2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики тяговых двигателей последовательного возбуждения

Характеристики тяговых двигателей последовательного возбуждения

В этом двигателе обмотка возбуждения включена последовательно в цепь якоря, поэтому магнитный поток Ф зависит от тока нагрузки I=I а =I в.

При небольших нагрузках магнитная система машины ненасыщена и зависимость магнитного потока от тока нагрузки прямо пропорциональна, т.е. Ф=к ф I а, где к ф – коэффициент пропорциональности.

При этом электромагнитный момент: М=С м к ф I а 2 .

Формула частоты вращения принимает вид:

(8)

Таким образом, вращающий момент двигателя при ненасыщенной магнитной системе пропорционален квадрату тока, а частота вращения обратно пропорциональна току нагрузки.

1) Скоростная характеристика n=f(I)

Из графика видно, что при ненасыщенной магнитной системе (при малых нагрузках) с увеличением нагрузки частота вращения резко убывает. Но затем наступает насыщение магнитной системы двигателя и магнитный поток при возрастании нагрузки практически не изменяется и скоростная характеристика приобретает почти прямолинейный характер, Такую характеристику принято называть мягкой.

При уменьшении нагрузки ДПТ последовательного возбуждения частота вращения резко увеличивается и при нагрузке меньше 25% от номинальной может достигнуть опасных для двигателя значений ( «разнос» ). Поэтому работа двигателя последовательного возбуждения или его пуск при нагрузке на валу меньше 25% от номинальной недопустима.

Для более надежной работы вращающий момент с двигателя на рабочий механизм передают только с помощью зубчатых передач. Применение ременных и цепных передач недопустимо, так как при разрыве гибкой связи может произойти «разнос» двигателя.

2) Зависимость электромагнитного момента М от тока нагрузки М=f(I)

Электромагнитный момент М при увеличении нагрузки резко возрастает, так как он пропорционален квадрату тока нагрузки.

Механическая характеристика n=f(М)

Резко падающая кривая механической характеристики обеспечивает ДПТ последовательного возбуждения устойчивую работу при любой нагрузке большей 25% от номинальной.

Регулирование частоты вращения двигателя последовательного возбуждения

Это можно делать двумя способами:

— изменением напряжения U ;

— изменением величины магнитного потока Ф .

а) Изменение напряжения U подаваемого на двигатель

Для этого в цепь якоря включают регулировочный реостат R рг.

С увеличением сопротивления реостата уменьшается напряжение на входе двигателя и частота его вращения (↑R рг ⇒↓U ⇒↓n) . Этот метод применяют для двигателей небольшой мощности. В случае значительной мощности этот способ неэкономичен из-за больших габаритов и больших потерь мощности в регулировочном реостате.

При совместной работе нескольких однотипных двигателей напряжение меняют изменением схемы их включения относительно друг друга.

При ПАРАЛЛЕЛЬНОМ включении двух двигателей каждый из них оказывается под полным напряжением сети , а при ПОСЛЕДОВАТЕЛЬНОМ включении двух двигателей на каждый двигатель приходится половина напряжения сети

При одновременной работе большего числа двигателей возможно большее количество вариантов включения. Этот способ регулирования частоты вращения применяют на электровозах.

Изменение подводимого к двигателю напряжения возможно также при питании его от источника постоянного тока с регулируемым напряжением. При уменьшении напряжения его механические характеристики смещаются вниз, практически не меняя своей кривизны.

б) Изменение основного магнитного потока

Изменять величину магнитного потока можно тремя способами.

1) Шунтирование обмотки возбуждения

Параллельно к обмотке возбуждения подключают реостат r рг. Уменьшение сопротивления этого реостата ведет к снижению тока возбуждения I в =I а -I рг, а следовательно, к увеличению частоты вращения ( r рг ↑I рг I в Ф ⇒↑n)

Этот способ экономичен и часто применяется, например, для регулирования частоты вращения тяговых двигателей тепловозов.

2) Шунтирование обмотки якоря

При шунтировании обмотки якоря реостатом r ш увеличивается ток возбуждения I в =I а +I ш, что вызывает уменьшение частоты вращения ( ↓r ш ↑I ш ↑I в ↑Ф ⇒ ↓ n) .

Этот способ неэкономичен и применяется редко.

3) Секционирование обмотки возбуждения

В этом случае обмотка возбуждения имеет конструкцию, позволяющую включать в работу разное число витков w в, при этом изменяется МДС обмотки возбуждения (F в =w в ·I в ) , следовательно меняется основной магнитный поток Ф и частота вращения. Например, w в F в ↓Ф ⇒ ↑ n и наоборот.

Применение двигателей последовательного возбуждения

Таким образом, двигатели последовательного возбуждения обладают следующими свойствами:

1) развивают большой вращающий момент пропорциональный квадрату тока, что важно в тяжелых условиях пуска и при перегрузках;

2) при постепенном увеличении нагрузки мощность на входе двигателя растет медленнее, чем вращающий момент, так как момент пропорционален квадрату тока, а потребляемая мощность — току в первой степени 1 =U·I)

3) двигатели могут устойчиво работать на малых оборотах;

4) устойчиво работают при любой нагрузке большей 25% от номинальной.

Поэтому эти двигатели широко применяют в качестве тяговых на транспорте, в качестве крановых в подъёмных установках, т.е. во всех случаях электропривода с тяжелыми условиями пуска и сочетания значительных нагрузок на вал двигателя с малой частотой вращения.

Большая Энциклопедия Нефти и Газа

Работа — двигатель — последовательное возбуждение

Работа двигателя последовательного возбуждения мало зависит от колебания напряжения сети. При его снижении вращающий допустимый момент почти не изменяется, так как ток возбуждения зависит не столько от напряжения, сколько от тока якоря. [2]

Поэтому работа двигателя последовательного возбуждения или его пуск при нагрузке на валу меньше 25 / от номинальной недопустима. [3]

Поэтому пуск и работа двигателей последовательного возбуждения вхолостую, а также соединение их с нагрузкой ременной передачей недопустимы. Исключение составляют маломощные двигатели, у которых момент от потерь при холостом ходе относительно велик. [4]

Поэтому пуск и работа двигателей последовательного возбуждения вхолостую, а также соединение их с нагрузкой ременной передачей недопустимы. Исключение составляют очень маломощные двигатели, у которых момент от потерь при холостом ходе относительно велик. Скорость вращения двигателей последовательного возбуждения регулируется изменением напряжения на зажимах двигателя и изменением потока возбуждения. [6]

При данной схеме включения оказывается возможной работа двигателя последовательного возбуждения в режиме холостого хода. [7]

Колебания напряжения в контактной сети, неизбежные в условиях эксплуатации, на работе двигателей последовательного возбуждения отражаются значительно меньше, чем на работе двигателями параллельного возбуждения. [9]

Уравнения ( 2 — 27) и ( 2 — 29) позволяют провести качественный анализ работы двигателя последовательного возбуждения ; однако эти уравнения не могут быть использованы для практических расчетов, так как принятое допущение, что машина является ненасыщенной, может внести в расчеты значительную погрешность. Двигатели, выпускаемые промышленностью, при нагрузках, близких к номинальной, работают в насыщенной части характеристики намагничивания. Такой расчет машины определяется стремлением наиболее полного использования ее активных материалов. Двигатели, работающие в ненасыщенной части характеристики намагничивания имеют повышенные габариты. [10]

Обратим внимание на то, что при уменьшении тока якоря двигателя скорость его возрастает и может достигнуть опасной для двигателя величины. Поэтому работа двигателя последовательного возбуждения без нагрузки недопустима. [11]

Скоростная характеристика двигателя [ см. выражение ( 10 — 19) 1, представленная на рис. 10 — 11, является мягкой и имеет гиперболический характер. При ф — — const вид кривой / ( /) показан штриховой линией. При малых / скорость двигателя становится недопустимо большой. Поэтому работа двигателей последовательного возбуждения , за исключением самых маленьких, на холостом ходу не допускается, а использование ременной передачи неприемлемо. [13]

Скоростная характеристика двигателя ( см. выражение ( 10 — 19) ], представленная на рис. 10 — 11, является мягкой и имеет гиперболический характер. При кф const вид кривой п f ( /) показан штриховой линией. При малых / скорость двигателя становится недопустимо большой. Поэтому работа двигателей последовательного возбуждения , за исключением самых маленьких, на холостом ходу не допускается, а использование ременной передачи неприемлемо. [15]

Коллекторный электродвигатель постоянного тока

  • Основные параметры электродвигателя постоянного тока
  • Характеристики коллекторного электродвигателя постоянного тока

Конструкция коллекторного электродвигателя постоянного тока

Статор — неподвижная часть двигателя.

Индуктор (система возбуждения) — часть коллекторной машины постоянного тока или синхронной машины, создающая магнитный поток для образования момента. Идуктор обязательно включает либо постоянные магниты либо обмотку возбуждения. Индуктор может быть частью как ротора так и статора. В двигателе, изображенном на рис. 1, система возбуждения состоит из двух постоянных магнитов и входит в состав статора.

Якорь — часть коллекторной машины постоянного тока или синхронной машины, в которой индуктируется электродвижущая сила и протекает ток нагрузки [2]. В качестве якоря может выступать как ротор так и статор. В двигателе, показанном на рис. 1, ротор является якорем.

Щетки — часть электрической цепи, по которой от источника питания электрический ток передается к якорю. Щетки изготавливаются из графита или других материалов. Двигатель постоянного тока содержит одну пару щеток или более. Одна из двух щеток соединяется с положительным, а другая — с отрицательным выводом источника питания.

Коллектор — часть двигателя, контактирующая со щетками. С помощью щеток и коллектора электрический ток распределяется по катушкам обмотки якоря [1].

Типы коллекторных электродвигателей

По конструкции статора коллекторный двигатель может быть с постоянными магнитами и с обмотками возбуждения.

Коллекторный двигатель с постоянными магнитами

Коллекторный двигатель постоянного тока (КДПТ) с постоянными магнитами является наиболее распространенным среди КДПТ. Индуктор этого двигателя включает постоянные магниты, которые создают магнитное поле статора. Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения. При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора . КДПТ с постоянными магнитами очень быстро реагирует на изменение напряжения. Благодаря постоянному полю статора легко управлять скоростью двигателя. Недостатком электродвигателя постоянного тока с постоянными магнитами является то, что со временем магниты теряют свои магнитные свойства, в результате чего уменьшается поле статора и снижаются характеристики двигателя.

    Преимущества:
  • лучшее соотношение цена/качество
  • высокий момент на низких оборотах
  • быстрый отклик на изменение напряжения
    Недостатки:
  • постоянные магниты со временем, а также под воздействием высоких температур теряют свои магнитные свойства

Коллекторный двигатель с обмотками возбуждения

    По схеме подключения обмотки статора коллекторные электродвигатели с обмотками возбуждения разделяют на двигатели:
  • независимого возбуждения
  • последовательного возбуждения
  • параллельного возбуждения
  • смешанного возбуждения

Двигатели независимого и параллельного возбуждения

В электродвигателях независимого возбуждения обмотка возбуждения электрически не связана с обмоткой якоря (рисунок выше). Обычно напряжение возбуждения UОВ отличается от напряжения в цепи якоря U. Если же напряжения равны, то обмотку возбуждения подключают параллельно обмотке якоря. Применение в электроприводе двигателя независимого или параллельного возбуждения определяется схемой электропривода. Свойства (характеристики) этих двигателей одинаковы [3].

В двигателях параллельного возбуждения токи обмотки возбуждения (индуктора) и якоря не зависят друг от друга, а полный ток двигателя равен сумме тока обмотки возбуждения и тока якоря. Во время нормальной работы, при увеличении напряжения питания увеличивается полный ток двигателя, что приводит к увеличению полей статора и ротора. С увеличением полного тока двигателя скорость так же увеличивается, а момент уменьшается. При нагружении двигателя ток якоря увеличивается, в результате чего увеличивается поле якоря. При увеличении тока якоря, ток индуктора (обмотки возбуждения) уменьшается, в результате чего уменьшается поле индуктора, что приводит к уменьшению скорости двигателя, и увеличению момента.

    Преимущества:
  • практически постоянный момент на низких оборотах
  • хорошие регулировочные свойства
  • отсутствие потерь магнетизма со временем (так как нет постоянных магнитов)
    Недостатки:
  • дороже КДПТ ПМ
  • двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный электродвигатель параллельного возбуждения имеет механическую характеристику с уменьшающимся моментом на высоких оборотах и высоким, но более постоянным моментом на низких оборотах. Ток в обмотке индуктора и якоря не зависит друг от друга, таким образом, общий ток электродвигателя равен сумме токов индуктора и якоря. Как результат данный тип двигателей имеет отличную характеристику управления скоростью. Коллекторный двигатель постоянного тока с параллельной обмоткой возбуждения обычно используется в приложениях, которые требуют мощность больше 3 кВт, в частности в автомобильных приложениях и промышленности. В сравнении с КДПТ ПМ, двигатель параллельного возбуждения не теряет магнитные свойства со временем и является более надежным. Недостатками двигателя параллельного возбуждения являются более высокая себестоимость и возможность выхода двигателя из под контроля, в случае если ток индуктора снизится до нуля, что в свою очередь может привести к поломке двигателя [5].

Двигатель последовательного возбуждения

В электродвигателях последовательного возбуждения обмотка возбуждения включена последовательно с обмоткой якоря, при этом ток возбуждения равен току якоря (Iв = Iа), что придает двигателям особые свойства. При небольших нагрузках, когда ток якоря меньше номинального тока (Iа &lt Iном) и магнитная система двигателя не насыщена (Ф

Iа), электромагнитный момент пропорционален квадрату тока в обмотке якоря:

,

  • где M – момент электродвигателя, Н∙м,
  • сМ – постоянный коэффициент, определяемый конструктивными параметрами двигателя,
  • Ф – основной магнитный поток, Вб,
  • Ia – ток якоря, А.

С ростом нагрузки магнитная система двигателя насыщается и пропорциональность между током Iа и магнитным потоком Ф нарушается. При значительном насыщении магнитный поток Ф с ростом Iа практически не увеличивается. График зависимости M=f(Ia) в начальной части (когда магнитная система не насыщена) имеет форму параболы, затем при насыщении отклоняется от параболы и в области больших нагрузок переходит в прямую линию [3].

Способность двигателей последовательного возбуждения развивать большой электромагнитный момент обеспечивает им хорошие пусковые свойства.

    Преимущества:
  • высокий момент на низких оборотах
  • отсутствие потерь магнетизма со временем
    Недостатки:
  • низкий момент на высоких оборотах
  • дороже КДПТ ПМ
  • плохая управляемость скоростью из-за последовательного соединения обмоток якоря и индуктора
  • двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный двигатель последовательного возбуждения имеет высокий момент на низких оборотах и развивает высокую скорость при отсутствии нагрузки. Данный электромотор идеально подходит для устройств, которым требуется развивать высокий момент (краны и лебедки), так как ток и статора и ротора увеличивается под нагрузкой. В отличии от КДПТ ПМ и двигателей параллельного возбуждения двигатель последовательного возбуждения не имеет точной характеристики контроля скорости, а в случае короткого замыкания обмотки возбуждения он может стать не управляемым.

Двигатель смешанного возбуждения

Двигатель смешанного возбуждения имеет две обмотки возбуждения, одна из них включена параллельно обмотке якоря, а вторая последовательно. Соотношение между намагничивающими силами обмоток может быть различным, но обычно одна из обмоток создает большую намагничивающую силу и эта обмотка называется основной, вторая обмотка называется вспомогательной. Обмотки возбуждения могут быть включены согласовано и встречно, и соответственно магнитный поток создается суммой или разностью намагничивающих сил обмоток. Если обмотки включены согласно, то характеристики скорости такого двигателя располагаются между характеристиками скорости двигателей параллельного и последовательного возбуждения. Встречное включение обмоток применяется, когда необходимо получить неизменную скорость вращения или увеличение скорости вращения с увеличением нагрузки. Таким образом, рабочие характеристики двигателя смешанного возбуждения приближаются к характеристикам двигателя параллельного или последовательного возбуждения, смотря по тому, какая из обмоток возбуждения играет главную роль [4].

    Преимущества:
  • хорошие регулировочные свойства
  • высокий момент на низких оборотах
  • менее вероятен выход из под контроля
  • отсутствие потерь магнетизма со временем
    Недостатки:
  • дороже других коллекторных двигателей

Двигатель смешанного возбуждения имеет эксплуатационные характеристики двигателей с параллельным и последовательным возбуждением. Он имеет высокий момент на низких оборотах, так же как двигатель последовательного возбуждения и хороший контроль скорости, как двигатель параллельного возбуждения. Двигатель смешанного возбуждения идеально подходит для устройств автомобилей и промышленности (таких как генераторы). Выход двигателя смешанного возбуждения из под контроля менее вероятен, так как для этого ток параллельной обмотки возбуждения должен уменьшиться до нуля, а последовательная обмотка возбуждения должна быть закорочена.

Характеристики коллекторного электродвигателя постоянного тока

Эксплуатационные свойства двигателей постоянного тока определяются их рабочими, электромеханическими и механическими характеристиками, а также регулировочными свойствами.

Основные параметры электродвигателя постоянного тока

Постоянная момента

Для коллекторного электродвигателя постоянного тока постоянная момента определяется по формуле:

,

  • где Z — суммарное число проводников,
  • Ф – магнитный поток, Вб [1]

3. Тяговые электрические двигатели, их особенности и конструкция

Какому двигателю отдать предпочтение?

В настоящее время наибольшее распространение получили электрические двигатели двух видов: переменного тока — трехфазные асинхронные и постоянного тока — коллекторные с различными способами возбуждения. Какой же из них лучше использовать на электровозе?

Двигатели, которые могут быть использованы как тяговые, должны удовлетворять, как минимум, двум требованиям. Прежде всего необходимо иметь возможность регулировать в широких пределах их частоту вращения, а следовательно, и скорость движения поезда. Это позволяет машинисту устанавливать ту или иную скорость в зависимости от состояния пути, указаний путевых сигналов, временных ограничений скорости и других причин. Кроме того, необходимо также иметь возможность регулировать в широком диапазоне силу тяги (вращающий момент). Так, двигатели электровоза должны обеспечивать значительную силу тяги во время трогания поезда, его разгона, при преодолении крутых подъемов и т. п. и снижать ее в более легких условиях движения.

С точки зрения организации движения, казалось бы, желательно, чтобы поезда независимо от изменения сопротивления движению перемещались с постоянной скоростью или эта скорость снижалась бы незначительно. В этом случае зависимость между силой тяги F и скоростью движения υ представляла бы в прямоугольных осях координат вертикальную прямую линию 1, параллельную оси F, или слегка наклонную линию 2 (рис. 12, а). Зависимость между силой тяги, развиваемой двигателями локомотива, и скоростью его движения в науке о тяге поезда называют тяговой характеристикой и представляют ее графически, как показано на рис. 12, или в виде таблиц.


Рис. 12. Жесткая (а) и мягкая (б) тяговые характеристики

Изображенные на рис. 12, а тяговые характеристики являются жесткими. В случае жесткой характеристики мощность, потребляемая двигателями, например на крутых подъемах, возрастает пропорционально увеличению силы тяги (произведение υ1F1 значительно меньше υ2F2, рис. 12, а). Резкое увеличение потребляемой мощности приводит к необходимости повышения мощности — как самих двигателей, так и тяговых подстанций, увеличения сечения контактной подвески, что связано с затратами денежных средств и дефицитных материалов. Избежать этого можно, обеспечив характеристику двигателя, при которой с увеличением сопротивления движению поезда автоматически снижалась бы его скорость, т. е. так называемую мягкую характеристику (рис. 12, б). Она имеет вид кривой, называемой гиперболой. Двигатель с такой тяговой характеристикой работал бы при неизменной мощности (υ1F1 = υ2F2). Однако при движении тяжелых составов на крутых подъемах, когда необходима большая сила тяги, поезда перемещались бы с очень низкой скоростью, тем самым резко ограничивая пропускную способность участка железной дороги. Примерно такой характеристикой обладают тепловозы, так как мощность их тяговых двигателей ограничена мощностью дизеля. Это относится и к паровой тяге, при которой мощность ограничивается производительностью котла.

Мощность, развиваемая тяговыми двигателями электровоза, практически не ограничена мощностью источника энергии. Ведь электровоз черпает энергию через контактную сеть и тяговые подстанции от энергосистем, обычно обладающих мощностями, несоизмеримо большими мощности электровозов. Поэтому при создании тяговых двигателей электровозов стремятся получить характеристику, показанную на рис. 12, б штриховой линией. Электровоз, оборудованный двигателями с такой характеристикой, может развивать значительную силу тяги при сравнительно высокой скорости. Конечно, мощность, потребляемая тяговыми двигателями в условиях высоких скоростей, повышается (υ2‘F2 несколько больше υ2F2, но это не приводит к резким перегрузкам питающей системы.

Трехфазные асинхронные двигатели самые распространенные. Достоинства их трудно переоценить: простота устройства и обслуживания, высокая надежность, низкая стоимость, несложный пуск. Но, как известно, частота вращения асинхронного двигателя почти постоянна, не зависит от нагрузки; она определяется частотой подводимого тока и числом пар полюсов двигателя. Поэтому регулировать частоту вращения таких двигателей, а следовательно, и скорость движения поездов можно только изменением частоты питающего тока и числа пар полюсов, что трудно осуществить. Кроме того, как уже отмечалось выше, для питания таких двигателей требуется устраивать сложную контактную сеть. Поэтому асинхронные двигатели до недавнего времени почти не применяли на электровозах.

Благодаря развитию полупроводниковой техники оказалось возможным создать преобразователи однофазного переменного тока в переменный трехфазный и регулировать их частоту. Это позволило построить электровозы, на которых в качестве тяговых используются трехфазные асинхронные двигатели. Подробнее о таких электровозах будет рассказано ниже. Отметим, что абсолютно жесткой характеристикой (см. рис. 12, а) обладает синхронный двигатель.

Посмотрим, в какой степени отвечают требованиям, предъявляемым к тяговым двигателям, электрические машины постоянного тока. Напомним, что эти машины — генераторы и двигатели — различаются по способу их возбуждения.

Обмотки возбуждения могут быть включены параллельно обмотке якоря (рис. 13, а) и последовательно с ней (рис. 13, б). Соответственно такие двигатели называют двигателями с параллельным возбуждением (устаревшее название — шунтовые) и последовательным (сериесные). Используют также двигатели, у которых имеются две обмотки возбуждения — параллельная и последовательная, т. е. смешанное возбуждение. Их так и называют: двигатели смешанного возбуждения. Если обмотки включены согласно, т. е. создаваемые ими магнитные потоки складываются (рис. 13, в), то такие двигатели называют двигателями согласного возбуждения (компаундные); если потоки вычитаются, то имеем двигатели встречного возбуждения (противокомпаундные). Применяют и независимое возбуждение: обмотка возбуждения питается от постороннего источника энергии (рис. 13, г).


Рис. 13. Схемы, поясняющие способы возбуждения двигателей постоянного тока

Чтобы оценить возможности регулирования частоты вращения двигателя постоянного тока, напомним, что при вращении в магнитном поле проводников обмотки якоря двигателя в них индуктируется электродвижущая сила (э. д. с). Направление э. д. с. определяют, пользуясь известным правилом правой руки. Ток, проходящий по проводникам якоря от источника энергии, направлен навстречу индуктируемой э. д. с., и поэтому ее применительно к двигателям называют иногда противо- э. д. с. Следовательно, напряжение U, приложенное к якорю двигателя, в любое мгновение должно быть больше индуктируемой в его обмотке суммарной э. д. с. Е. На основании закона равновесия электродвижущих сил можно написать:

где I — ток якоря; r — сопротивление обмотки якоря.

Значение э. д. с. Е пропорционально значениям магнитного потока и скорости, с которой проводники пересекают магнитные силовые линии, т. е.

где с — коэффициент, учитывающий параметры двигателя (его размеры, число пар полюсов, число проводников обмотки якоря и т. п.) и размерности величин, входящих в формулу; Ф — магнитный поток; n — частота вращения якоря двигателя.

Формула (2) определяет зависимость между частотой вращения и током якоря при постоянном значении приложенного напряжения. Сопротивление обмотки якоря невелико и составляет обычно несколько сотых долей ома. Поэтому без ощутимой ошибки можно считать, что n ≈ U: (сФ). Следовательно, частоту вращения двигателей постоянного тока можно регулировать, изменяя подводимое к ним напряжение (прямая пропорциональность) или магнитный поток возбуждения (обратная пропорциональность). Оба способа регулирования частоты вращения применяются на электровозах.

Установим, как зависит вращающий момент от тока якоря. Если подключить проводники обмотки якоря двигателя к электрической сети, то проходящий по ним ток, взаимодействуя с магнитным полем полюсов, создаст силы, действующие на каждый проводник с током. В результате совместного действия этих сил создается вращающий момент М, пропорциональный току якоря и магнитному потоку полюсов Ф, т. е.

где см — коэффициент, который учитывает размерность величин, входящих в формулу, число проводников обмотки якоря и другие параметры двигателя.

Из формулы (3) видно, что вращающий момент не зависит от подведенного напряжения.

Чтобы построить тяговую характеристику двигателя постоянного тока, необходимо установить, как изменяются частота вращения n и момент М в зависимости от тока при разных способах возбуждения двигателей. С увеличением нагрузки двигателей, например в случае преодоления подъема при неизменном напряжении U, будет возрастать и ток якоря, так как, чтобы преодолеть дополнительную нагрузку, двигатель должен развивать большую силу тяги, а следовательно, и мощность (как известно, Р = UI).

Для двигателей с параллельным возбуждением можно считать, что ток возбуждения не изменяется с изменением нагрузки. Следовательно, не изменяется и магнитный поток * . Так как сопротивление r обмотки, как уже отмечалось, невелико, то в соответствии с формулой (1) будет незначительно, возрастать произведение Ir при постоянных U и Ф. Это значит, что частота вращения двигателя с параллельным возбуждением при увеличении нагрузки несколько уменьшается (рис. 14, а), а вращающий момент возрастает пропорционально увеличению тока, что графически изображается прямой линией, проходящей через начало координат.

* ( В действительности магнитный поток немного уменьшается вследствие размагничивающего действия реакции якоря.)


Рис. 14. Электромеханические характеристики двигателей с параллельным (а) и последовательным (б) возбуждением

Примерно такие же характеристики будут иметь двигатели с независимым возбуждением, если не изменяется ток возбуждения.

Рассмотрим те же характеристики для двигателя с последовательным возбуждением (см. рис. 13, б). У такого двигателя магнитный поток зависит от нагрузки, так как по обмотке возбуждения проходит ток якоря. Частота вращения якоря, как видно из формулы (2), обратно пропорциональна потоку и при увеличении тока якоря I, а значит, и магнитного потока Ф резко уменьшается (рис. 14, б). Вращающий момент двигателя, наоборот, резко возрастает, так как одновременно увеличиваются ток якоря и зависящий от него магнитный поток возбуждения.

В случае небольших нагрузок магнитный поток возрастает пропорционально току, а вращающий момент, как это следует из формулы (3), пропорционально квадрату тока якоря. Если нагрузка увеличится значительно, ток двигателя возрастет до такой степени, что наступит насыщение его магнитной системы. Это приведет к тому, что частота вращения двигателя будет снижаться уже в меньшей степени. Но тогда начнет более интенсивно возрастать ток, а значит, и потребляемая из сети мощность. При этом скорость движения поезда несколько стабилизируется.

Зависимость частоты вращения n, а также зависимость вращающего момента М от тока якоря I и коэффициента полезного действия η называют электромеханическими характеристиками на валу тягового двигателя при неизменном напряжении U, подводимом к тяговому двигателю.

По электромеханическим характеристикам двигателя можно построить его тяговую характеристику. Для этого берут ряд значений тока и определяют по характеристикам соответствующие им частоту вращения и вращающий момент двигателя. По частоте вращения несложно подсчитать скорость движения поезда, так как известны передаточное число редуктора и диаметр круга катания колесной пары. Зная вращающий момент, подсчитывают силу тяги, развиваемую одной, а затем и всеми колесными парами электровоза. По полученным данным строят тяговую характеристику. Но и без этого построения очевидно, что двигатель с последовательным возбуждением имеет мягкую характеристику. Поэтому на электрических железных дорогах в качестве тяговых в подавляющем большинстве случаев используют двигатели постоянного тока с последовательным возбуждением.

Тяговые двигатели последовательного возбуждения имеют и другие преимущества по сравнению с двигателями параллельного возбуждения. Так, при постройке тяговых двигателей устанавливают допуски на точность изготовления, на химический состав материалов для двигателей и т. п. Создать двигатели с абсолютно одинаковыми характеристиками практически невозможно. Вследствие различия характеристик тяговые двигатели, установленные на одном электровозе, при работе воспринимают неравные нагрузки. Более равномерно нагрузки распределяются между тяговыми двигателями последовательного возбуждения, из-за того что они имеют мягкую тяговую характеристику.

Таким образом, мы отметили ряд преимуществ, обеспечиваемых мягкой характеристикой двигателя последовательного возбуждения. С еще одним важным преимуществом такой характеристики мы познакомимся при описании пуска тяговых двигателей. Как видим, двигатели последовательного возбуждения обладают множеством положительных свойств. Но они имеют и весьма существенный недостаток — электровозы с двигателями последовательного возбуждения склонны к боксованию, иногда переходящему в разносное. Этот недостаток особенно резко проявился после того, когда масса поезда стала ограничиваться не мощностью тяговых двигателей, а расчетным коэффициентом сцепления. Жесткая характеристика в значительно большей мере способствует прекращению боксования, так как в этом случае сила тяги резко снижается даже при небольшом скольжении и имеется больше шансов на восстановление сцепления. К недостаткам тяговых двигателей последовательного возбуждения относится также то, что эти двигатели не могут автоматически переходить в режим электрического торможения.

Читать еще:  Фольксваген мультивен бензиновый двигатель как он
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector