3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Давление при взрыве в двигателях

Принцип работы автомобиля

Работа двигателя. Процессы горения и передачи тепла

У бензиновых двигателей после прохождения поршнем ВМТ давление и температура в цилиндре за счет сгорания топливо-воздушной смеси достигают максимума — давления порядка 3-6 МПа и температуры свыше 2500 К. Весь процесс сгорания происходит вблизи ВМТ, длится 4060° угла поворо­та коленчатого вала (ПКВ), объем камеры сгорания при этом изменяется мало. Именно поэтому бензиновые двигатели с искровым зажиганием в литературе называют иногда двига­телями с подводом тепла при постоянном объеме или двига­телями Отто (работающими по циклу Отто).

Для дизелей условно принимают, что часть теплоты под­водится при постоянном объеме, а часть — при постоянном давлении. Поскольку у дизелей степень сжатия существенно выше, чем у бензиновых двигателей (е = 21-22), то макси­мальное давление при сгорании также выше и достигает 5,5 МПа. При этом температура газов в цилиндре меньше и, как правило, не превышает 20005-2200 К.

Процесс сгорания топливо-воздушной смеси в двигателе очень сложен и до конца не изучен. При горении происходят химические реакции с выделением тепла и образованием продуктов сгорания. Процесс горения существенно зависит от большого числа физических явлений в цилиндре: от геоме­трии (формы) камеры сгорания до состава, скорости и на­правления движения смеси в цилиндре в данный момент вре­мени в данной точке.

Для осуществления процесса горения необходимо, чтобы количество топлива, подаваемого в цилиндр, строго соответ­ствовало количеству воздуха, поступающего в цилиндр на такте впуска. Соотношение количеств воздуха и топлива в смеси определяется коэффициентом избытка воздуха. где 15 — постоянный (стехиометрический) коэффици­ент для данного топлива — теоретически необходимое количе­ство воздуха (кг) для полного сгорания 1 кг топлива. При а = 1, когда количество топлива точно соответствует количеству воздуха, необходимому для полного сгорания этого топлива, состав смеси называют стехиометрическим.

При сгорании коэффициент избытка воздуха а смеси для бензиновых двигателей традиционных конструкций должен находиться в интервале от 0,70-0,75 до 1,05-1,15 в зависимо­сти от режимов работы двигателя. Для этого система питания двигателя должна строго дозировать топливо. Например, при разгоне целесообразно иметь, а меньше 1 («богатая» смесь и большой крутящий момент), в то время как для установивше­гося режима движения автомобиля желательно, чтобы а бы­ло близко к 1 (нормальная или слегка обедненная смесь, вы­сокая экономичность, а также приемлемая токсичность отработавших газов).

Для воспламенения и горения смеси у двигателей тради­ционных схем необходимо, чтобы топливо хорошо испарилось и перемешалось с воздухом еще на также сжатия, т. е. перед искровым разрядом. Это достигается внешним смесеобразо­ванием, т. е. подачей топлива заранее во впускной трубопро­вод (с помощью карбюратора или форсунок системы впрыс­ка). При этом топливо успевает практически полностью испа­риться перед воспламенением. После воспламенения смеси искровым разрядом образуется фронт пламени, распростра­няющийся по объему камеры сгорания.

Коэффициент избытка воздуха а существенно влияет не только на экономичность и мощность, но и на состав отрабо­тавших газов. Например, если основная часть продуктов сго­рания — это углекислый газ СО2 и водяные пары Н20, то при работе на богатых смесях двигатель выделяет повышенное ко­личество оксида углерода СО, а также несгоревшие углеводо­роды CnHm (СН). На некоторых режимах продукты сгорания содержат также повышенное количество оксидов азота NOx, что особенно характерно для двигателей с высокой степенью сжатия (оксиды азота образуются при высоких температурах).

Очень важное значение для состава отработавших газов имеет конструкция головки блока двигателя и особенно каме­ры сгорания — пространства между головкой и днищем порш­ня. От того, как организовано движение смеси по камере сго­рания перед и во время сгорания, сильно зависит количество вредных выбросов типа СО, NOx и СН.

В конечном счете, все указанные факторы влияют и на ко­личество выделившегося при сгорания тепла — чем оно боль­ше, тем выше основные параметры двигателя. Например, двигатель, имеющий на определенном режиме большое коли­чество СО и несгоревших углеводородов СН в отработавших газах, вряд ли обеспечит на этом режиме хорошую мощность или экономичность. С другой стороны, сгорание должно так­же происходить в строго определенной фазе цикла — слишком раннее или позднее сгорание приводит к уменьшению давле­ния в цилиндре и, в конечном счете, к ухудшению основных параметров двигателя.

При сгорании в цилиндре выделяется большое количество тепла. Часть его уходит с отработавшими газами, другая часть передается в стенки головки и гильзу цилиндра, в пор­шень. Если бы конструкция поршня не позволяла от­водить тепло от днища, то поршень очень быстро бы распла­вился и прогорел. В самом деле, температура газа в камере сгорания превышает 1800-2000°С, в то время как рабочая температура деталей из алюминиевого сплава не должна быть больше 300-350°С. Для работы в таких условиях наибо­лее важна передача тепла через поршневые кольца в стенки цилиндра. При этом через верхнее кольцо уходит до 50-60% всего тепла, переданного из камеры в поршень, а через среднее — до 15-20%. Для того, чтобы обеспечить передачу тепла через кольца, необходимо точное (плотное) прилегание коль­ца к канавке поршня и к поверхности цилиндра. Дефекты кольца (плохое прилегание к цилиндру, поломки) и поршня (деформация или разрушение перемычек) приводят к сниже­нию потока тепла от поршня и, соответственно, к его перегре­ву с последующим разрушением. Другая часть тепла от порш­ня передается через его юбку в стенку цилиндра, а также че­рез палец в шатун и далее рассеивается в картере. Незначи­тельная часть тепла уходит в картер в результате вентиляции внутри поршневого пространства при возвратно-поступатель­ном движении поршня.

Тепловое состояние (т.е. распределение температуры) поршня в значительной степени зависит от его конструкции и материала. Эти факторы влияют на такие параметры, как за­зор между поршнем и цилиндром, износ юбки и др. Чем хуже отвод тепла, тем больше температура поршня, тем больше его тепловое расширение и тем больше необходимый зазор. Если зазор между поршнем и цилиндром окажется меньше, чем на­до, поршень в цилиндре может заклинить. При очень малом зазоре увеличивается трение юбки поршня о стенки цилинд­ра, из-за чего вместо отвода тепла может происходить его подвод (разогрев юбки от трения). После заклинивания и по­следующего остывания поршень, как правило, деформируется (сжимается по юбке), а на поверхности цилиндра появляются глубокие царапины (задиры), иногда со следами алюминия, перенесенного с поршня на материал гильзы.

При определенных условиях в эксплуатации бензиновых двигателей могут возникать нарушения процесса сгорания. К ним относятся детонация и преждевременное воспламенение.

Явление детонации широко известно. Внешние проявле­ния детонации — характерный стук, появляющийся при работе на низкооктановом топливе с увеличением нагрузки (т. е. при открытии дроссельной заслонки).

Суть детонации заключается в ненормально быстром (в сотни раз быстрее обычного) сгорания части смеси. При этом образуются ударные волны, с большой скоростью распростра­няющиеся по камере сгорания. В ударной волне происходит скачкообразный рост давления и температуры среды, в кото­рой распространяется волна. А это вызывает воспламенение смеси не в результате обычного распространения пламени (скорость порядка 20-30 м/с), а из-за ее разогрева в ударной волне, движущейся со скоростью более 1000 м/с.

Механизм возникновения детонации поддается изучению с большими трудностями. Опытным путем установлено, что компактные камеры сгорания с вытеснителями имеющие форму, близкую к сферической, менее склонны к образова­нию детонационных процессов, чем длинные и узкие камеры с острыми углами и выступами. Однако в каж­дом конкретном случае при разработке нового двигателя оп­ределить наилучшую форму камеры сгорания — дело очень от­ветственное, долгое и кропотливое.

В эксплуатации детонация наиболее часто возникает на низкооктановом топливе при малых и средних частотах враще­ния и больших нагрузках. Детонация изменяет характер проте­кания давления в цилиндре по углу поворота, резко увеличивает максимальное давление, температуру и нагрузки на детали дви­гателя. Последствия длительной работы двигателя с детонацией весьма тяжелы. В первую очередь это — поломка поршней и пор­шневых колец из-за ударных нагрузок. Наиболее подвержены поломкам перемычки поршней между канавками колец. Удар­ная волна, вызывая резкое повышение давления в зазоре меж­ду днищем поршня и цилиндром, бьет по верхнему поршневому кольцу. Удар передается на перемычку поршня, причем одно­временно не по всей окружности кольца, а в конкретной доста­точно узкой области, что облегчает поломку деталей.

Детонация вызывает не только поломку перемычек, но и перегрев и разрушение краев днища поршня (каверны на по­верхности), поломку поршневых колец. Последующий перегрев поршня обычно настолько велик (из-за уменьшения теплоотвода через кольца), что выгорает огневой пояс поршня от днища до верхнего и даже нижнего поршневого кольца.

Читать еще:  Холодный двигатель троит тойота витц

После поломки деталей падает давление в цилиндре и мощность двигателя, увеличивается прорыв газов в картер (и давление в картере), расход масла. Результатом длительной работы двигателя с детонацией может быть также износ по торцу верхней канавки поршня и верхнего кольца, износ по­верхностей сопряжения поршня и поршневого пальца. Эти случаи встречаются довольно часто, но ускоренные износы не всегда удается связать с детонацией.

Режимы детонации ограничивают углы опережения зажи­гания на некоторых режимах. Это значит, что при увеличении опережения зажигания основные параметры двигателя повы­шаются, однако, работа на этих режимах недопустима из-за опасности поломки деталей. Электронные системы управле­ния двигателем точно отлеживают эти режимы, в том числе с помощью датчиков детонации.

На некоторых двигателях (TOYOTA, NIS­SAN) вместо одной свечи устанавливают две на один цилиндр. Такая конструкция является достаточно эффективной для уменьшения склонности двигателя к детонации при повышении степени сжатия за счет сокращения длины пути фронта пламе­ни по камере сгорания. Снижает вероятность возникновения детонации более низкая температура поверхностей камеры i сгорания и днища поршня. Это достигается интенсификацией i охлаждения камеры путем уменьшения толщины стенок, увеличения скорости течения охлаждающей жидкости у стенок и даже некоторым снижением уровня температуры охлаждающей жидкости (например, с 90-95°С до 80-85 0 С) за счет схемы и конструкции системы охлаждения двигателя.

У двигателей с впрыском топлива температура топливо-воздушной смеси на входе в цилиндр обычно меньше, чем у карбюраторных двигателей, поскольку у последних необходим подогрев смеси на впуске (иначе не будет качественного испарения и сгорания топлива). Поэтому двигатели с впрыском топлива при прочих равных условиях менее склонны к детонации, что позвопяет несколько увеличить у них степень сжатия. Аналогичное влияние оказывает промежуточное ох­лаждение воздуха у двигателей с наддувом.

Кроме детонации, на практике встречается явление преждевременного воспламенения, называемое также калильным зажиганием. При калильном зажигании происходит воспла­менение смеси не от искрового разряда свечи, а от нагретых до очень высоких температур (более 700°С) поверхностей ка­меры сгорания. В качестве таких источников воспламенения могут выступать электроды свечи зажигания, тарелка выпуск­ного клапана или частицы нагара, если нагар лежит на дета­лях достаточно толстым слоем.

Обычно калильное зажигание возникает из-за несоответ­ствия характеристики свечи, рекомендованной изготовите­лем автомобиля, в частности, когда для двигателя с высокой степенью сжатия использована «горячая» свеча от низкофор­сированного двигателя. При этом смесь в цилиндре самовос­пламеняется несколько раньше, чем происходит искровой разряд, но процесс сгорания протекает нормальным обра­зом. С ростом нагрузки и частоты вращения момент самовос­пламенения отодвигается в раннюю сторону, из-за чего теп­ловое и силовое воздействие на детали двигателя, особенно, на поршень, значительно возрастает.

Опасность калильного зажигания заключается в том, что на начальной стадии его практически невозможно отличить «на слух» от обычного сгорания, в то время как с течение вре­мени (обычно от нескольких десятков секунд до нескольких минут), когда у двигателя появляется посторонний звук и он начинает терять мощность, детали поршневой группы уже мо­гут быть повреждены. Вследствие этого на двигате­лях современных автомобилей замена свечей зажигания оказывается весьма небезопасной для двигателя, если ста­вятся первые попавшиеся свечи.

Ученый из Сколково: Водородные двигатели не так хороши, как кажется

От массового использования водородный двигателей предостерегает инженер Сколковского института науки и технологий, гендиректор одной из компаний-резидентов Евгений Ерхан. «Водородно-топливная энергетика, по моему мнению, — это абсолютно тупиковая ветвь развития, не имеющая никакого продолжения», — заявил Ерхан в интервью ФАН. Водород, по его словам, сложно и дорого производить, а его эксплуатация крайне опасна: использование водородных двигателей в транспортных средствах, в случае попадания такого автомобиля или автобуса в аварию, чревато большим количеством жертв. «Представьте себе, что у вас в машине баллон 700 атмосфер и вы на этой машине влетаете в стену, ну или в аварию попадаете. Так вот, при ударе ваш баллон превращается в гранату, разрывая все вокруг себя, — пояснил инженер. — Если вы возьмете статистику, посмотрите, какое количество аварий в России произошло и какое количество машин загорелось, она просто ничтожно мала. Но если в автомобиле будет баллон с водородом и если он взорвется, то мало того, что 100% пострадает человек, который находится внутри машины, так еще и автомобиль превратится в шрапнель, куски гранаты, которые будут уничтожать все вокруг себя».

Ученый привел в пример случаи взрывов баллонов с бытовым газом в жилых домах, которые способны разрушить несколько квартир и даже несколько этажей друг над другом.

«Давление в газовом баллоне при этом всего 14 атмосфер, а в водородном — 700 атмосфер. Это опасная, страшная технология», — подчеркнул Ерхан.

Он также обратил внимание на то, что водород является крайне сложным в производстве газом.

«Добывать водород при помощи электролиза воды крайне неэффективно и очень дорого, это колоссальные затраты энергии. На сегодняшний день единственным эффективным способом получения водорода является сжигание метана. В итоге получается водород, и в машине или где бы вы его ни использовали, выбросов не будет. Но для того, чтобы получить этот водород, придется обязательно загрязнять атмосферу в процессе производства этого водорода», — пояснил эксперт.

Собеседник агентства подчеркнул, что еще одним аргументом против использования водорода является энергоемкость таких двигателей: она значительно меньше, чем у традиционных ДВС.

«Что бы ни делали, как бы ни танцевали, но если вы возьмете водородный самолет и керосиновый самолет, то второй будет летать дольше — это факт. Некоторые доказывают, что это несовершенная технология, что ее нужно доработать, что водородно-топливной энергетике еще только 20 лет. Но эти 20 лет прошли, и за это время не сильно-то поменялась технология. В ее основе в любом случае лежат платиновые либо палладиевые мембраны. И платина, и палладий — это колоссально дорогие элементы», — резюмировал Ерхан.

Эксперт убежден, что от использования водорода мир быстро откажется. «Мое личное мнение, что вся водородная индустрия, весь хайп вокруг этого свернется, как только появится необходимость массового производства и поставок, появятся станции заправки, когда начнутся первые взрывы баллонов. Вот тогда и начнутся запреты», — добавил эксперт.

Евгений Ерхан отметил, что выступающие за зеленую энергетику европейцы сами не спешат пересаживаться на водородомобили, водородобусы и подниматься в небо на самолетах с водородными двигателями.

Детонация

Детона́ция (от фр. détoner — «взрываться» и лат. detonare — «греметь» [1] ) — режим горения, при котором по веществу распространяется ударная волна, инициирующая химические реакции горения, в свою очередь, поддерживающие движение ударной волны за счёт выделяющегося в экзотермических реакциях тепла. Комплекс, состоящий из ударной волны и зоны экзотермических химических реакций за ней, распространяется по веществу со сверхзвуковой скоростью и называется детонационной волной [1] . Фронт детонационной волны — это поверхность гидродинамического нормального разрыва.

Скорость распространения фронта детонационной волны относительно исходного неподвижного вещества называется скоростью детонации. Скорость детонации зависит только от состава и состояния детонирующего вещества и может достигать нескольких километров в секунду как в газах, так и в конденсированных системах (жидких или твёрдых взрывчатых веществах). Скорость детонации значительно превышает скорость медленного горения, которая всегда существенно меньше скорости звука в веществе и не превышает нескольких метров в секунду.

Многие вещества способны как к медленному (дефлаграционноному) горению, так и к детонации. В таких веществах для распространения детонации её необходимо инициировать внешним воздействием (механическим или тепловым). В определённых условиях медленное горение может самопроизвольно переходить в детонацию.

Детонацию, как физико-химическое явление, не следует отождествлять со взрывом. Взрыв — это процесс, в котором за короткое время в ограниченном объёме выделяется большое количество энергии и образуются газообразные продукты взрыва, способные совершить значительную механическую работу или вызвать разрушения в месте взрыва. Взрыв может иметь место и при воспламенении и быстром сгорании газовых смесей или взрывчатых веществ в ограниченном пространстве, хотя при этом детонационная волна не образуется. Так, быстрое (взрывное) сгорание пороха в стволе артиллерийского орудия в процессе выстрела не является детонацией.

Стук, возникающий в двигателях внутреннего сгорания, также называют детонацией (англ. knock ), однако это не детонация в строгом смысле этого слова. Стук вызывается преждевременным самовоспламенением топливовоздушной смеси с последующим быстрым её сгоранием в режиме взрывного горения, но без образования ударных волн. Детонационные волны в работающем двигателе (англ. superknock ) [2] возникают крайне редко и только при нарушении условий эксплуатации, например из-за нештатного низкооктанового топлива. При этом двигатель очень быстро выходит из строя из-за разрушения конструкционных элементов ударными волнами.

Читать еще:  Что такое катализатор в двигателе внутреннего сгорания

Содержание

  • 1 История исследований явления
  • 2 Механизм детонации
    • 2.1 Гидродинамическая теория детонации
    • 2.2 Модель Чепмена—Жуге
    • 2.3 Модель Зельдовича, Неймана и Дёринга (ZND)
  • 3 Детонация в технике
  • 4 См. также
  • 5 Примечания
  • 6 Литература

История исследований явления [ править | править код ]

Вероятно, впервые термин «детонация» был введён в научный обиход Лавуазье в «Трактате по элементарной химии» (фр. Traité élémentaire de chimie ), опубликованном в Париже в 1789 году [3] . Во второй половине XIX века были синтезированы вторичные взрывчатые вещества, в основе действия которых лежит явление детонации. Однако из-за большой скорости детонационной волны и разрушительного действия взрыва научное изучение детонации оказалось чрезвычайно затруднено и началось с публикаций исследований явления детонации газовых смесей в трубах в 1881 году французскими химиками Малляром и Ле Шателье и независимо от них Бертло и Вьелем [4] . В 1890 году русский учёный В. А. Михельсон, опираясь на работы Гюгонио по ударным волнам, вывел уравнения для распространения детонационной волны и получил выражение для скорости детонации [5] . Дальнейшее развитие теории было выполнено Чепменом в 1899 году [6] и Жуге в 1905 году [7] . В теории Чепмена—Жуге, названной гидродинамической теорией детонации, детонационная волна рассматривалась как поверхность разрыва, а условие для определения скорости детонации, названное их именами ( условие Чепмена—Жуге [en] ), было введено как постулат.

В 1940-е годы Я. Б. Зельдович разработал теорию детонации, в которой учитывается конечное время протекания химической реакции вслед за нагревом вещества ударной волной. В этой модели условие Чепмена—Жуге получило ясный физический смысл как правило отбора скорости детонации [8] , а сама модель была названа моделью ZND [en] — по именам Зельдовича, Неймана и Дёринга, так как независимо от него к схожим результатам пришли фон Нейман [9] в США и Дёринг [10] в Германии.

Модели Чепмена—Жуге и ZND позволили существенно продвинуться в понимании явления детонации, однако они по необходимости были одномерными и упрощёнными. С ростом возможностей экспериментального исследования детонации в 1926 году английскими исследователями Кэмпбеллом и Вудхедом был открыт эффект спирального продвижения фронта детонации по газовой смеси [11] . Это явление получило название «спиновой детонации» и впоследствии было обнаружено и в конденсированных системах [12] .

В 1959 году сотрудники ИХФ АН СССР Ю. Н. Денисов и Я. К. Трошин открыли явление ячеистой структуры и пульсирующих режимов распространения детонационной волны [13] [14] .

Механизм детонации [ править | править код ]

Детонация может возникать в газах, жидкостях, конденсированных веществах и гетерогенных средах. При прохождении фронта ударной волны вещество нагревается. Если ударная волна достаточно сильная, то температура за фронтом ударной волны может превысить температуру самовоспламенения вещества, и в веществе начинаются химические реакции горения. В ходе химических реакций выделяется энергия, подпитывающая ударную волну. Такое взаимодействие газодинамических и физико-химических факторов приводит к образованию комплекса из ударной волны и следующей за ней зоны химических реакций, называемого детонационной волной. Механизм превращения энергии в детонационной волне отличается от механизма в волне медленного горения (дефлаграции), движущейся с дозвуковой скоростью, в которой передача энергии в исходную смесь осуществляется в основном теплопроводностью [15] .

Гидродинамическая теория детонации [ править | править код ]

Если характерные размеры системы заметно превышают толщину детонационной волны, то её можно считать поверхностью нормального разрыва между исходными компонентами и продуктами детонации. В этом случае законы сохранения массы, импульса и энергии по обеим сторонам разрыва в системе координат, где фронт волны неподвижен, выражаются следующими соотношениями:

  • ρ 0 D = ρ ( D − u ) D=rho (D-u)>— сохранение массы,
  • P 0 + ρ 0 D 2 = P + ρ ( D − u ) 2 +rho _<0>D^<2>=P+rho (D-u)^<2>>— сохранение импульса,
  • P 0 D + ρ 0 D ( e 0 + D 2 / 2 ) = P ( D − u ) + ρ ( D − u ) ( e + ( D − u ) 2 / 2 ) D+rho _<0>D(e_<0>+D^<2>/2)=P(D-u)+rho (D-u)(e+(D-u)^<2>/2)>— сохранение энергии.

Здесь D — скорость детонационной волны, (D — u) — скорость продуктов относительно детонационной волны, P — давление, ρ — плотность, e — удельная внутренняя энергия. Индексом 0 обозначены величины, относящиеся к исходному веществу. Исключая из этих уравнений u, имеем:

  • P − P 0 = ( ρ 0 D ) 2 ( V 0 − V ) =(rho _<0>D)^<2>(V_<0>-V)>,
  • e − e 0 = 1 2 ( P + P 0 ) ( V 0 − V ) =<2>>(P+P_<0>)(V_<0>-V)>[16] .

Первое соотношение выражает линейную зависимость между давлением P и удельным объёмом V=1/ρ и называется прямой Михельсона (в зарубежной литературе — прямой Рэлея). Второе соотношение называется детонационной адиабатой или кривой Гюгонио (в зарубежной литературе также — Рэнкина—Гюгонио). Если известно уравнение состояния вещества, то внутренняя энергия может быть выражена через давление и объём, и кривая Гюгонио может быть также представлена как линия в координатах P и V [17] .

Модель Чепмена—Жуге [ править | править код ]

Система двух уравнений (для прямой Михельсона и кривой Гюгонио) содержит три неизвестных (D, P и V), поэтому для определения скорости детонации D требуется дополнительное уравнение, которое невозможно получить только из термодинамических соображений. Поскольку детонационная волна устойчива, звуковые возмущения в продуктах не могут догонять фронт детонационной волны, иначе он будет разрушаться. Таким образом, скорость звука в продуктах детонации не может превышать скорость течения за фронтом детонационной волны.

На плоскости P, V прямая Михельсона и кривая Гюгонио могут пересекаться не более чем в двух точках. Чепмен и Жуге предположили, что скорость детонации определяется по условию касания прямой Михельсона и кривой Гюгонио для полностью прореагировавших продуктов (детонационной адиабаты). В этом случае прямая Михельсона является касательной к детонационной адиабате, и эти линии пересекаются ровно в одной точке, названной точкой Чепмена-Жуге (CJ). Это условие соответствует минимальному наклону прямой Михельсона и физически означает, что детонационная волна распространяется с минимально возможной скоростью, и скорость течения за фронтом детонационной волны в точности равна скорости звука в продуктах детонации [18] .

Модель Зельдовича, Неймана и Дёринга (ZND) [ править | править код ]

Модель Чепмена-Жуге позволяет описать распространение детонационной волны как гидродинамического разрыва, но не даёт ответов на вопросы, связанные со структурой зоны химических реакций. Эти вопросы стали особенно актуальными в конце 1930-х годов в связи с быстрым развитием военной техники, боеприпасов и взрывчатых веществ. Независимо друг от друга Я. Б. Зельдович в СССР, Джон фон Нейман в США и Вернер Дёринг в Германии создали модель, названную впоследствии по их именам моделью ZND. Аналогичные результаты были получены и в кандидатской диссертации А. А. Гриба, выполненной в 1940 году в Томске [19] .

В этой модели считается, что при распространении детонации вещество сначала нагревается при прохождении фронта ударной волны, а химические реакции начинаются в веществе спустя некоторое время, равное задержке самовоспламенения. В ходе химических реакций выделяется тепло, которое приводит к дополнительному расширению продуктов и увеличению скорости их движения. Таким образом, зона химических реакций выступает в роли своего рода поршня, толкающего ведущую ударную волну и обеспечивающего её устойчивость [20] .

На диаграмме P, V эта модель условно отображается в виде процесса, первой стадией которого будет скачок по адиабате Гюгонио для исходного вещества в точку с максимальным давлением, с последующим постепенным спуском по прямой Михельсона до её касания с адиабатой Гюгонио для прореагировавшего вещества, то есть до точки Чепмена-Жуге [21] . В этой теории правило отбора скорости детонации и гипотеза Чепмена-Жуге получают своё физическое обоснование. Все состояния выше точки Чепмена-Жуге оказываются неустойчивыми, так как в них скорость звука в продуктах превышает скорость течения за фронтом детонационной волны. В состояния ниже точки Чепмена-Жуге попасть невозможно, так как скачок давления на фронте ударной волны всегда больше конечной разности давлений между продуктами детонации и исходным веществом [22] .

Однако такие режимы могут наблюдаться в эксперименте при искусственном ускорении детонационной волны, и они называются соответственно пересжатой или недосжатой детонацией [23] .

Детонация в технике [ править | править код ]

В двигателях внутреннего сгорания детонацией часто называют взрывное горение в цилиндре (см. Стук в двигателе). Двигатели внутреннего сгорания, реализующие цикл Отто, рассчитаны на медленное горение горючей смеси без резких скачков давления. Быстрое сгорание смеси резко повышает давление в камере сгорания, что приводит к ударным нагрузкам на детали конструкции двигателя и быстрому выходу двигателя из строя. Топливо с более высоким октановым числом допускает большую степень сжатия и лучше противостоит детонации [24] .

Детонационное горение является наиболее термодинамически выгодным способом сжигания топлива и преобразования химической энергии топлива в полезную работу [25] . Поэтому детонация может применяться в рабочем процессе в камерах сгорания перспективных энергетических установок, таких как импульсный детонационный двигатель [26] [27] .

Явление детонации лежит в основе действия взрывчатых веществ, широко применяемых как в военном деле, так и в гражданской хозяйственной деятельности при производстве взрывных работ [28] .

Как температура и давление в цилиндрах дизеля влияют на работу мотора

Дизельный двигатель сегодня является вторым по степени распространенности типом ДВС после бензинового агрегата. Конструктивно дизельный мотор похож на бензиновый аналог, так как имеет все те же цилиндры, шатуны, поршни, коленвал и т.д. При этом все детали более массивные и тяжелые, ведь они должны выдерживать повышенные нагрузки.

Дело в том, что степень сжатия в дизеле выше, чем в агрегатах на бензине. Если в бензиновом моторе указанный средний показатель составляет от 9-и до 11-и единиц, то в дизельном уже целых 20-24. По этой причине дизельный двигатель тяжелее и крупнее бензинового агрегата.

После подачи в цилиндры рабочая смесь воспламеняется в камере сгорания от искры. При этом в дизельном двигателе топливо и воздух подаются отдельно, при этом смесь воспламеняется самостоятельно от резкого сжатия и нагрева.

Далее мы поговорим о том, какие процессы протекают в камере сгорания дизельного двигателя, как реализована подача дизтоплива, каким образом происходит смесеобразование и воспламенение заряда, а также какое давление и температура в камере сгорания дизеля.

Камеры сгорания дизельных двигателей и особенности работы такого ДВС

Начнем с того, что камеры сгорания дизельных двигателей несколько отличаются от бензиновых. Существует два основных типа камер:

  • неразделенная камера сгорания дизельного мотора;
  • разделенная камера сгорания дизельного ДВС;

Неразделенный тип является однообъемной камерой, как правило, простой формы, которая согласована с расположением форсунок. Такие камеры обычно выполняются в днище поршней, также могут быть изготовлены частично в днище и частично в ГБЦ, редко только в головке блока.

Если говорить о плюсах и минусах, первый тип позволяет обеспечить двигателю лучший КПД, однако температуры в такой камере сгорания выше. Также растут и ударные нагрузки. Что касается разделенных камер сгорания, КПД меньше, однако удается реализовать более полноценное сгорание топлива, такой дизель меньше коксуется, дымит и т.д.

Как сгорает топливо в дизельном двигателе

Теперь давайте рассмотрим сам процесс горения. Как известно, для горения топлива необходимо определенное количество кислорода, а также источник, который позволит смеси воспламениться.

В дизеле вместо внешней искры таким источником является высокая температура, то есть нагрев.

Другими словами, топливно-воздушная смесь в дизельном двигателе самовоспламеняется от высокого давления и нагрева. При этом нормальная работа мотора сильно зависит от правильно настроенного впрыска, качественного сжатия смеси, а также от полноты сгорания заряда в цилиндрах.

В самом начале в цилиндр подается воздух, сжимается и нагревается. Далее топливо впрыскивается в камеру сгорания дизельного двигателя, во время впрыска происходит его распыление.

Затем возникает самовоспламенение, пламя распространяется по цилиндру. Впрыск горючего останавливается, а остатки топлива продолжают гореть. Далее процесс повторяется.

Как видно, хотя подача и горение заряда в дизеле протекает за очень короткий промежуток времени, этот отрезок можно разделить на этапы:

  • Первый этап- впрыск топлива до начала его воспламенения (задержка воспламенения). Форсунки на данном этапе подают солярку, причем в распыленном виде. Образуется топливный «туман», который распространяется в сильно сжатом и нагретом воздухе.

Фактически туман представляет собой мельчайшие капли топлива, но они не воспламеняются. Дело в том, что сначала горючее должно испариться.

Только после этого произойдет смешивание испаренного дизтоплива с воздухом, а сама смесь нагреется до температуры, необходимой для самостоятельного воспламенения. Отметим, что задержка воспламенения должна быть короткой.

  • Второй этап-воспламенение и распространение фронта пламени по цилиндру. Дело в том, что после воспламенения сразу горит не весь объем, а возникают точечные «очаги» возгорания. Они локализуются в местах, где топливо наиболее качественно смешалось с воздухом, а температура в камере около 1700 К.

Такое начальное горение приводит к повышению температуры и давления в цилиндре. В результате топливо, которое еще не загорелось, активно испаряется и смешивается с воздухом. В этот момент фактически происходит полное возгорание смеси в цилиндре, при этом резко увеличивается давление.

  • Наступает третий этап, года топливо непосредственно сгорает. Инжекторная форсунка еще впрыскивает солярку, горючее уже сразу загорается от контакта с пламенем в камере сгорания. Пламя в этот момент эффективно распространяется по всему объему, давление также максимально.

Именно на данном этапе давление в результате сгорающего топлива с большой силой толкает поршень, заставляя двигатель совершать полезную работу. Что касается температуры, показатель растет до 2200 К.

  • Завершающий четвертый этап является моментом, когда остатки топлива догорают в цилиндре. В это время поршень уже перемещается вниз, что означает падение давления и температуры.

Если возникнут сбои, распространение пламени будет нарушено, температура в камере сгорания дизельного двигателя повышается, возникает риск детонации, топливо не сгорает в полном объеме и т.д.

Частые проблемы дизелей: момент впрыска и компрессия

Если сжатие смеси в цилиндре оказывается недостаточным, во время работы двигателя можно услышать шумы и металлические стуки. Дело в том, что в таком случае смеси нужно больше времени, чтобы нагреться до температуры воспламенения.

Получается, снижение компрессии дизельного двигателя увеличивает время до воспламенения заряда.

При этом в цилиндре несгоревшей смеси будет больше, чем нужно. В результате в момент возгорания такого заряда процесс горения приобретает взрывной характер, давление резко увеличивается, появляется ударная волна и детонация, разрушая ЦПГ и оказывая значительные нагрузки на детали мотора.

Затем поршень идет вниз, температура и давление дополнительно снижаются, нет условий для горения. Получается, несгоревшая солярка испаряется и далее попадает в выпускную систему

То же самое происходит и в том случае, если впрыск дизтоплива слишком поздний. Другими словами, компрессия в цилиндрах нормальная, но подача топлива с опозданием приводит к тому, что поршень уже идет вниз, нет нужного сжатия и давления для самовоспламенения.

Если же выхлоп черный, это может указывать на то, что форсунки «переливают», то есть подача горючего происходит в большем объеме, чем необходимо. Простыми словами, дизтоплива много, а кислорода просто недостаточно на такое количество горючего.

Имеющийся кислород позволяет выгореть только части топлива, а несгоревшие остатки превращаются в углерод, что и проявляется в виде характерного черного дыма из выхлопной трубы.

Еще отметим, что к похожим проблемам может приводить недостаточная подача воздуха (например, забит воздушный фильтр), завоздушивание системы питания дизельного двигателя и т.д.

В итоге, если нарушается нормальный процесс смесеобразования, это закономерно влияет на момент воспламенения и последующую эффективность сгорания топливного заряда в цилиндрах.

Что в итоге

С учетом вышесказанного становится понятно, что дизель особенно нуждается в высокоточном топливном впрыске. От этого напрямую завит КПД, ресурс мотора, экономичность, уровень токсичности отработавших газов и ряд других важных параметров.

По этой причине дизельные форсунки на современных типах указанных моторов способны обеспечить так называемый фазированный (многофазный) впрыск, подавая дизтопливо до 10 раз за один рабочий такт мотора.

Подобные решения в сочетании с турбокомпрессором позволяют современному дизельному мотору уверенно конкурировать на рынке с бензиновыми аналогами, при этом высокая топливная экономичность остается главным преимуществом дизельного двигателя.

Показатель компрессии дизельного двигателя. Главные причины и основные признаки снижения компрессии. Запуск мотора с недостаточным давлением в цилиндрах.

Высокая компрессия в двигателе и основные причины повышения компресссии. Почему также происходит снижение компресссии по цилиндрам. Советы и рекомендации.

Влияние степени сжатия на мощность и другие характеристики мотора. Тюнинг и увеличение степени сжатия, а также понижение параметра в отдельных случаях.

Почему топливно-воздушная смесь детонирует в камере сгорания. Причины, вызывающие детонацию. Последствия детонационного сгорания топлива в цилиндрах ДВС.

Низкая комрессия в цилиднрах двигателя: главные причины. Как поднять компрессию в двигателе без ремонта мотора, доступные способы. Советы и рекомендации.

Проблемы с запуском дизеля. Признаки низкой компрессии и причины неисправности: ГРМ, зеркало цилиндров, поршень и кольца. Производим замер компрессии.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector