элемент обладал непосредственным воздействием на заслонку (регулятор Уатта) либо создавал переменный нагрузочный момент трения (регулятор Эри).
  • Эти регуляторы имели пропорциональный (П) закон регулирования, вызывающий статическую ошибку, устраняемую в регуляторе Дженкина механическим интегратором, обеспечивающим пропорционально-интегральный (ПИ) закон регулирования.
  • До середины XIX в. были предложены и другие законы регулирования: по возмущению (принцип Понселе) и по производной от ошибки (регулятор Сименсов).
  • В регуляторах непрямого действия, первый из которых был создан Фарко, чувствительный элемент управлял дополнительным сервомотором заслонки, что не только повышало мощность регулятора, но и обеспечивало астатизм регулирования скорости.
  • Появились регуляторы и других машин, например фрикционный регулятор вращения телескопа Эри, электромеханический регулятор дуговой лампы Чиколева и др.

Ко второй половине XIX в. было известно уже большое число различных достаточно сложных конструкций регуляторов, заложивших основы создания замкнутых систем автоматического управления в современном понимании этого термина. Однако отсутствовали не только методики расчета, выбора параметров и настройки, но и теоретическое понимание происходящих в них процессов регулирования.

Как будет показано в следующей статье, широкое внедрение паровых и других машин, а также повышение точности и быстродействия их регулирования выявило проблему устойчивости регулятора, вызванную противоречием между требованиями точности и устойчивости работы машины, а также наличием в ней нелинейных элементов.

Регулятор ТНВД

Рис. Управление оборотами двигателя, регулировка: 1. Плунжер; 2. Гильза; 3. Управляющая рейка; 4. Втулка управления; 5. Возвратная пружина плунжера; 6. Рычаг управления плунжера.

Основное назначение регулятора числа оборотов двигателя состоит в ограничении максимальных оборотов двигателя (максимального числа оборотов без нагрузки). Он должен ограничивать обороты двигателя до максимального значения, предусмотренного изготовителем, так как в противном случае не нагруженный дизельный двигатель будет разгоняться неуправляемым образом до тех пор, пока не произойдет саморазрушение. Регулятор должен также быть способным поддерживать определенные обороты двигателя в данном диапазоне оборотов двигателя или во всей области. В зависимости от конструкции регулятора он может использоваться, к примеру, для оборотов холостого хода и максимальных оборотов.

Регулятор также имеет несколько других функций: изменение подачи топлива при полной нагрузке в зависимости от оборотов двигателя (управление крутящим моментом) или в зависимости от атмосферного давления или давления нагнетаемого воздуха или обеспечение подачи необходимого для запуска двигателя количества впрыскиваемого топлива. Чтобы сделать это, регулятор перемещает управляющую рейку так, что плунжер ТНВД поворачивается в соответствующее положение для требуемого количества подаваемого топлива.

Для регулировок на рядных ТНВД используются механические (центробежные) регуляторы или система электронного управления дизельных двигателей (EDC). Пневматические регуляторы в настоящее время не используются, так как они не могут удовлетворить различным требованиям, предъявляемым к современным дизельным двигателям.

Механическое управление оборотами двигателя

В настоящее время существует несколько различных типов механических регуляторов:

  • регулятор максимальных оборотов — для ограничения максимальных оборотов (повышенных оборотов Холостого хода);
  • регулятор минимальных и максимальных оборотов (в основном для автомобильных применений), регулирует только верхние и нижние пределы. Водитель изменяет количество впрыскиваемого топлива с помощью педали акселератора;
  • регулятор изменяемых оборотов регулирует число оборотов во всем диапазоне оборотов в дополнение к максимальным оборотам (повышенным оборотам холостого хода) и оборотам холостого хода.

Развитие технологии впрыска топлива в настоящее время определяется постоянно увеличивающимися требованиями к составу выхлопных газов, экономии топлива, приемистости, комфорту и мощности двигателя. Соответственно, требования, предъявляемые к системе впрыска топлива и, особенно к регуляторам, также возрастают.

Электронное управление оборотами двигателя

Система электронного управления дизельным двигателем полностью удовлетворяет высоким требованиям, предъявляемым к системам регулировки оборотов двигателя. Наряду с проведением электрических измерений и обработку электронных данных, EDC включает в себя цепи управления и электрические исполнительные механизмы (приводы), которые по сравнению с механическими регуляторами предлагают большее количество функций, а также улучшение существующих функций.

EDC включает в себя следующие основные детали:

  • различные датчики;
  • электронный блок управления (ECU);
  • исполнительный механизм, установленный на ТНВД.
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector