Электромеханическая характеристика асинхронного двигателя с короткозамкнутым ротором - Авто журнал "Гараж"
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электромеханическая характеристика асинхронного двигателя с короткозамкнутым ротором

Механическая характеристика асинхронного двигателя с переключением пар полюсов

Благодаря простой конструкции, высокой надежности и выгодной цене асинхронный двигатель с короткозамкнутым ротором, стал наиболее популярным электродвигателем применяемый в промышленности и быту. В данной статье рассмотрим механическую и пусковую характеристику асинхронного двигателя с короткозамкнутым ротором и возможностью переключения пар полюсов.

Переключение числа полюсов – это один из способов регулирования скорости привода. Данный электропривод часто используются в приводных системах подъёмно-транспортного оборудования, станочных приводах. При этом большая частота вращения используется для обеспечения высокой скорости, а низкая – для позиционирования (скорость дотягивания). Асинхронные двигатели с переключением пар полюсов изготавливаются на скорости вращения: 1500/3000 об/мин (число полюсов 4/2 – схема Даландера), 750/3000 об/мин (число полюсов 8/2 – раздельные обмотки), 1000/1500 об/мин (число полюсов 6/4 — раздельные обмотки), 750/1500 об/мин (число полюсов 8/4 — схема Даландера), при частоте питающей сети 50 Гц.

Механическая характеристика асинхронного двигателя

При разгоне асинхронного двигателя с короткозамкнутым ротором изменяется сопротивление обмотки ротора, а следовательно в зависимости от частоты вращения (от величины скольжения) изменяется и вращающий момент. Пусковая характеристика выражается через механическую характеристику асинхронного двигателя.

  • MA1 = пусковой момент (8-полюсное включение);
  • MA2 = пусковой момент (2-полюсное включение) ;
  • MS = минимальный пусковой момент;
  • MK = опрокидывающий момент;
  • MN = номинальный момент;
  • ML = момент нагрузки;
  • [1] = двигательный режим;
  • [2] = генераторный режим (торможение) ;
  • [3] = стабильная рабочая точка;
  • 2P = 2- полюсное включение обмотки;
  • 8P = 8-полюсное включение обмотки;

Механическая характеристика асинхронного двигателя с короткозамкнутым ротором, с переключением числа пар полюсов.

При каждом разгоне двигатель проходит эту механическую характеристику до стабильной рабочей точки, в которой кривая момента нагрузки пересекается с кривой момента двигателя. Стабильная рабочая точка достигается в том случае, если момент нагрузки меньше пускового или минимального пускового момента.

При переключении обмотки статора с 2-полюсного на 8-полюсное включение частота вращения не сразу снижается до синхронной, и двигатель кратковременно работает в генераторном режиме. За счет преобразования кинетической энергии в электрическую, торможение от высокой частоты вращения до низкой выполняется без потерь мощности и износа деталей. При этом торможении достигается вращающий момент, величина которого рассчитывается по следующей формуле:

MU = момент при переключении пар полюсов;

MA1 = пусковой момент двигателя с включением обмотки для меньшей частоты вращения;

Момент при переключении пар полюсов MU – это средняя разность характеристик для 2-полюсного и 8-полюсного включения обмотки в диапазоне частоты вращения, ограниченном соответствующими номинальными значениями (механическая характеристика асинхронного двигателя — заштрихованная область).

Однофазные асинхронные двигатели INNOVARI

Однофазные асинхронные электродвигатели INNOVARI – серия асинхронных электродвигателей с короткозамкнутым ротором для общепромышленного и бытового применения.

Электродвигатели предназначены для питания от однофазной сети напряжения 230 В, 50 Гц, и продолжительного (S1) режима работы при классе нагревостойкости изоляции F (фактическая температура до 155°С). Класс защиты корпуса IP55 – пылевлагозащищенный.

Конструктивно электродвигатели выполнены в вариантах фланцевого присоединения типов В5 и В14. Для последнего варианта предусматривается 8 крепежных отверстий, чтобы исключить присоединение к редуктору с углом поворота. Обмотка статора разных исполнений двигателей может быть 2-х и 4-х полюсной, с синхронными скоростями соответственно 3000/1500 об/мин.

Серия адаптирована для работы с преобразователями частоты. Для исключения протекания паразитных токов через вал и станину двигателя, вал ротора устанавливается на изолированных подшипниках.

Модельный ряд однофазных асинхронных двигателей INNOVARI

Основные модели и электромеханические характеристики однофазных асинхронных двигателей с короткозамкнутым ротором серии INNOVARI.

Исполнениеn, об/минР, кВтМn, НмIа, Аcos ФКПДJo, Нм 2Число пар
полюсов
MMA56b22660 об/мин0,12 кВт0,34 Нм1,1 А0,92кпд 440,000074 Нм 22 пары
MMA63a22830 об/мин0,25 кВт0,61 Нм1,3 А0,98кпд 610,000183 Нм 22 пары
MMA71a22850 об/мин0,37 кВт1,27 Нм3,2 А0,8кпд 640,000378 Нм 22 пары
MMA71b22730 об/мин0,56 кВт2 Нм4,5 А0,93кпд 600,000378 Нм 22 пары
MMA80a22800 об/мин0,75 кВт2,6 Нм5,78 А0,92кпд 600,000894 Нм 22 пары
MONO56М1320 об/мин0,09 кВт0,67 Нм1 А0,93кпд 430,00118 Нм 24 пары
MONO63М1350 об/мин0,12 кВт0,87 Нм1,12 А0,95кпд 500,00179 Нм 24 пары
MONO63М1350 об/мин0,18 кВт1,3 Нм1,6 А0,95кпд 530,0023 Нм 24 пары
MONO71M1310 об/мин0,37 кВт2,68 Нм3,2 А0,92кпд 550,00901 Нм 24 пары
MONO80M1350 об/мин0,75 кВт4,69 Нм5,5 А0,95кпд 640,0221 Нм 24 пары
MONO90S1350 об/мин1,1 кВт7,81 Нм7,1 А0,97кпд 700,0242 Нм 24 пары
MONO90L1330 об/мин1,5 кВт10,57 Нм9,6 А0,98кпд 650,0299 Нм 24 пары
  • n — номинальная скорость двигателя при питании от промышленной сети;
  • Р – номинальная механическая мощность на валу двигателя;
  • Мn – номинальный момент на валу двигателя;
  • Ia- ток статора при номинальном моменте;
  • Jo – момент инерции маховых масс двигателя.

Технические характеристики однофазных асинхронных двигателей INNOVARI

  • Напряжение питания 230 В, частота 50 Гц
  • Класс изоляции F (155ºС)
  • Режим работы S1 (продолжительный)
  • Класс защиты IP55 (пылевлагозащищённый)
  • Исполнение фланца B5/B14 (для версии B14 – 8 отверстий)

Габаритные размеры

  • Электродвигатели с маленьким фланцем B14
  • Электродвигатели с большим фланцем B5

Сопутствующие товары к асинхронным двигателям

Применение однофазных асинхронных двигателей INNOVARI

В основном однофазные асинхронные электродвигатели с короткозамкнутым ротором INNOVARI предназначены для применения в промышленных электрических приводах малой мощности.

Относительная дешевизна и надежность двигателей с короткозамкнутым ротором обеспечивают очень широкий спектр применения: устройства промышленной автоматики, манипуляторы, электроинструмент, вентиляторы, насосы, компрессоры, бытовая техника. Преимущества применения однофазных асинхронных двигателей INNOVARI:

  • использование однофазной сети питания;
  • высокое качество изготовления и надежность в эксплуатации;
  • удобное присоединение к редуктору и удобный электрический монтаж в клеммной коробке;
  • двигатели оптимизированы для работы с преобразователем частоты;
  • возможность установки штатных комплектов независимой вентиляции.
Читать еще:  Двигатель 4216 троит пропуски зажигания

Принцип работы однофазных асинхронных двигателей с короткозамкнутым

Магнитная система однофазного асинхронного электродвигателя состоит из сердечников статора и ротора, выполняемых из листов электротехнической стали. Сердечник статора фиксируется в станине двигателя, которая неподвижно закрепляется на фундаменте. Сердечник ротора насаживается на вал двигателя, а концы вала опираются на подшипники, расположенные в станине. В пазах статора размещается, как правило, двухфазная многополюсная обмотка, питаемая от однофазного источника напряжения. В пазах ротора располагается короткозамкнутая обмотка типа беличьей клетки. Между статором и ротором имеется небольшой воздушный зазор.

Чтобы обмотка статора создавала вращающееся магнитное поле, фазы обмотки сдвинуты в пространстве на некоторый угол и запитываются токами, сдвинутыми по фазе во времени. Для этого последовательно или параллельно с одной из обмоток включается конденсатор определенной ёмкости, располагающийся непосредственно на двигателе. Вращающийся магнитный поток, пересекая витки обмотки ротора, индуцирует в ней электродвижущую силу и электрический ток, частота и величина которого зависит от разности скоростей – синхронной и механической скорости вращения ротора. В результате взаимодействия тока ротора с магнитным потоком в зазоре между ротором и статором, возникает электромагнитный момент, заставляющий ротор вращаться и приводить в движение нагрузку двигателя – трансмиссию и рабочий механизм.

Характеристики асинхронного двигателя

Характеристики асинхронного двигателя

Для асинхронного двигателя с короткозамкнутым ротором рассчитать и построить механические характеристики:

1. естественную по формуле Клосса;

2. естественную по формуле Клосса-Чекунова;

3. искусственную при понижении напряжения питающей сети до значения

4. искусственную при понижении частоты тока питающей сети до значения

5. искусственную при одновременном понижении напряжения и частоты тока питающей сети до значений и .

4. искусственную при понижении частоты тока питающей сети до значения

Каталожные (паспортные) данные асинхронного двигателя типа 4А180М8 ОМ2 такие (см. Приложение, таблица 1):

1. мощность = 15 кВт;

2. напряжение (линейное) = 380 В;

3. частота вращения = 735 об/мин;

4. номинальный ток = 32 А;

5. коэффициент мощности = 0,82;

6. кратность максимального момента 2;

7. кратность пускового момента = ;

8. кратность пускового тока = 6,5.

1. Расчет исходных данных двигателя

1. В условном обозначении типоразмера двигателя 4А180М8 ОМ2 число 8 — это число полюсов обмотки статора, т.е. 2р = 8, откуда число пар полюсов р = 4;

2. синхронная угловая скорость ротора

(радиан в секунду)

3. номинальная угловая скорость ротора

4. номинальное скольжение

5. критическое скольжение

6. критическая угловая скорость

7. номинальный момент двигателя (на валу)

8. максимальный момент двигателя

= 2*184,98 = 369,96 Нм

9. пусковой момент двигателя

10. пусковой ток двигателя

2. Расчет и построение естественной механической характеристики двигателя по формуле Клосса

В чистом виде уравнение электромеханической характеристики щ(М) неудобное для анализа, а тем более для расчета и построения её графика.

Поэтому на практике для построения механической характеристики двигателя используется довольно простая формула Клосса, представляющую собой зависимость электромагнитного момента от скольжения ротора, т.е. , а не щ(М):

Поскольку в теории электропривода механическая характеристика — зависимость угловой скорости от момента двигателя, т.е. , а формула Клосса — зависимость М(s), поступают так: задаются значениями скольжения от s = 0 (режим идеального холостого хода) до s = 1 (режим пуска) и подставляют эти значения одновременно в две формулы:

а) формулу Клосса, которая для данного случая имеет вид

б) формулу угловой скорости ротора, которая для данного случая имеет вид

В этом случае для каждого нового значения скольжения s рассчитываются два параметра: момент М и угловая скорость щ, представляющие собой координаты точек механической характеристики щ(М), что и требовалось найти.

Результаты расчета приведены в таблице 1.

Координаты точек механической характеристики асинхронного двигателя (формула Клосса)

Расчет статических механических и электромеханических характеристик асинхронного двигателя

Определение тока холостого хода, сопротивлений статора и ротора асинхронного двигателя. Расчет и построение механических и электромеханических характеристик электропривода, обеспечивающего законы регулирования частоты и напряжения обмотки статора.

РубрикаФизика и энергетика
Видконтрольная работа
Языкрусский
Дата добавления14.04.2015
Размер файла263,5 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление — Электроэнергетика и электротехника

Индивидуальное домашнее задание

РАСЧЕТ СТАТИЧЕСКИХ МЕХАНИЧЕСКИХ И ЭЛЕКТРОМЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК АСИНХРОННОГО ДВИГАТЕЛЯ

По дисциплине: «Электрический привод»

Выполнил студент группы 5А1Д Стасов К.Э.

Дан асинхронный двигатель типа 5а225s8k имеющий следующие технические данные:

— номинальная мощность Pном = 18,5 кВт;

— номинальное скольжение s ном = 0.03 %;

— КПД в режиме номинальной мощности зн = 0.885 о.е.;

— коэффициент мощности в режиме номинальной мощности cosцном = 0,84 о.е.;

— кратность максимального моме3

— кратность пускового момента ;

— кратность пускового тока ;

— номинальная частота вращения nном = 970 об/мин;

— номинальное фазное напряжение U = 220 В;

— номинальное напряжение сети U = 380 В;

— коэффициент загрузки двигателя:

— число пар полюсов: р = 3

1. Определить параметры Т-образной схемы замещения;

2. Рассчитать и построить естественные механические и электромеханические характеристики. Провести анализ полученных результатов;

3. Рассчитать и построить механические и электромеханические характеристики электропривода, выполненного по системе «преобразователь частоты — асинхронный двигатель», обеспечивающего законы регулирования частоты и напряжения обмотки статора асинхронного двигателя. Провести анализ полученных данных.

статор ротор электропривод асинхронный

1. Определение параметров Т-образной схемы замещения асинхронного двигателя

Рисунок 1. Т-образная схема замещения асинхронного двигателя

Найдем ток холостого хода асинхронного двигателя:

— — номинальный ток статора двигателя;

— — ток статора двигателя при частичной загрузке;

— — коэффициент мощности при частичной загрузке;

— К=0.974 — коэффициент, зависящий от мощности двигателя.

Читать еще:  Виды топливный насос высокого давления дизельного двигателя

Из формулы Клосса определим соотношение для расчета критического скольжения. В первом приближении принимаем в=1:

Тогда активное сопротивление ротора, приведенное к обмотке статора асинхронного двигателя:

Активное сопротивление статора обмотки рассчитываем по следующему выражению:

Определим параметр г, который позволяет найти индуктивное сопротивление короткого замыкания :

Найдем значение индуктивного сопротивления короткого замыкания:

Найдем индуктивное сопротивление статорной обмотки, приведенное к статорной:

Найдем индуктивное сопротивление роторной обмотки, приведенное к статорной:

По найденным значениям , и определим критическое скольжение:

Для того чтобы найти ЭДС ветви намагничивания E1 найдем sin?

Найдем ЭДС ветви намагничивания Е1, наведенную потоком воздушного зазора в обмотке статора в номинальном режиме

Тогда индуктивное сопротивление намагничивания

Приведенная методика дает удовлетворительное схождение расчетных характеристик, построенных по паспортным точкам на рабочем участке механической характеристики.

2. Расчет и построение естественных механических и электромеханических характеристик асинхронного двигателя

Все расчеты производим, используя параметры схемы замещения.

Найдем синхронную угловую скорость:

а) Рассчитаем и построим естественную электромеханическую характеристику

статор ротор электропривод асинхронный

где — значение приведенного тока ротора от скольжения

Рисунок 2. Естественные электромеханические характеристики.

Зависимость угловой скорости от приведенного тока ротора.

Рисунок 3. Естественные электромеханические характеристики.

Зависимость угловой скорости от тока статора.

Вывод: различают естественную и искусственную электромеханические характеристики АД. Под естественной электромеханической характеристикой АД понимают зависимость тока ротора функцией от скольжения при номинальной схеме включения двигателя, номинальных параметров питающей сети и отсутствие добавочных сопротивлений в цепях двигателя. Все остальные характеристики называются искусственными. В нашем случае были построены естественные электромеханические характеристики. Значение номинального тока статора и тока ротора асинхронного двигателя, определенное по его электромеханической характеристике, практически совпадают со значениями, рассчитанными по каталожным данным, что подтверждает правильность методики определения параметров схемы замещения АД.

б) Рассчитаем и построим естественную механическую характеристику

Рисунок 4. Естественная механическая характеристика.

Вывод: как видно из расчетов, контрольные параметры, найденные в соответствии с каталожными данными двигателя, совпадают с контрольными точками, такими как: номинальный момент, максимальный момент, минимальный момент. Поэтому методику определения параметров схемы замещения по каталожным данным можно считать верной.

3. Расчет и построение механических и электромеханических характеристик электропривода, выполненного по системе «преобразователь частоты — АД», обеспечивающего законы регулирования частоты и напряжения обмотки статора асинхронного двигателя. (Вариант 1, 3, 5)

Рисунок 5. Функциональная схема скалярного частотного управления скоростью асинхронного двигателя

Характеристики рассчитываются для следующих частот обмоток статора ,, .

Коэффициенты IR — компенсации:

Найдем относительные значения частот питающего напряжения в соответствии с заданием:

Найдем фазное напряжение обмотки статора асинхронного двигателя в соответствии с заданием:

Найдем относительные значения угловых скоростей холостого хода, в соответствии с заданием:

Рассчитаем и построим электромеханические характеристики с IR-компенсацией, определяющие зависимость приведенного тока ротора от скольжения:

На рисунке 6 представлены электромеханические характеристики, определяющие зависимость приведенного тока ротора от скольжения.

Рисунок 6. Электромеханические характеристики, определяющие зависимость тока ротора от синхронной скорости

Рассчитаем и построим электромеханические характеристики, определяющие зависимость тока статора от скольжения:

На рисунке 7 представлены электромеханические характеристики, определяющие зависимость приведенного тока статора от скольжения.

Вывод: из построенных электромеханических характеристик видно, что регулирование скорости изменением частоты напряжения статора с законом регулирования приводит к значительному уменьшению пусковых токов, что приводит к уменьшению допустимого диапазона нагрузок для двигательного режима работы электропривода. В данном случае мощность двигателя довольно большая, следовательно, активное сопротивление обмотки статора не велико (по сравнению с двигателями меньшей мощности) и с уменьшением частоты f1 сокращение рабочего диапазона нагрузок происходит в меньшей степени.

Рисунок 7. Электромеханические характеристики, определяющие зависимость тока статора от синхронной скорости

Рассчитаем и построим механические характеристики асинхронного двигателя при переменных значениях величины и частоты напряжения питания.

На рисунке 8 представлены механические характеристики, при переменных значениях величины и частоты напряжения.

Рисунок 8. Механические характеристики асинхронного двигателя при переменных значениях величины и частоты напряжения питания.

Вывод: при малых значениях частоты падение напряжения на сопротивлении статорной обмотки двигателя снижает величину напряжения, прикладываемого к контуру намагничивания, что приводит к снижению критического момента. Это хорошо видно на приведенных характеристиках. Регулирование скорости осуществляется в соответствии с законом .

Размещено на Allbest.ru

Подобные документы

Определение размеров и выбор электромагнитных нагрузок асинхронного двигателя. Выбор пазов и типа обмотки статора. Расчет обмотки и размеры зубцовой зоны статора. Расчет короткозамкнутого ротора и магнитной цепи. Потери мощности в режиме холостого хода.

курсовая работа [1,2 M], добавлен 10.09.2012

Расчет параметров обмотки статора и ротора асинхронного двигателя с короткозамкнутым ротором. Расчет механической характеристики асинхронного двигателя в двигательном режиме по приближенной формуле М. Клосса и в режиме динамического торможения.

курсовая работа [827,2 K], добавлен 23.11.2010

Построения развернутой и радиальной схем обмоток статора, определение вектора тока короткого замыкания. Построение круговой диаграммы асинхронного двигателя. Аналитический расчет по схеме замещения. Построение рабочих характеристик асинхронного двигателя.

контрольная работа [921,2 K], добавлен 20.05.2014

Выбор основных размеров асинхронного двигателя. Определение размеров зубцовой зоны статора. Расчет ротора, магнитной цепи, параметров рабочего режима, рабочих потерь. Вычисление и построение пусковых характеристик. Тепловой расчет асинхронного двигателя.

курсовая работа [1,9 M], добавлен 27.09.2014

Расчет исходных данных двигателя. Расчет и построение естественных механических характеристик асинхронного двигателя по формулам Клосса и Клосса-Чекунова. Искусственные характеристики двигателя при понижении напряжения и частоты тока питающей сети.

курсовая работа [264,0 K], добавлен 30.04.2014

Расчет рабочих характеристик асинхронного двигателя с короткозамкнутым ротором. Определение числа пазов статора, витков в фазе обмотки сечения провода обмотки статора. Расчёт размеров зубцовой зоны статора и воздушного зазора. Расчёты основных потерь.

курсовая работа [1,1 M], добавлен 10.01.2011

Определение допустимых электромагнитных нагрузок и выбор главных размеров двигателя. Расчет тока холостого хода, параметров обмотки и зубцовой зоны статора. Расчет магнитной цепи. Определение параметров и характеристик при малых и больших скольжениях.

курсовая работа [1,8 M], добавлен 11.12.2015

УСТАНОВИВШИЕСЯ РЕЖИМЫ И СТАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТРЕХФАЗНОГО АСИНХРОННОГО ДВИГАТЕЛЯ ПРИ ПИТАНИИ ОТ ОДНОФАЗНОЙ СЕТИ

Полный текст:

  • Аннотация
  • Об авторах
  • Список литературы
  • Cited By
Читать еще:  Двигатель c20ne какое масло заливать

Аннотация

Разработана математическая модель для исследования работы трехфазного асинхронного двигателя с короткозамкнутым ротором при питании обмотки статора от однофазной сети. Для создания вращающегося магнитного поля одна из фаз питается через конденсатор. Вследствие несимметрии не только переходные процессы, но и установившиеся режимы являются динамическими, поэтому в любой системе координат описываются дифференциальными уравнениями. Их исследование не может быть с достаточной адекватностью осуществлено на основе известных схем замещения и требует использования динамических параметров. В математической модели уравнения состояния контуров статора и ротора составлены в неподвижной трехфазной системе координат. Расчет установившегося режима выполняется путем решения краевой задачи, что дает возможность получить зависимости координат на периоде, не прибегая к расчету переходного процесса. Для этого исходные нелинейные дифференциальные уравнения алгебраизируются путем аппроксимации переменных кубическими сплайнами. Полученная нелинейная система алгебраических уравнений является дискретным аналогом исходной системы дифференциальных уравнений. Ее решение выполняется методом продолжения по параметру. Для расчета статических характеристик как функции некоторой переменной данная система дифференцируется аналитически, а затем интегрируется численным методом по этой переменной. В процессе интегрирования на каждом шаге или через несколько шагов производится уточнение методом Ньютона, что дает возможность осуществить интегрирование методом Эйлера за несколько шагов. Матрицы Якоби в обоих случаях совпадают. Для учета вытеснения тока в стержнях короткозамкнутого ротора каждый стержень вместе с короткозамыкающими кольцами разбивается по высоте на несколько элементов. В результате на роторе получаем несколько короткозамкнутых обмоток, эквивалентирующихся трехфазными обмотками, между которыми существуют магнитные связи.

Ключевые слова

Об авторах

Адрес для переписки: Маляр Василий Сафронович – Национальный университет «Львовская политехника», ул. С. Бандеры, 12, 79013, г. Львов, Украина Тел: +38 032 258-21-19 E-mail: svmalyar@polynet.lviv.ua

Список литературы

1. Брускин, Д. Э. Электрические машины и микромашины / Д. Э. Брускин, А. Е. Зорохович, В. С. Хвостов. М.: Высш. шк., 1990. 528 с.

2. Вольдек, А. И. Электрические машины / А. И. Вольдек. Л.: Энергия, 1978. 832 с.

3. Меркин, Г. Б. Конденсаторные электродвигатели для промышленности и транспорта / Г. Б. Меркин. М.-Л.: Энергия, 1966. 223 с.

4. Тазов, Г. В. Математическая модель асимметричной асинхронной машины / Г. В. Тазов, В. В. Хрущев // Электричество. 1989. № 1. С. 41–49.

5. Торопцев, Н. Д. Трехфазный асинхронный двигатель в схеме однофазного включения с конденсатором / Н. Д. Торопцев. М.: Энергоатомиздат, 1988. 95 с.

6. Мощинский, Ю. А. Математическая модель асинхронного конденсаторного двигателя по методу симметричных составляющих с использованием стандартного программного обеспечения / Ю. А. Мощинский., А. П. Петров // Электричество. 2001. № 7. С. 43–48.

7. Бешта, А. С. Определение параметров схемы замещения асинхронного двигателя при несимметричном питании статоров / А. С. Бешта, А. А. Семин // Электромеханические и энергосберегающие системы. 2014. Вып. 2. С. 10–16.

8. Беспалов, В. Я. Математическая модель асинхронного двигателя в обобщенной ортогональной системе координат / В. Я. Беспалов, Ю. А. Мощинский, А. П. Петров // Электричество. 2002. № 8. С. 33–39.

9. Беспалов, В. Я. Динамические показатели трехфазных асинхронных двигателей, включаемых в однофазную сеть / В. Я. Беспалов, Ю. А. Мощинский, А. П. Петров // Электротехника. 2000. № 1. С. 13–19.

10. Шуруб, Ю. В. Математическая модель асинхронного конденсаторного двигателя с тиристорным управлением / Ю. В. Шуруб // Техническая электродинамика. 1999. № 4. С. 52–56.

11. Лесник, В. А. Учет дифференциальных параметров при математическом моделировании несимметричных режимов работы асинхронных генераторов / В. А. Лесник, Ю. В. Шуруб // Техническая электродинамика. 2003. № 1. С. 45–48.

12. Rogers, G. An Induction Motor MOdel with Deep-Bar Effect and Learage Inductance Saturation / G. Rogers, D. Beraraghana // Arhiv fur Electrotechnik. 1978. Vol. 60, No 4. P. 193–201.

13. Stakhiv, P. Influence of Saturation and Skin Effect on Current Harmonic Spectrum of Asynchronous Motor Powered by Thyristor Voltage Regulator / P. Stakhiv, A. Malyar // Proceedings of the IVth International Workshop Computational Problems of Electrical Engineering, Gdynia, Poland, June 1–3, 2005. Gdynia, 2005. P. 58–60.

14. Фильц, Р. В. Алгоритм расчета переходных процессов в асинхронной машине с учетом насыщения и вытеснения тока / Р. В. Фильц, Е. А. Онышко, Е. Г. Плахтына // Преобразователи частоты для электропривода. Кишинев: Штиинца, 1979. С. 11–22.

15. Mathematical Modeling of Processes in Asynchronous Motors with Capacitors Connected in Series / V. Malyar [et al.] // 16th International Conference on Computational Problems of Electrical Engineering (CPEE 2015). Lviv, 2015. P. 107–109.

16. Копылов, И. П. Об уравнениях асинхронной машины в различных системах координат / И. П. Копылов, Р. В. Фильц, Я. Я. Яворский // Известия вузов СССР. Электромеханика. 1986. № 3. С. 22–33.

17. Фильц, Р. В. Математические основы теории электромеханических преобразователей / Р. В. Фильц. Киев: Наукова думка, 1979. 208 с.

18. Маляр, В. С. Математическое моделирование периодических режимов работы электротехнических устройств / В. С. Маляр, А. В. Маляр // Электронное моделирование. 2005. Т. 27, № 3. С. 39–53.

19. Яковлев, М. Н. К решению систем нелинейных уравнений методом дифференцирования по параметру / М. Н. Яковлев // Журнал вычислительной математики и математической физики. 1964. Т. 4, № 1. С. 146–149.

Для цитирования:

Маляр В.С., Маляр А.В. УСТАНОВИВШИЕСЯ РЕЖИМЫ И СТАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТРЕХФАЗНОГО АСИНХРОННОГО ДВИГАТЕЛЯ ПРИ ПИТАНИИ ОТ ОДНОФАЗНОЙ СЕТИ. Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2016;59(6):536-548. https://doi.org/10.21122/1029-7448-2016-59-6-536-548

For citation:

Malyar V.S., Malyar V.V. ESTABLISHED MODES AND STATIC CHARACTERISTICS OF THREE-PHASE ASYNCHRONOUS MOTOR POWERED WITH SINGLE PHASE NETWORK. ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations. 2016;59(6):536-548. (In Russ.) https://doi.org/10.21122/1029-7448-2016-59-6-536-548


Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector