1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электромобиль своими руками с асинхронными двигателями

Конверсия авто в электро! Выбор двигателя и контроллера!

Безусловно самой затратной частью электромобиля является батарея!
И как рассказывалось в прошлой статье от емкости батареи зависит дальность пробега, но
и от КПД двигателя и расходуемой им энергии на 1 км тоже зависит многое!
Что касается стоимости то дуэт двигателя и контроллера занимает вторую строчку по стоимости после батареи!

На каких двигателях вообще можно ездить?
П сути их 3 типа!
1. Двигатель постоянного тока смешанного, последовательного или параллельного возбуждения(DC);
2. Двигатели постоянного тока с постоянными магнитами или еще их называют без щеточными (BLDC);
3. Двигатели переменного тока асинхронные с медным или алюминиевым короткозамкнутым ротором (АС);

Самым бюджетным комплектом из этой тройки является 1 вариант. Как правило он состоит из б/у или нового тягового двигателя от погрузчика «Балканкар» болгарского производства или хорошо зарекомендовавших себя двигателей марки ДС-3,6 и ДС-6,3. Многие конверсии авто начинались с того, что человеку подворачивался такой двигатель, а вместе с ним мысль перейти на электротягу. Цена такого двигателя в зависимости от состояния может быть разной но в среднем это около 400 у.е. Есть американские монстры такие как Varp и Advanced по цене от 700 у.е. и выше! Контрллер к нему подобрать не трудно, многие дерзают паять их дома. Из широко используемых у нас это Kelly, Комета и так называемый Контроллер от «Романтика» (Юрия Логвина, Романтик — никнейм на электромобилном форуме), Цена таких контроллеров тоже не высока от 300 до 500 у.е. Для американских монстров Varp и Advanced контроллер выской мощности может стоить и до 2000 у.е. Плюсами двигательной установки с двигателем постоянного тока последовательного возбуждения о которых шла речь выше, несомненно являются цена и высокая перегрузочная способность, т.е. при номинальной мощности в 3,6 кВт двигатель может выдать при необходимости в 3-5 раз больше! В зависимости от мощности используемого контроллера. Минус отсутствие либо сложность организации процесса рекуперации (свойство двигателя становится генератором и заряжать батарею во время торможения или движения под гору) относительно низкий КПД 75-85% на номинальных оборотах. Двигатели с параллельным возбуждением среди самоделок получили меньшее распространение, но ими комплектовались серийные электромобили Рено и Ситроен Саксо. Эти машины можно относительно недорого купить на вторичном рынке в Германии, останется только укомплектовать батареей.

2-й вариант Дороже предыдущего как правило продается парой двигатель+контроллер, (в среднем около 1,5 тыс. у.е.) обладает высоким КПД более 90%, но имеет низкую перегрузочную способность, если взять минимальную расчетную мощность 6 кВт на 1т снаряженной массы, то для 1 варианта достаточно мощности 3,6 кВт для варианта 2 — 10-12 кВт. Рекуперация на таком комплекте организовывается без проблем и чаще всего присутствует как стандартная опция контроллера.

3-й вариант самый дорогостоящий! Самый прогрессивный! Имеет один минус — Цена! Но сколько плюсов?!
Достаточно сказать, что асинхронным двигателем с медным ротором оборудован автомобиль Tesla model S!
Но не все так грустно! Для конверсии можно использовать обычный общепромышленный асинхронный двигатель, скажем АИР112MB8! Но обмотки статора нужно будет перемотать специальным образом. Тип такой обмотки называется «Славянка» такое название ей дали ее разработчики, наши с вами соотечественники. Этот тип обмотки позволяет получить из обычного асинхронника отличный тяговый мотор, с расходом энергии на км на 30-40% ниже чем на двигателях постоянного тока! Это значит что с одной и той же батареей на асинхроннике со «Славянкой» ваш пробег будет больше. Диапазон оборотов до 6000 и выше. Контроллер для такого двигателя стоит от 1,5 до 2,5 тыс. у.е. можно найти на торговых площадках за 700-1000 у.е. б/у. в основном это Сurtis. Сейчас активно ведется разработка такого контроллера Российскими учеными-энтузиастами! Возможно к весне будут готовы первые мелкосерийные образцы. Они будут дешевле.

Если вы хотите не дорого электрифицировать авто до 800 кг, ищите двиг от погрузчика! Масса двигателя должна быть не менее 40-50 кг! Это важно! Двигатель в 30 кг мощностью 6 кВт не будет обладать нужным крутящим моментом и будет греться до критических 110 градусов! Также на шилде двигателя может быть указан режим его работы — S1, S2, S3, S4. Вам нужен S1 или S2. Обороты двигателя для конверсии с КПП должны быть сопоставимы с ДВСными, т.е. не менее 1800 оборотов. Их число можно поднять увеличив напряжение с номинальных, скажем 48В до 72В. Уже под найденный двигатель подбирайте контроллер!

Если вы хотите получить компактный двигатель с рекуперацией и не дорого, возьмите комплект бесколлекторный двигатель плюс контроллер! Лучше брать комплект т.к. это упростит монтаж и будет гарантировать совместимость контроллера и двигателя и их оптимальность работы.

Если вы решили подойти к конверсии всерьез и хотите получить авто с отличными характеристиками с рекуперацией и максимальной скоростью за 100 км, то ваш выбор в пользу асинхронника со «Славянкой»!
Такую конверсию лучше начать с поиска и покупки именно контроллера! И уже под контроллер и его характеристики подбирать двигатель.

Электромобиль своими руками с асинхронным двигателем славянка

Игорь Корхов из Белгородской области назвал его «Славянка».

Свою разработку — элетромобильный двигатель — изобретатель Игорь Корхов создал на основе обычного электродвигателя, снабдив его уникальной обмоткой. Авторский апгрейд увеличил мощность агрегата в 10 раз. Двигатель установили на автомобиль, который получил название «Таврия E-volution-AC». Его уже зарегистрировали в ГИБДД.

– Двигатель «Славянка» – наша разработка, российская. Весит он 29 кг, его очень легко поднять. И на машине он стоит – колеса буксуют с места и на 1-й, и на 2-й, и на 3-й передачах. Раньше показатели этого двигателя были 4–5 кВт, до 30 ньютонов. Сейчас у него 45–50 кВт в пике – это дала «перемотка», – рассказал изобретатель.

От исходного автомобиля «Таврия» у машины остались лишь кузов и ходовая. Все остальное удалено за ненадобностью. Автомобиль весом 700 килограммов «рвет» с места и на 3-й, и на 4-й передаче, при этом движется практически беззвучно.

Максимальная скорость «Таврии E-volution-AC» – 110 км/ч, дальность перемещения без подзарядки – около ста километров. И это только начало. В ближайших планах изобретателя – увеличение всех показателей автомобиля минимум на 30%. 4 года назад изобретатель уволился с работы и все свое время теперь посвящает любимому делу, систематически презентуя свои разработки за рубежом.

Читать еще:  Датчик температуры двигателя starline замена

– Европейцы вокруг бегают, слюни пускают. Но наш разработчик очень жестко с ними работает – говорит, в первую очередь выпускать будем у нас в России. Правда, наши российские предприятия почему-то в это все не верят, говорят, что таких параметров, которые я отсылал, быть не может. Но я езжу на этом деле, и в Киеве машинки бегают, – заявил Корхов.

Увлечение электродвигателями началось еще в детстве, рассказывает изобретатель, сейчас во дворе у него с десяток агрегатов, оснащенных электродвигателями собственной разработки: от электромопедов и электромотоблока до солнечных батарей. Все агрегаты в самом доме на автономном электропитании от солнечных батарей. «Славянка» с каждым годом будет мощнее и легче, уверяет конструктор, и в недалеком будущем, если появятся инвесторы, его «Таврия E-volution-AC» переплюнет всемирно известный электрокар «Тесла».

– Самый известный электрокар – «Тесла С» использует такой же тип асинхронных моторов, но не с обмоткой «Славянка». Так как «Славянка» дает большие преимущества, мы надеемся переплюнуть и «Теслу»: в том же габарите мотора получить большую мощность, больший момент и большую экономичность, – рассказывает Игорь Корхов.

Электромобиль своими руками

  • BLDC-мотор (безщёточный безредукторный мотор на постоянных магнитах, требуемой мощности)
  • Контроллер такой же мощности. Контроллер — это сложное электронное устройство, которое:
    — преобразует постоянный ток из батареи в 3-х фазный переменный для питания мотор-колеса,
    — является регулятором уровня мощности (скорости), подаваемой в мотор, в зависимости от положения ручки газа.

Про типы BLDC-контроллеров можете прочитать по этой ссылке.

  • Батарея (аккумуляторная батарея, собранная из ячеек и соединённых с БМС (платой защиты ячеек от презарядапереразряда). Чаще всего используют тяговые литий-железо-фосфатные ячейки, которые выглядят так.
  • Управление:педаль газа либо ручка газа, тормозные рычаги (электронный тормоз), кнопка круиз-контроля (постоянная зафиксированная скорость), кнопка реверса (обратный ход). Педаль/ручка газа является обязательной, остальные — вспомогательные.
  • Какая средняя скорость планируется?
  • Какая максимальная скорость во время разгона?
  • Вес электромобиля (с батареей, водителем и пассажирами)?
  • Угол наклона дороги? Горная местность резко повышает требование в мощности мотора!
  • Площадь поперечного сечения автомобиля и его обтекаемость.
  • Диаметр колеса (от края покрышки до края) для правильного расчета коэффициента редукции (для тихоходных средств с редуктором).
  • Стиль вождения: спокойныйспортивный, городскоймежгород.
  • Дальность пробега.

Сx=0,342 (коэффициент аэродинамического сопротивления);

S=2м 2 (площадь поперечного сечения автомобиля);

g = 9.81 м/с 2 (ускорение свободного падения);

m=1000 кг (масса автомобиля);

Fтр= 0,018 (коэффициент силы трения для асфальта);

V 3 -(куб скорости автомобиля в м/с); 60 км/ч =16,67 м/с (переводим скорость из «км/ч» в «м/с» делением на 3,6);

α= 0° (угол наклона дороги);

ρв=1,225 кг/м 3 (плотность воздуха).

W= g * Fтр * m * V *cosα + 0,5*Сx * S * ρв*V 3 + g * m * sinα*V

W = 9,8 * 0,018 * 1000 * 16,67*1 + 0,5*0,342 * 2* 1,225*(16,67) 3 + 9,8 * 1000 * 0 = 2940+1940+0= 4 880 Вт.

Это сколько чистой энергии надо затратить на передвижение. Часть энергии теряется по пути из батареи. По этому, поделим полученный результат на общий КПД (трансмиссии (

0,95)) приблизительно равный 0,76*0,90*0,95=0,65.

Фактически из батареи надо выдать больше энергии, пока передадим эту энергию на движение, часть потеряется в узлах (на трение, теплоотдачу).

Итак, 4880 / 0,65=7509 Вт — такую мощность должна выдавать батарея.

Итого для движения по ровной дороге со скоростью 60 км/ч требуется 7509 Вт мощности системы.

Для того чтобы понять, как мощность зависит от скор ости и угла наклона дороги, произведём вычисления в Excel-е и создадим графики (*):

В ходе эксплуатации, асинхронные электродвигатели теряют былую мощь и работают с перебоями. Вернуть к жизни «сердце» агрегата можно, сделав дополнительную обмотку стартера по типу «Славянка».

Славянка – запатентованная технология оптимизации работы электромеханического преобразователя. Суть метода заключается в дополнительной обмотке стартера электродвигателя. Проводники соединяются между собой по определенной схеме. Сегодня перемотка двигателей Славянка используется в Сколково и ряде организаций, получивших официальное право распоряжаться патентом.

Технология перемотки

Различают два вида перемотки:

параллельная. Базовая обмотка укладывается по схеме «звезда», а дополнительная – «треугольником». Параллельная перемотка актуальна для маломощных двигателей при плановом ремонте;

последовательная. Основная схема не нарушается. Требуется лишь пересчет совмещенной обмотки на «треугольник». Используется для электродвигателей мощностью от 35 кВт.

Практика показывает, что при последовательном соединении фаз, достигаются наивысшие рабочие характеристики. Обладая определенными навыками и базовым набором специальных приспособлений, можно перемотать электродвигатель на Славянку своими руками.

Как перемотать двигатель на Славянку. Пошаговая инструкция

Самостоятельная перемотка займет немало времени. Ускорить процесс поможет специальный станок.

Чтобы перемотать стартер следует:

Демонтировать двигатель и разобрать корпус.

Определить сечение проводов основной обмотки, и выявить количество витков.

Подобрать соответствующие проводники для дополнительной обмотки. Следует выбирать провода с аналогичным сечением и напряжением. В противном случае, мощность двигателя может снизиться.

Зачистить пазы мелкой «наждачкой».

Подготовить дополнительную обмотку. Для этого изготовьте шаблон из фанеры, используя габариты стартера. Если исходная обмотка однослойная, то количество витков дополнительной обмотки в одной секции, уменьшается в 2 раза. При двухслойной – количество витков не меняется.

Установить обмотку. Для перемотки электродвигателя на Славянку по схеме последовательного совмещения фаз, нужно сделать перерасчет по формуле: Zx=30×Z1/360×P; где 30 – сдвиг между обмотками, выраженный в электрических градусах;

Р – количество исходных слоев;

Zx – сдвиг в количестве пазов, от начала базовой обмотки.

Например, для двигателя 4A90L2 уравнение будет выглядеть так: 30×24/360×1 = 2.

Укладываем обмотку по схеме:

Из рисунка видно, почему такой способ перемотки называется «треугольник».

  1. Пропитать лаком.
  2. Проверить работу. После того как пропитка высохнет, следует «прозвонить» двигатель, чтобы выявить возможные разрывы или отсутствие контакта на соединениях. Также стоит измерить сопротивление между корпусом и катушкой.
  3. Сделать тестовый запуск двигателя на понижающем трансформаторе. Ротор крутится, а двигатель не нагревается? Значит, вы все сделали правильно.

Дополнительная обмотка служит регулятором температурных перепадов, что снижает вероятность перегорания. Электроэнергия, питающая двигатель, расходуется экономнее. Благодаря рациональной нагрузке, срок эксплуатации агрегата увеличивается в несколько раз.

Уникальность методики в том, что она одинаково эффективна для малых агрегатов и габаритных станков. Вне зависимости от исходного состояния двигателя, дополнительная перемотка на Славянку, гарантированно повышает КПД в среднем на 40%. Однако если вы не уверены в своих навыках, то лучше доверить это опытному механику.

Читать еще:  Генераторный режим асинхронного двигателя принцип работы

Самодельный электромобиль — всё не так, как думаешь

Всем привет. Учась в университете я собрал маленький электромобильчик, ну или карт. Его фишкой было то, что всё управление электроприводом, включая тормоза было отдано самодельному контроллеру. И именно о том, как я делал этот маленький автомобильчик, и с какими подводными камнями столкнулся при постройке — хотелось бы рассказать в данном материале. Материал не претендует на уникальность, но для меня это был большой и интересный опыт.

Тема рассказа стоит на стыке аппаратного и программного аспектов. И в прошивке для контроллера я имел дело не с какими-то абстрактными понятиями или данными, а со вполне реальными «физическими» устройствами: реле, электродвигателем, транзисторами итп. Так что приведу кратенькую характеристику технической части, тот состав который был на момент всех танцев с бубном.

Основные узлы

Тяговый двигатель — коллекторный универсальный. Может работать как от постоянного, так и от переменного тока. Рабочее напряжение 220 вольт.

Аккумуляторная батарея — 25 свинцово-кислотных ячеек по 6 вольт фирмы Casil, соединённых последовательно, по итогу получаем батарею 150-160 вольт. Она установлена сзади и перемотана синей изолентой, всё как положено 🙂

Двигатель приводил колёса в движение через червячный редуктор с передаточным числом i=10. На фото видно, что двигатель сочленен с редуктором с помощью небольшого валика, он был выточен специально.

Системы торможения, то есть тормозного диска с суппортом не было в принципе. Поставить физический тормоз на тот момент не получалось. Поэтому торможение двигателем оставалось единственным реальным вариантом, так что управление торможением машины тоже пришлось брать на себя контроллеру.

Контроллер для блока управления

В принципе простой контроллер для электромобиля можно собрать и на «рассыпухе». Но хотелось бы, чтоб была возможность всё красиво настраивать с помощью программы, 21 век всё-таки. Путём долгих высоконаучных рассуждений за ужином я решил, что за основу контроллера стоит взять чип фирмы Microchip — pic16f877a, вот его краткие характеристики:

На тот момент я не очень шарил в электронике, и изначально хотел делать схему до безобразия тупой — двигатель включён или двигатель отключен, но вместо реле поставить транзисторный ключ, дабы ничего не щёлкало и не горело. Но решил, что риск оправдан, я ничего не терял да и просто хотелось сделать что-то стоящее. Так что остановился на связке микроконтроллер + силовой полевой транзистор в качестве ключа. Ручку газа и кнопку реверса вывел на руль.

Особенности схемы

При выборе транзистора я не скупился и выбрал IRFP4227PBF — N-канальный полевой транзистор (открывается положительным импульсом) на напряжение 200 вольт и максимальный ток 130 ампер. Корпус TO-247AC. Но, забегая вперед скажу — я смог сжечь и его.

PWM — что это такое и с чем её едят

Раз я использовал микроконтроллер в связке с полевым транзистором, то грех было не попробовать использование pwm/шим в схеме. Что такое шим? Широтно-импульсная модуляция (ШИМ, англ. pulse-width modulation (PWM)) — процесс управления мощностью методом пульсирующего включения и выключения прибора. — спасибо Википедии.

Достоинство такого способа управления транзистором: он во время работы находится в двух состояниях — либо полностью закрыт, тока нет и ничего не греется, либо он полностью открыт и сопротивление его составляет несколько милиом, соответственно в тепло на самом транзисторе рассеиваются какие-то доли ватта тепла, ну или единицы ватт, схема едва тёплая при таком режиме работы. И такой процесс — отрыть/закрыть происходит тысячи раз в секунду. Это называется частотой шим. Так же есть такая вещь, которая называется «скважность». Переводя на человеческий язык — эта цифра показывает какую долю времени открыт транзистор. Если чуть углубиться — допустим у нас частота ШИМ-синала 1000 герц. Значит транзистор открывается и закрывается 1000 раз за секунду, и процесс переключения между включено и выключено 1/1000 доля секунды. Величина 1/1000 — это период частоты. А с помощью скважности мы показываем какую часть времени от периода транзистор открыт и через него течет ток. Для примера: в программе скважность 255 — это максимальная мощность, 127 — 50%, 0 — транзистор закрыт.

Для генерации такой частоты применялся встроенный в чип «физический» контроллер, хотя есть возможность программной реализации, но в этом случае контроллер только и будет делать, что генерировать на выводе частоту с заданным периодом и скважностью. А с использованием контрллера из переферии МК можно было и генерировать сигнал, и чтоб программа делала что-то ещё.

Чем дальше в лес, тем злее волки — от частоты ШИМ зависит и то, насколько будет эффективно работать электропривод. Я пробовал разные частоты, от 2 до 15 килогерц, каждый раз это менялось программно. Честно говоря особой разницы не успел заметить, но уверен что она есть. К сожалению данных по этому вопросу не удалось получить в достаточном количестве. Единственное, что заметил — с разной частотой пищала машина во время работы. Кстати, если кто-то замечал в метро, электробусах и поездах, что во время старта слышно гул, писк, завывание — это как-раз таки пищат обмотки двигателя из-за работы на частотах контроллера. Очень это заметно на поезде «Ласточка», который по МЦК ходит, во время старта.

Подводные камни в алгоритме работы

Следующая проблема была с реверсом двигателя. Двигатель коллекторный, у него две обмотки — неподвижная — статор, на корпусе, и вращающаяся — ротор. Для изменения направления вращения необходимо развернуть направление тока в одной из обмоток, не меня направления в другой. Для этого использовались два реле, срабатывали они одновременно, «перекидывая» схему на реверс при подаче на них питания. Но в первом варианте прошивки была ошибка — реле переключились под нагрузкой. Как итог теста под нагрузкой — два сгоревших реле, так как двигатель — индуктивная нагрузка и на контактах реле была нехилая такая дуга, контакты просто расплавились и сгорели во время переключения.

Выход из ситуации — вводим в программу условие, что перед переключением снимаем нагрузку выкручивая скважность PWM-сигнала на 0, перекидываем реле, и опять включаем мощность на заданный уровень. Именно так и работали тормоза на машине — реверсом. Только хардкор — никаких датчиков и энкодеров, ничего. А вот и фото релюшки, это вроде как реле стартера от жигулей. Если переключать их не под нагрузкой, то вполне работают и с высокими напряжениями, 160 вольт при 15 амперах держали, но допускаю, что контакты грелись ввиду малого сечения.

Читать еще:  Вортекс эстина технические характеристики двигателя

После я допилил прошивку и мощность поднималась плавно до заданного уровня. А это уже исключает удары в трансмиссии и нагрузку на узлы. Вот так одна строчка в программе может увеличить срок службы агрегата.

Соединяем контроллер с транзистором правильно

Оставалось только правильно сочленить транзистор с контроллером. Сделал я это несколько не правильно, через оптическую пару, напрямую. Но эта схема прокатывает при работе с низкими напряжениями, при высоких рабочих напряжениях постоянно сгорал затвор транзистора, да и для управления нужен двухтактный драйвер. Нормальная схема приведена ниже. Но тем не менее на один раз схемы с оптической парой хватило, каким-то чудом на тест драйве она работала, а выгорать начала сразу после него. Вот схема «правильного» драйвера, только в моём варианте ещё была развязка оптикой от контроллера. Картинка взята с Drive2:

Несколько интересных моментов

В конце концов получилось то, что на видео

Вообще мои опыты с электроприводом начались ещё в школе и я испробовал много разных конструкций, но это самая удачная схема на тот момент. Если материал понравится, то напишу отдельный пост про всю эпопею.

UPD: Изменил ошибки в статье, спасибо всем, кто откликнулся

Электромобили придут в нашу жизнь так быстро, что для многих это станет неожиданным

Для многих из нас электромобили — это что-то из разряда далёкого будущего. Мы живём своей жизнью, ездим на работу на своих привычных за многие годы автомобилях и, покупая сегодня новую машину с классическим бензиновым или дизельным двигателем сегодня, даже не задумываемся, что наша покупка — это в настоящий момент уже просто привычка и дань устоявшимся традициям, и у нас нет никакого опасения, что совсем скоро этот автомобиль станет раритетом и будет восприниматься как old school — вещица из прошлого.

А зря! Ведь мы бессомненно находимся на пороге глобальной революционной смены технологий. Можно убеждать себя в том, что уж у нас, в России, эра электромобилей наступит ещё очень нескоро. Но даже огромный парк традиционных автомобилей, большие пространства и суровый, по нашему собственному мнению, климат не смогут сдержать триумфального шествия новых технологий и катастрофически быстрого отказа от использования классических автомобилей с двигателями внутреннего сгорания. Да, на текущий момент мы со своими проданными на российском рынке за первые пять месяцев этого года жалкими 650 электромобилями, 50% из которых пришлись на Москву и Подмосковье, выглядим отсталыми ретроградами на фоне Германии, где только в первом квартале было продано 65 000 электромобилей, а всего на европейском рынке в этот период их появилось более 150 000 тысяч.

Темпы электрификации личного транспорта набирают обороты: в ближайшее время Tesla запустит свою европейскую гигафабрику, а все основные автопроизводители в погоне за ней и её выдающимся финансовым ростом бросились заявлять о планах по электрификации своих модельных линеек и инвестициях в создание и производство электромобилей. Jaguar планирует с 2025 года продавать только электромобили , Volvo — с 2030 года, General Motors говорит, что к 2035 году будет производить только электрический транспорт, у компании Ford планы продавать в Европе только электромобили заявлены на 2030 год. В Audi объявили, что в ближайшие пять лет будут заниматься только совершенствованием своих уже существующих двигателей внутреннего сгорания и стремиться адаптировать их к вводимым в Европе новым нормам вредных выбросов. Глава Audi Маркус Дюсман заявил, что для компании такие расходы очень обременительны и требуют значительных ресурсов, особенно в свете перехода на производство электромобилей и заявления концерна Volkswagen о планах к 2030 году 70% продаж осуществлять за счёт поставок электромобилей.

Очевидно, что ужесточение регуляторных норм на европейском рынке заставит всех автопроизводителей ещё быстрее отказываться от традиционных двигателей в пользу электромобилей. Плюс к этому — набирающий обороты китайский рынок, где власти страны всячески поощряют производителей переходить на выпуск электрокаров, а потребителей — на их использование, что служит показательным примером того, как будет развиваться электромобилестроение в ближайшее время.

Сегодня мы наблюдаем крупнейшую революцию в автомобилестроении со времён Генри Форда. И она принесёт глобальные перемены в отрасли и в нашем восприятии намного быстрее, чем мы можем ожидать или нам кажется. Некоторые обозреватели утверждают, что переломный момент уже пройден. Есть оценка, что нынешний рынок электромобилей находится в той же стадии, что и рынок Интернета в конце 1990-х. Инновации начинались медленно и были интересны в основном ботаникам — спустя десять лет после появления Интернета в 1969 году в сети было всего несколько сотен компьютеров. К 1995 году в сети было уже 16 млн компьютеров, а в 2001 году их количество взлетело к небесам и составило 513 млн, на текущий момент их более 3 млрд.

Многим кажется, что серьёзными препятствиями для развития электромобилей являются стоимость машин, которая определяется в основном стоимостью аккумуляторных батарей, и небольшой пробег, который они обеспечивают. Но тут надо отметить, что ситуация резко меняется: с момента выпуска первого электрокара Tesla стоимость аккумуляторных батарей снизилась более чем на 50%, а их ёмкость значительно выросла. Если десять лет назад один кВт/ч в батарее стоил 1 000$, то сегодня он обходится в 100$. Уже сейчас считается, что стоимость обслуживания электромобиля и расходы на электроэнергию обходятся дешевле стоимости эксплуатации автомобиля с традиционным двигателем внутреннего сгорания и расходов на топливо. При этом плотность энергии аккумуляторных батарей продолжает расти, а их стоимость — снижаться. Так, китайский производитель аккумуляторных батарей, компания CATL, представила батарею, способную обеспечить общий пробег автомобиля в 1 млн км. И именно с CATL Tesla заключила контракт на поставку топливных элементов до 2025 года.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector