0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристика момента от скорости асинхронного двигателя

ГЛАВА 5. Машины переменного тока.

Электрические машины переменного тока делятся на два основных типа: синхронные машины и асинхронные машины. И в том и другом случае в машинах переменного тока используется вращающееся магнитное поле.

В синхронных машинах скорость вращения ротора совпадает со скоростью вращения поля. В асинхронных машинах скорость вращения ротора несколько меньше скорости вращения поля.

Во всех машинах переменного тока используется вращающееся магнитное поле. Для получения вращающегося поля можно использовать двухфазную систему токов:

При протекании двух токов (I1, I2) по двум рамкам плоскости которых взаимно перпендикулярны возникает вращающееся магнитное поле величиной

Наиболее эффективно для создания вращающегося магнитного поля использовать трехфазную систему токов

При использовании трех катушек, расположенных под углом 120 0 , скорость вращения поля составляет 3000 оборотов в минуту.

5.1 Устройство асинхронного двигателя

Асинхронный двигатель состоит из двух основных частей:

Статор представляет собой полый металлический цилиндр, собранный из тонких пластин для уменьшения потерь в «стали». На внутренней поверхности цилиндра имеются пазы, в которых располагаются обмотки статора. Обмотки статора включаются либо звездой, либо треугольником в зависимости от напряжения, подводимого к статору ( 380 /220).

Ротор цилиндрической формы состоит из пластин электротехнической стали. На его внешней поверхности имеются пазы, в которых расположена обмотка ротора. Существует два типа обмоток ротора:

1)Короткозамкнутая обмотка состоит из стержней, расположенных в пазах ротора, замкнутых на его торцах двумя металлическими кольцами.

2) Фазная обмотка. На роторе с фазной обмоткой располагаются три обмотки, находящиеся в пазах ротора. Концы обмоток присоединяются к трем контактным кольцам, расположенным на валу ротора. Для создания тока в обмотках к кольцам прижаты графитовые щетки, соединенные со внешней электрической схемой, состоящей, как правило, из трех реостатов.

5.2 Принцип действия асинхронного двигателя.

При включении в сеть обмотки статора возникает трехфазная система токов, создающая вращающееся магнитное поле.

2. Вращающееся магнитное поле создает в обмотке ротора переменную ЭДС, которая будет максимальна при покоящемся роторе. Возникающая в роторе ЭДС создает в обмотке ротора значительные токи, которые порождают магнитное поле, неподвижное в начальный момент времени.

3. При взаимодействии вращающегося поля статора и неподвижного поля ротора возникают силы взаимодействия, а следовательно, крутящий момент. Под действием крутящего момента ротор приводится во вращение. При увеличении скорости вращения ротора уменьшается скорость пересечения силовыми линиями магнитного поля обмотки ротора, что приводит к уменьшению ЭДС, а следовательно, тока и крутящего момента. Поэтому ротор при вращении достигает скорости несколько меньшей скорости вращения поля.

4. При увеличении тормозного момента, действующего на ротор, уменьшается число оборотов, что приводит к увеличению ЭДС, возникающей в обмотке ротора, магнитного поля ротора, что вызывает увеличение крутящего момента при любой постоянной скорости вращения:

Мкр.= Мторм &nbsp &nbsp &nbsp &nbsp(5.1)

Обозначим: n1 — cкорость вращения поля, n2 — cкорость вращения ротора, s — скольжение (проскальзывание):

&nbsp &nbsp &nbsp &nbsp (5.2)

6. При неподвижном роторе частота индуктируемой в его обмотке ЭДС равна частоте тока в сети f1=50 Гц.

>При увеличении скорости вращения ротора относительная скорость поля и ротора уменьшается, что приводит к уменьшению частоты ЭДС, возникающей в роторе: f2 =S f1 , где f2 — частота ЭДС возникающей в роторе, f1 частота сети, s — скольжение.

Для практических применений асинхронных двигателей большое значение имеет зависимость частоты вращения от тормозного момента Мторм, которая называется механической характеристикой.

С увеличением механической нагрузки (тормозного момента Мторм.), число оборотов незначительно уменьшается (“жесткая” характеристика), а затем двигатель останавливается (рис.5.2а). На рис. 5.2б показана обратная зависимость М=f(n, s) момента от числа оборотов n или скольжения s . На этом графике приведена зависимость тока, потребляемого двигателем, от числа оборотов или скольжения. В момент пуска (n=0, s=1) пусковой момент Мпуск должен быть больше, чем начальный момент Мторм, если двигатель пускается под нагрузкой. Ток, потребляемый двигателем в момент пуска, приобретает максимальное значение, в 5-7 раз большее номинального тока. С ростом числа оборотов или уменьшения скольжения, крутящий момент сначала растет до критического значения, а затем уменьшается до нуля (при s=0). Также до нуля уменьшается и ток, потребляемый двигателем.

Одним из недостатков асинхронного двигателя является значительный пусковой ток. Для его уменьшения используются следующие способы:

1) Использование двигателя с фазным ротором имеющим на роторе три обмотки, концы которой, соединяются с контактными кольцами, с которыми соприкасаются графитовые щетки, связанные с реостатами:

В момент пуска сопротивление реостатов устанавливают максимальным, что приводит к значительному уменьшению тока в обмотках ротора, а, следовательно, тока потребляемого двигателем.

2) Первоначальное соединение обмоток двигателя звездой, а затем переключение их после пуска на соединение треугольником. В этом случае пусковые токи уменьшаются в три раза.

Еще одним недостатком асинхронных двигателей является невозможность плавного изменения их скорости вращения, которая определяется скоростью вращения магнитного поля и зависит от частоты тока и от числа пар полюсов обмотки статора.

Рабочие характеристики асинхронного двигателя приведены на рис. 5.3а. Они получены при номинальной частоте сети и номинальном напряжения питания U 1

Известно, что механическая мощность P2 определяется соотношением P2= M w где w — частота вращения ротора, M — крутящий момент. С ростом мощности P2 , развиваемой на валу двигателя, возрастает и крутящий момент M . Вследствие того, что асинхронный двигатель обладает «жесткой» характеристикой, скольжение s лишь немного возрастает, поэтому крутящий момент практически линейно увеличивается с ростом P2 так как частота вращения w лишь немного уменьшается. С ростом P2 возрастает также электрическая мощность P1 потребляемая двигателем от сети, а, следовательно, и потребляемый ток. I1 Величина h , как и в трансформаторе, определяется соотношениями потерь в «стали» и в «меди», и при их равенстве оказывается максимальным.

Важным параметром асинхронных двигателей является cos j где j — фазовый сдвиг между напряжением U 1 приложенным к статору и током I 1 возникающим в этих обмотках. Этот фазовый сдвиг растет с ростом нагрузки, достигая максимума при номинальной нагрузки, а затем несколько уменьшается.

5.3 Однофазный асинхронный двигатель

На статоре размещается одна, рабочая, обмотка, которая питается переменным током, и которая создает пульсирующее магнитное поле. Подобное пульсирующее поле можно представить в виде двух вращающихся в противоположном направлении магнитных потоков и (рис. 5.3б). При неподвижном роторе возникают два крутящих момента, одинаковые по величине и противоположно направленные, поэтому результирующий крутящий момент равен нулю. При предварительной раскрутке ротора в нем будет возбуждаться две ЭДС. Одна ЭДС будет возбуждаться тем магнитным потоком, который следует за ротором, а другая противоположным.

Частота одной ЭДС- мала (

1ГЦ), а частота другой ЭДС- велика(

100 ГЦ). Поэтому индуктивное сопротивление

ХL= L (5.3)

в первом случае будет очень мало. Это, в свою очередь, порождает значительный ток при малых сопротивлениях, а следовательно, создает максимальный крутящий момент действующий в сторону предварительной раскрутки.

Для пуска подобных двигателей на статоре располагается вторая пусковая обмотка которая питается током сдвинутым по фазе на 90 0 , для этого она питается через конденсатор, который и создает фазовый сдвиг близкий к 90 0 (рис.5.4).

5.4 Синхронный генератор.

Статор машины состоит из трех обмоток, которые располагаются точно также как на статоре трехфазного асинхронного двигателя. В обмотках статора создается трехфазная ЭДС, с помощью ротора. Для этой цели ротор должен обладать постоянным магнитным полем, для чего на роторе располагаются обмотка, концы которой присоединяются к двум контактным кольцам, располагающимся на роторе: с кольцами соприкасаются графитовые щетки к которым подключается источник постоянного тока (рис.5.5). Подобная обмотка ротора носит название обмотки возбуждения. При вращении ротора в статоре возбуждается трехфазная переменная ЭДС, которая пропорциональна величине магнитного потока Ф, создаваемого ротором и пропорциональна числу оборотов п ротора.

Читать еще:  Газель большой расход газа 405 двигатель

E = C Фn (5.4)

где C — конструктивный коэффициент пропорциональности, Ф -магнитный поток, n- число оборотов ротора.

Синхронные генераторы широко распространены и используются на электростанциях для получения переменного тока промышленной частоты, а также для получения постоянного напряжения на автомобилях, тракторах, мотоциклах и т.п. Для этого они снабжаются встроенными трехфазными выпрямителями.

5.5. Синхронный двигатель.

Статор подобного двигателя устроен точно также как и статор трехфазного асинхронного двигателя (три обмотки питаются трехфазным током) и создает вращающееся магнитное поле.

В качестве ротора используется электромагнит, поле которого создается постоянным током, который подводится к обмотке с помощью двух контактных колец и щеток (аналогично ротору синхронного генератора).

Взаимодействие вращающегося магнитного поля статора и постоянного магнитного поля ротора приводит к появлению крутящего момента.

Таким образом, скорость вращения ротора соответствует скорости вращения магнитного поля, что приводит к появлению жесткой механической характеристики (т.е. независимости числа оборотов ротора от тормозного момента).

Основным недостатком синхронного двигателя является сложность пуска: для пуска нужно раскрутить ротор в сторону вращения магнитного поля создаваемого статором. Для этой цели наиболее часто используют короткозамкнутую обмотку, которая дополнительно располагается на роторе и поэтому в момент пуска двигатель работает как асинхронный. Когда скорость ротора приближается к скорости вращения поля, ротор входит в синхронизм и далее двигатель работает как синхронный.

Сайт ориентирован на работу в INTERNET EXPLORER 4.0 и выше.
Разрешение 800х600 и больше. Используйте кнопку F11

Сравнение сервоприводов и шаговых двигателей

1. Физика процесса

Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического регулирования и управления, в быту. Электрические машины преобразуют механическую энергию в электрическую и наоборот, электрическую энергию в механическую. Машина, преобразующая механическую энергию в электрическую, называется генератором. Преобразование электрической энергии в механическую осуществляется двигателями.Принцип действия электрических машин основан на использовании законов электромагнитной индукции и электромагнитных сил. Если в магнитном поле полюсов постоянных магнитов или электромагнитов поместить проводник и под действием какой-либо силы F1 перемещать его, то в нем возникает Э.Д.С. равная:

где В — магнитная индукция в месте, где находится проводник,
l — активная длина проводника (та его часть, которая находится в магнитном поле),
v — скорость перемещения проводника в магнитном поле.

Если этот проводник замкнуть на какой-либо приемник энергии, то в замкнутой цепи под действием Э.Д.С. будет протекать ток, совпадающий по направлению с Э.Д.С. в проводнике. В результате взаимодействия тока I в проводнике с магнитным полем полюсов создается электромагнитная сила Fэ, направление которой определяется по правилу левой руки; эта сила будет направлена навстречу силе, перемещающей проводник в магнитном поле. При равенстве сил F1 = Fэ проводник будет перемещаться с постоянной скоростью. Следовательно, в такой простейшей электрической машине механическая энергия, затрачиваемая на перемещение проводника, преобразуется в энергию электрическую, отдаваемую сопротивлению внешнего приемника энергии, т. е. машина работает генератором. Та же простейшая электрическая машина может работать двигателем. Если от постороннего источника электрической энергии через проводник пропустить ток, то в результате взаимодействия тока в проводнике с магнитным полем полюсов создается электромагнитная сила Рэ, под действием которой проводник начнет перемещаться в магнитном поле, преодолевая силу торможения какого-либо механического приемника энергии.

Рисунок 2 — Физика процесса

Таким образом, рассмотренная машина так же, как и любая электрическая машина, обратима, т. е. может работать как генератором, так и двигателем. Для увеличения Э.Д.С. и электромеханических сил электрические машины снабжаются обмотками, состоящими из большого числа проводов, которые соединяются между собой так, чтобы Э.Д.С. в них имели одинаковое направление и складывались. Э.Д.С. в проводнике будет индуктирована также и в том случае, когда проводник неподвижен, а перемещается магнитное поле полюсов.

2. Асинхронные двигатели

Наиболее распространенные электрические машины. В основном они используются как электродвигатели и являются основными преобразователями электрической энергии в механическую.Асинхронный двигатель имеет статор (неподвижная часть) и ротор (подвижная часть), разделенные воздушным зазором, ротор крепится на подшипниках. Активными частями являются обмотки; все остальные части — конструктивные, обеспечивающие необходимую прочность, жесткость, охлаждение, возможность вращения и т. п. По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из электротехнической стали и шихтованным. Фазный ротор используют когда необходимо создать большой пусковой момент. К ротору подводят ток и в результате уже возникает магнитный поток необходимый для создания момента.

На обмотку статора подается напряжение, под действием которого по этим обмоткам протекает ток и создает вращающееся магнитное поле. Магнитное поле воздействует на стержни ротора и по закону магнитной индукции возникает электрический ток т. к. изменяется магнитный поток, проходящий через замкнутый контур ротора. Токи в стержнях ротора создают собственное магнитное поле стержней, которые вступают во взаимодействие с вращающимся магнитным полем статора. В результате на каждый стержень действует сила, которая складываясь по окружности создает вращающийся электромагнитный момент ротора из-за того, что индукционный ток, возникающий в замкнутом контуре ротора, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток. Следовательно и возникает вращение.Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора Э.Д.С. и, в свою очередь, создавать крутящий момент.

Рисунок 3 — Вид асинхронной машины с короткозамкнутым ротором в разрезе

На рисунке приведен вид асинхронной машины с короткозамкнутым ротором в разрезе:

2 — сердечник статора,

3 — обмотка статора,

4 — сердечник ротора с короткозамкнутой обмоткой,

3. Синхронные двигатели

Синхронный двигатель не имеет принципиальных конструктивных отличий от асинхронных. На статоре синхронного двигателя помещается трехфазная обмотка, при включении которой в сеть трехфазного переменного тока будет создано вращающееся магнитное поле, число оборотов в минуту которого n = 60f/p, где f — частота напряжения питания привода. На роторе двигателя помещена обмотка возбуждения, включаемая в сеть источника постоянного тока. Либо ротор выполнен из постоянного магнита. Ток возбуждения создает магнитный поток полюсов или в случае с постоянным магнитом, магнитный поток уже создан. Вращающееся магнитное поле, полученное токами обмотки статора, увлекает за собой полюса ротора. При этом ротор может вращаться только с синхронной скоростью, т. е. со скоростью, равной скорости вращения поля статора. Таким образом, скорость синхронного двигателя строго постоянна, если неизменна частота тока питающей сети.

Читать еще:  Устройство и принцип работы двигателя hdi

Достоинством синхронных двигателей является меньшая, чем у асинхронных, чувствительность к изменению напряжения питающей сети. У синхронных двигателей вращающий момент пропорционален напряжению сети в первой степени, тогда как у асинхронных — квадрату напряжения. Вращающий момент синхронного двигателя создается в результате взаимодействия магнитного поля статора с магнитным полем полюсов. От напряжения питающей сети зависит только магнитный поток поля статора.

4. Шаговые двигатели

Шаговые двигатели — это электромеханические устройства, преобразующие сигнал управления в угловое (или линейное) перемещение ротора с фиксацией его в заданном положении без устройств обратной связи. По сути шаговый двигатель является синхронным, но отличается подходом управления. Рассмотрим самые распространенные.

5. Двигатели с постоянными магнитами

Двигатели с постоянными магнитами состоят из статора, который имеет обмотки, и ротора, содержащего постоянные магниты. Чередующиеся полюса ротора имеют прямолинейную форму и расположены параллельно оси двигателя. Благодаря намагниченности ротора в таких двигателях обеспечивается больший магнитный поток и, как следствие, больший момент, чем у двигателей с переменным магнитным сопротивлением. Такой двигатель имеет величину шага 30°. При включении тока в одной из катушек, ротор стремится занять такое положение, когда разноименные полюса ротора и статора находятся друг напротив друга. Для осуществления непрерывного вращения нужно включать фазы попеременно. На практике двигатели с постоянными магнитами обычно имеют 48—24 шага на оборот (угол шага 7,5—15°). Двигатели с постоянными магнитами подвержены влиянию обратной Э.Д.С. со стороны ротора, котрая ограничивает максимальную скорость.

6. Гибридные двигатели

Являются более дорогими, чем двигатели с постоянными магнитами, зато они обеспечивают меньшую величину шага, больший момент и большую скорость. Типичное число шагов на оборот для гибридных двигателей составляет от 100 до 400 (угол шага 3,6…0,9°). Ротор гибридного двигателя имеет зубцы, расположенные в осевом направлении. Ротор разделен на две части, между которыми расположен цилиндрический постоянным магнит. Таким образом, зубцы верхней половинки ротора являются северными полюсами, а зубцы нижней половинки — южными. Кроме того, верхняя и нижняя половинки ротора повернуты друг относительно друга на половину угла шага зубцов. Число пар полюсов ротора равно количеству зубцов на одной из его половинок. Зубчатые полюсные наконечники ротора, как и статор, набраны из отдельных пластин для уменьшения потерь на вихревые токи. Статор гибридного двигателя также имеет зубцы, обеспечивая большое количество эквивалентных полюсов, в отличие от основных полюсов, на которых расположены обмотки. Обычно используются 4 основных полюса для 3,6° двигателей и 8 основных полюсов для 1,8…0,9° двигателей. Зубцы ротора обеспечивают меньшее сопротивление магнитной цепи в определенных положениях ротора, что улучшает статический и динамический момент. Это обеспечивается соответствующим расположением зубцов, когда часть зубцов ротора находится строго напротив зубцов статора, а часть между ними. Зависимость между числом полюсов ротора, числом эквивалентных полюсов статора и числом фаз определяет угол шага S двигателя:

где Nph — число эквивалентных полюсов на фазу, равное числу полюсов ротора,
Ph — число фаз,
N — полное количество полюсов для всех фаз вместе.

7. Сервопривод

Сервопривод — общее название привода, синхронного, асинхронного либо любого другого, с отрицательной обратной связью по положению, моменту и др. параметрам, позволяющего точно управлять параметрами движения. Сервопривод – это комплекс технических средств. Состав сервопривода: привод – например, электромотор, датчик обратной связи – например, датчик угла поворота выходного вала редуктора (энкодер), блок питания и управления (он же преобразователь частоты сервоусилитель инвертор servodrive). Мощность двигателей: 0,05…15 кВт. Существует понятие «вентильный двигатель». Это всего лишь названия для двигателя, управление которым осуществляется через «вентили» – ключи, переключатели и т. п. коммутационные элементы. Современными «вентилями» являются IGBT-транзисторы использующиеся в блоках управления приводами. Никакого конструктивного отличия нет. Основным достоинством сервоприводов является наличие обратной связи, благодаря которой такая система может поддерживать точность позиционирования на высоких скоростях и высоких моментах. Также систему отличает низкоинерционность и высокие динамические характеристики, например время переключения от скорости –3 000 об/мин до достижения 3 000 об/мин составляет всего 0,1 с. Современные блоки управления являются высокотехнологическими изделиями со сложной системой управления и могут обеспечить выполнение практически любой задачи.

Характеристики системы сервопривода рассмотрим основываясь на сервоприводах фирмы Delta elc. Серии блока управления ASDA-A и двигателем 400 Вт. Как видно поддержание момента линейное на всем диапазоне скоростей. Это достигается благодаря использованию синхронного двигателя в высококачественном исполнении. Величина шага перемещения определяется разрешающей способностью датчика обратной связи, энкодера, а так же блоком управления. Стандартные сервоприводы могут обеспечить шаг в 0,036° т. е. 1/10 000 от оборота, и это на скоростях до 5 000 об/мин.

Самые современные сервоприводы отрабатывают шаг в 1/2 500 000.

* — Динамическая точность — максимальное отклонение реальной траектории перемещения инструмента от запрограммированной

8. Вывод

Сервопривод и шаговый двигатель не являются конкурентами, а каждый занимает свою определенную нишу. Сравним их на основе рынка станков с ЧПУ. Применение шаговых двигателей полностью оправданно для применения в недорогих станках с ЧПУ (в ценовой категории до 10—12 тыс. USD), предназначенных для обработки дерева, пластиков, ДСП, МДФ, легких металлов и других материалов средней скорости.Применение высококачественных сервоприводов необходимо в высокопроизводительном оборудовании, где главным критерием является производительность. Единственный «недостаток» хорошего сервопривода – это его высокая стоимость. К примеру, станок ATS-760 на шаговых приводах стоит 11 000 $, а эта же модель, но на сервоприводах стоит 17 500 $. Однако возможности получения высокостабильного или точного управления, широкий диапазон регулирования скорости, высокая помехоустойчивость, малые габариты и вес часто являются решающими факторами их применения. Добившись одинаковых качеств от сервопривода и шагового их стоимости станут соизмеримыми при однозначном лидерстве сервопривода.

Характеристики асинхронного двигателя

К энергетическим характеристикам асинхронного двигателя относятся КПД двигателя(η) коэффициент мощности (cosφ) и скольжение S.
коэффициент полезного действия (η) вычисляется как отношение полезной мощности на валу двигателя Р2 кВт, к активной мощности, потребляемой двигателем из сети Р1 кВт;
η = Р2/ Р1 коэффициент мощности (cos(φ)вычисляется как отношение потребляемой активной мощности Р1 кВт, к полной мощности, потребляемой из сети S1 кВА;

По ГОСТ Р. 51677-2000 асинхронные двигатели общепромышленного назначения делятся на двигатели с нормальным КПД и двигатели с повышенным КПД. У асинхронных двигателей с повышенным КПД, суммарные потери не меньше, чем на 20%, чем у двигателей с нормальным КПД такой же мощности и частоты вращения. Коэффициенты мощностей (cosφ) асинхронных двигателей определены в ГОСТ.Р 51677. Значения КПД и cosφ конкретного асинхронного двигателя можно узнать по каталогу или по шильдику.

Причем КПД и cosφ асинхронного двигателя определяются и нагрузкой машины. В справочниках по электрическим машинам можно увидеть эти зависимости.

Линейный ток двигателя можно определить исходя из номинальной полезной мощность (Р2, кВт), номинального напряжения (UH, В ), КПД (η) и cosφ.

Мощность, потребляемая из сети можно определить из формулы:

Скольжение вычисляется как разницу между номинальной n1 и синхронной nc частотой вращения двигателя, приведенной к номинальной скорости двигателя n1:

Читать еще:  Fiat fullback какой двигатель 4n15

Номинальную частоту вращения ротора n1 или скольжение (S, %)можно определить по каталогу двигателя или прочесть на его шильдике.

Механические и пусковые характеристики асинхронного двигателя

Одной из основных характеристик асинхронного двигателя, является механическая характеристика. Механической характеристикой называют зависимость скорости вращения или скольжения от вращающего момента на валу двигателя. Она позволяет сравнить и согласовать механические свойства двигателя и рабочего механизма. Соответственно, зависимость скорости вращения или скольжения от тока статора называют электромеханической характеристикой.

Механическая характеристика асинхронного двигателя определяет зависимость момента на валу двигателя от скольжения, при сохранении неизменного напряжении и частоты питающей сети

Пусковые характеристики определяют величину пускового моментаMп, минимального момента Мmin, максимального или критического момента Мкр., пускового тока Iп или пусковой мощности Sп или их отношениями. Диаграмма момента, приведенного к номинальному моменту, от скольжения получила название относительной механической характеристики.

Номинальный вращающий момент можно определить по формуле:

P2н- номинальная мощность , кВт,
N1н- номинальная частота вращенияю, об/мин.

Пусковые характеристики асинхронного двигателя

Пусковые характеристики асинхронного двигателя регламентирует ГОСТ 28327 ( МЭК 60034 — 12), а их значения приводятся в каталогах. Стандартные асинхронные двигатели могут иметь два исполнения по механическим характеристикам, которые определены в ГОСТ 28327 и МЭК 60034-12:
N – двигатели с нормальный моментом;
Н –двигатели с повышенным моментом.

Двигатели , изготовленные в исполнении N, рассчитывают на два последовательных пуска с остановкой между пусками из холодного состояния или на один пуск из нагретого состояния, после работы при номинальной нагрузке.

Момент сопротивления нагрузки при запуске прямо пропорционален квадрату частоты вращения и равняется номинальному моменту при номинальной частоте вращения, а значение внешнего момента инерции, γ , кг*м2, не должно превышать рассчитанного по формуле

где Р-номинальная мощность двигателя, кВт;
р — число пар полюсов;

При построении характеристики предполагается, что момент сопротивления нагрузки остается постоянным и равен номинальному моменту. Кроме того он не зависит от частоты вращения. Значение же внешнего момента инерции не превышаетт 50% величины, полученной по приведенной выше формуле.

Механические характеристики асинхронных мшин зависят в том числе и от типа ротора, его номинальной мощности, и от числа пар полюсов.

Ввиду того, что разность в значениях момента при соответствующих скольжениях у двигателей с различным числом пар полюсов невелика, и не превышает значения поля допуска на моменты. Различные механические характеристики для разных исполнений асинхронных двигателей показаны на рис

1 — исполнение N; 2 — исполнение Н; 3 — с повышенным скольжением. Механические характеристики группы двигателей, одной серии, или ее части обычно укладываются в некоторую зону. По средней линии этой зоны можно составить групповую механическую характеристику. Величина зоны групповой характеристики меньше поля допуска двигателей на моменты.

Регулирование скорости асинхронного двигателя

Долгое время в промышленности использовались нерегулируемые электроприводы на базе АД, но, в последнее время возникла надобность в регулировании скорости асинхронных двигателей.

Частота вращения ротора равна

При этом, синхронная частота вращения зависит от частоты напряжения и числа пар полюсов

Исходя из этого, можно сделать вывод, что регулировать скорость АД можно с помощью изменения скольжения, частоты и числа пар полюсов.

Рассмотрим основные способы регулировки.

Регулирование скорости с помощью изменения активного сопротивления в цепи ротора

Этот способ регулирования скорости применим в двигателях с фазным ротором. При этом в цепь обмотки ротора включается реостат, которым можно плавно увеличивать сопротивление. С увеличением сопротивления, скольжение двигателя растёт, а скорость падает. Таким образом, обеспечивается регулировка скорости вниз от естественной характеристики.

Недостатком данного способа является его неэкономичность, так как при увеличении скольжения, потери в цепи ротора растут, следовательно, КПД двигателя падает. Плюс к этому, механическая характеристика двигателя становится более пологой и мягкой, из-за чего небольшое изменение момента нагрузки на валу, вызывает большое изменение частоты вращения.

Регулирование скорости данным способом не эффективно, но, несмотря на это применяется в двигателях с фазным ротором.

Регулирование скорости двигателя с помощью изменения напряжения питания

Данный способ регулирования можно осуществить, если включить в цепь автотрансформатор, перед статором, после питающих проводов. При этом, если снижать напряжение на выходе автотрансформатора, то двигатель будет работать на пониженном напряжении. Это приведёт к снижению частоты вращения двигателя, при постоянном моменте нагрузки, а также к снижению перегрузочной способности двигателя. Это связано с тем, что при уменьшении напряжения питания, максимальный момент двигателя уменьшается в квадрат раз. Кроме того, этот момент уменьшается быстрее, чем ток в цепи ротора, а значит, растут и потери, с последующим нагревом двигателя.

Способ регулирования изменением напряжения, возможен только вниз от естественной характеристики, так как увеличивать напряжение выше номинального нельзя, потому что это может привести к большим потерям в двигателе, перегреву и выходу его из строя.

Кроме автотрансформатора, можно использовать тиристорный регулятор напряжения.

Регулирование скорости с помощью изменения частоты питания

При данном способе регулирования, к двигателю подключается преобразователь частоты (ПЧ). Чаще всего это тиристорный преобразователь частоты. Регулирование скорости осуществляется изменением частоты напряжения f, так как она в данном случае влияет на синхронную скорость вращения двигателя.

При снижении частоты напряжения, перегрузочная способность двигателя будет падать, чтобы этого не допустить, требуется повысить величину напряжения U1. Значение на которое нужно повысить, зависит от того какой привод. Если регулирование производится с постоянным моментом нагрузки на валу, то напряжение нужно изменять пропорционально изменению частоты (при снижении скорости). При увеличении скорости этого делать не следует, напряжение должно оставаться на номинальном значении, иначе это может причинить вред двигателю.

Если регулирование скорости производится с постоянной мощностью двигателя (например, в металлорежущих станках), то изменение напряжения U1 необходимо производить пропорционально квадратному корню изменения частоты f1.

При регулировании установок с вентиляторной характеристикой, необходимо изменять подводимое напряжение U1 пропорционально квадрату изменения частоты f1.

Регулирование с помощью изменения частоты, является наиболее приемлемым вариантом для асинхронных двигателей, так как при нем обеспечивается регулирование скорости в широком диапазоне, без значительных потерь и снижения перегрузочных способностей двигателя.

Регулирование скорости АД изменением числа пар полюсов

Такой способ регулирования возможен только в многоскоростных асинхронных двигателях с короткозамкнутым ротором, так как число полюсов этого ротора, всегда равно количеству полюсов статора.

В соответствии с формулой, которая рассматривалась выше, скорость двигателя можно регулировать изменением числа пар полюсов. Причём, изменение скорости происходит ступенчато, так как количество полюсов принимают только определённые значения – 1,2,3,4,5.

Изменение количества полюсов достигается переключением катушечных групп статорной обмотки. При этом катушки соединяются различными схемами соединения, например “звезда — звезда” или “звезда – двойная звезда”. Первая схема соединения даёт изменение количества полюсов в соотношении 2:1. При этом обеспечивается постоянная мощность двигателя при переключении. Вторая схема изменяет количество полюсов в таком же соотношении, но при этом обеспечивает постоянный момент двигателя.

Применение данного способа регулирования оправдано сохранением КПД и коэффициента мощности при переключении. Минусом же является более сложная и увеличенная конструкция двигателя, а также увеличение его стоимости.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector