Что значит двигатель постоянного тока - Авто журнал "Гараж"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что значит двигатель постоянного тока

Двигатели переменного тока и постоянного тока: в чем разница?

Без рубрики

Электродвигатели — это машины, предназначенные для преобразования электрической энергии в механическую. Хотя они доступны во многих вариантах, их можно разделить на две основные категории: двигатели переменного тока и двигатели постоянного тока.

И двигатели переменного тока, и двигатели постоянного тока имеют одинаковую функцию; то есть преобразовывать электрическую энергию в механическую. Однако при выборе двигателя важно знать разницу между двигателями переменного и постоянного тока, поскольку каждый из них имеет разные требования к конструкции, питанию и управлению. В следующей статье обсуждаются различия между двумя типами двигателей, включая основные конструктивные и рабочие характеристики, преимущества и области применения. Купить электрический двигатель можно на сайте https://psnab.ru

Обзор двигателей переменного тока

Как следует из названия, двигатели переменного тока используют переменный ток (AC) для выработки механической энергии. Стандартная конструкция состоит из статора с обмоткой, встроенной по окружности, и свободно вращающейся металлической части (т. е. ротора) в центре.

Когда ток подается на обмотки статора в двигателе переменного тока, создается вращающееся магнитное поле. Это магнитное поле индуцирует электрический ток внутри электропроводного ротора и, следовательно, образует второе вращающееся магнитное поле. Взаимодействие между первым магнитным полем и вторым магнитным полем заставляет вращаться ротор.

При выборе электродвигателя переменного тока для применения необходимо учитывать два критических фактора:

  • Рабочая скорость (в оборотах в минуту): максимальная скорость, которую может достичь двигатель, рассчитывается по следующей формуле: (60 x частота сети переменного тока в Гц) ÷ количество полюсов двигателя
  • Пусковой крутящий момент, создаваемый двигателем при запуске с нулевой скоростью.

Обзор двигателей постоянного тока

Двигатели постоянного тока используют постоянный ток (DC) с постоянным напряжением для выработки механической энергии. Двигатели постоянного тока состоят из вращающейся обмотки якоря (т. е. Ротора) и статора возбуждения с обмотками, которые образуют набор неподвижных электромагнитов. Другой ключевой компонент двигателя постоянного тока — это коммутатор, прикрепленный к якорю.

Когда ток течет через двигатель постоянного тока, внутри статора возбуждения и вокруг обмотки якоря создается магнитное поле. Взаимодействие между этими двумя магнитными полями создает электромагнитную силу, которая заставляет якорь вращаться. Коммутатор изменяет направление тока в якорь и тем самым позволяет ему продолжать вращение, пока ток течет через систему.

Двигатели постоянного тока могут использоваться для создания различных уровней скорости и крутящего момента. Регулировка уровней напряжения, подаваемого на якорь, или статического тока возбуждения изменяет выходную скорость.

Преимущества двигателей переменного тока перед двигателями постоянного тока

И двигатели переменного тока, и двигатели постоянного тока демонстрируют уникальные преимущества, которые делают их пригодными для различных применений. Ниже мы описываем преимущества, предлагаемые обоими типами двигателей.

К преимуществам двигателей переменного тока можно отнести:

  • Более низкие требования к пусковой мощности
  • Лучший контроль над начальным уровнем тока и ускорением
  • Более широкие возможности настройки для различных требований к конфигурации и изменения требований к скорости и крутящему моменту
  • Повышенная прочность и долговечность

К преимуществам двигателей постоянного тока можно отнести:

  • Более простые требования к установке и обслуживанию
  • Более высокая пусковая мощность и крутящий момент
  • Более быстрое время отклика на пуск / остановку и ускорение
  • Более широкий выбор для различных требований к напряжению

Применение двигателей переменного тока по сравнению с двигателями постоянного тока

Как указано выше, двигатели переменного тока и двигатели постоянного тока подходят для различных применений. В промышленном секторе долговечность, гибкость и эффективность двигателей переменного тока делают их идеальными для использования в приложениях для широкого спектра устройств, включая бытовые приборы, компрессоры, конвейеры, вентиляторы и другое оборудование HVAC, насосы и транспортное оборудование. Более быстрое время отклика и более стабильные уровни крутящего момента и скорости, предлагаемые двигателями постоянного тока, делают их хорошо подходящими для использования в производственном и производственном оборудовании, лифтах, пылесосах и подъемно-транспортном оборудовании.

И двигатели переменного тока, и двигатели постоянного тока играют критически важную роль в производстве электроэнергии в широком спектре промышленных, коммерческих и жилых помещений. Поскольку оба типа двигателей обладают преимуществами и недостатками, важно понимать разницу между ними, чтобы выбрать подходящий для своего предприятия.

Принцип действия двигателя постоянного тока

Устройство, которое преобразует электрическую энергию в механическую, может использоваться как двигатель или генератор, так как конструкция и принцип действия двигателя постоянного тока (ДПТ) аналогична конструкции генератора. Особенностью ДПТ является механический инвертор (коммутатор). Этот коммутатор имеет скользящие контакты в виде щёток, которые расположены так, что они изменяют полярность обмоток якоря (катушек) во время вращательного движения.

  • Особенности и устройство ДПТ
    • История изобретения
    • Конструкция двигателя
  • Принцип действия и использование
    • Настройка скорости
    • Современное применение

Особенности и устройство ДПТ

ДПТ представляет собой вращающуюся электрическую машину, работающую от постоянного тока. В зависимости от направления потока мощности проводится различие между двигателем (электродвигатель с электрической и механической мощностью) и генератором (электрический генератор, на который подаётся механическая мощность, а также электроэнергия). ДПТ могут запускаться под нагрузкой, их скорость легко изменить. В режиме генератора ДПТ преобразует напряжение переменного тока, подаваемое ротором, в пульсирующее постоянное напряжение.

История изобретения

Основываясь на развитии первых гальванических элементов в первой половине XIX века, первыми электромеханическими преобразователями энергии были машины постоянного тока. Первоначальная форма электродвигателя была разработана в 1829 году, а в 1832 году француз Ипполит Пиксии построил первый генератор. Антонио Пачинотти построил в 1860 году электродвигатель постоянного тока с многокомпонентным коммутатором. Фридрих фон Хефнер-Алтенек разработал барабанный якорь в 1872 году, который открыл возможность промышленного использования в области крупномасштабного машиностроения.

В последующие десятилетия такие машины из-за развития трехфазного переменного тока потеряли свою значимость в крупномасштабном машиностроении. Синхронные машины и системы с низким уровнем обслуживания асинхронного двигателя заменили их во многих устройствах.

Конструкция двигателя

Чтобы понять принцип действия ДПТ, нужно сначала изучить его конструктивные особенности, одной из которых является то, что в магнитном поле постоянного магнита установлен вращающийся проводящий контур.

Читать еще:  Что за двигатели peugeot 408

Упрощая эту структуру, можно сказать, что двигатель состоит из двух основных компонентов:

  1. Основной магнит (постоянный магнит), который прикреплён к статору. Магнитное поле также может быть электрически сгенерировано. На статоре находятся так называемые возбуждающие обмотки (катушки).
  2. Проводящая петля (арматура) на сердечнике якоря, обычно состоящая из слоистых металлических листов.

Обе конструкции называются двигателями постоянного тока с внешним возбуждением. Электродинамический закон указывает, что токопроводящая петля проводника в магнитном поле представляет собой силу [F], зависящую от тока [I] и напряжённости магнитного поля [B]. Токопроводящий проводник окружен круговым магнитным полем. Если объединить магнитное поле магнитного поля с магнитным полем проводящей петли, можно обнаружить суперпозицию двух полей, а также результирующий силовой эффект.

Обмотка якоря состоит из двух половин катушки. Если применить напряжение постоянного тока к двум концам обмотки якоря, можно представить, что движущиеся носители заряда поступают в нижнюю половину катушки из верхней половины катушки.

Каждая токопроводящая катушка развивает собственное магнитное поле, и магнитное поле постоянного магнита накладывается на магнитное поле нижней половины катушки и поле верхней половины катушки. Линии поля постоянного магнитного поля всегда одного направления, они всегда показывают с севера на южный полюс. Напротив, поля двух половин катушки имеют противоположные направления.

В левой части поля половины катушки полевые линии поля возбудителя и поля катушки имеют одно и то же направление. Благодаря этому силовому эффекту в противоположном направлении на нижнем и верхнем концах арматуры создаётся крутящий момент, который вызывает вращательное движение якоря.

Якорь представляет собой так называемый двутавровый якорь. Эта конструкция получила название из-за своей формы, которая напоминает два составных «Т». Катушки якоря соединены с платами коммутатора (коллектора). Подача тока в обмотке якоря обычно осуществляется через угольные щётки, которые обеспечивают скользящий контакт с вращающимся коммутатором и подают катушкам электричество. Щётки изготавливаются из самосмазывающихся графитов, частично смешанных с медным порошком для небольших двигателей.

Принцип действия и использование

Это устройство представляет собой электромашину, которая преобразовывает электрическую энергию в механическую. Принцип работы двигателя постоянного тока заключается в том, что всякий раз, когда проводник, переносимый током, помещается в магнитное поле, он испытывает механическую силу.

Постоянный магнит преобразовывает электрическую энергию в механическую через взаимодействие двух магнитных полей. Одно поле создаётся сборкой постоянными магнитами, другое — электрическим током, протекающим в обмотках двигателя. Эти два поля приводят к крутящему моменту, который имеет тенденцию вращать ротор. Когда ротор вращается, ток в обмотках коммутируется, обеспечивая непрерывный выход крутящего момента.

Коммутатор состоит из проводящих сегментов (стержней) из меди, которые представляют собой завершение отдельных катушек проволоки, распределённых вокруг арматуры. Вторая половина механического выключателя комплектуется щётками. Эти щётки обычно остаются неподвижными с корпусом двигателя.

По мере прохождения электрической энергии через щётки и арматуру создаётся крутильная сила в виде реакции между полем двигателя и якорем, вызывающим поворот якоря двигателя. Когда арматура поворачивается, щётки переключаются на соседние полосы на коммутаторе. Это действие переносит электрическую энергию на соседнюю обмотку и якорь.

Движение магнитного поля достигается переключением тока между катушками внутри двигателя. Это действие называется коммутацией. Очень многие двигатели имеют встроенную коммутацию. Это означает, что при вращении двигателя механические щётки автоматически коммутируют катушки на роторе.

Настройка скорости

ДПТ можно легко регулировать. Скорость можно изменить с помощью следующих переменных:

  1. Напряжение якоря U_A (управление напряжением).
  2. Основной поток поля (полевое управление), сила магнитного поля.
  3. Анкерное сопротивление.

Простейшим методом управления скоростью вращения является управление приводным напряжением. Чем выше напряжение, тем выше скорость, которую двигатель пытается достичь. Во многих приложениях простое регулирование напряжения может привести к большим потерям мощности в цепи управления, поэтому широко используется метод широтно-импульсной модуляции.

В основном способе с широтно-импульсной модуляцией рабочая мощность включается и выключается для модуляции тока. Отношение времени включения к «выключенному» времени определяет скорость двигателя.

Электродвигатель с внешним возбуждением легко контролировать, поскольку токи через обмотки якоря и статора можно контролировать отдельно. Поэтому такие двигатели имели определённое значение, особенно в области высоко динамичных приводных систем, например, для привода станков с точной регулировкой скорости и крутящего момента.

Современное применение

ДПТ используются в различных областях.

Он является важным элементом в различных продуктах:

  1. игрушках;
  2. сервомеханических устройствах;
  3. приводах клапанов;
  4. роботах;
  5. автомобильной электронике.

Высококачественные предметы повседневного назначения (кухонные приборы) используют серводвигатель, известный как универсальный двигатель. Эти универсальные двигатели являются типичными ДПТ, в которых стационарные и вращающиеся катушки представляют собой последовательные провода.

Что значит двигатель постоянного тока

Двигатель постоянного тока нашел широкое применение в различных областях деятельности человека. Начиная от использования тягового привода, применяемого в трамваях и троллейбусах , заканчивая приводом прокатных станов и подъемных механизмов, где требуется поддержание высокой точности скорости вращения.

Читать еще:  Что такое быстрый пуск двигателя

Основные положительные особенности , которые отличают ДПТ от асинхронного двигателя:

— гибкие пусковые и регулировочные характеристики;
— двухзонное регулирование, которое позволяет достигать скорости вращения более 3000 об/мин.
— сложность в изготовлении и высокая стоимость;
— в процессе работы необходимо постоянное обслуживание, так как коллектор и токосъемные щетки имеют небольшой ресурс работы.

Двигатель постоянного тока применяют только тогда, когда применение двигателя переменного тока невозможно или крайне нецелесообразно. В среднем, на каждые 70 двигателей переменного тока приходится всего лишь 1 ДПТ.

Конструкция ДПТ

Двигатель постоянного тока состоит из:

— индуктора (статора);
— якоря (ротора);
— коллектора;
— токосъемных щеток;
— конструктивных элементов.

Якорь и индуктор разделены между собой воздушным зазором. Индуктор представляет из себя станину, которая служит для того, чтобы закрепить основные и добавочные полюса магнитной системы двигателя. На основных полюсах располагаются обмотки возбуждения, а на добавочных – специальные обмотки, которые способствуют улучшению коммутации.

Коллектор подводит постоянный ток к рабочей обмотке, которая уложена в пазы ротора. Коллектор имеет вид цилиндра и состоит из пластин, изолированных друг от друга, он насажен на вал двигателя. Щетки служат для съема тока с коллектора, они крепятся в щеткодержателях для обеспечения правильного положения и надежного нажатия на поверхность коллектора.

Рисунок 1 – Конструкция двигателя постоянного тока

Двигатели постоянного тока классифицируют по магнитной системе статора:

2) ДПТ с электромагнитами :

— ДПТ с независимым возбуждением;
— ДПТ с последовательным возбуждением;
— ДПТ с параллельным возбуждением;
— ДПТ со смешанным возбуждением.

Рисунок 2 – Схемы подключения двигателя постоянного тока

Схема подключения обмоток статора существенно влияет на электрические и тяговые характеристики привода.

Пуск двигателя постоянного тока

Пуск двигателя постоянного тока производят с помощью пусковых реостатов, которые представляют собой активные сопротивления, подключенные к цепи якоря. Выполняют реостатный пуск по двум причинам:

— при необходимости плавного разгона электродвигателя;
— в начальный момент времени, пусковой ток Iп = U / Rя очень большой, что вызывает перегрев обмотки якоря (которая имеет малое сопротивление).

Рисунок 3 – Реостатный пуск двигателя с 3 ступенями

В начале запуска к цепи ротора подключаются все сопротивления, и по мере увеличения скорости они ступенчато выводятся.

Регулирование скорости вращения

Частота вращения двигателя постоянного тока выражается формулой:

Это выражение так же называется электромеханической характеристикой ДПТ, в которой:

U – питающее напряжение;
Iя – ток в якорной обмотке;
Rя – сопротивление якорной цепи;
k – конструктивный коэффициент двигателя;
Ф – магнитный поток двигателя.

Формула момента двигателя:

Подставив в формулу электромеханической характеристики, получим:

Таким образом, исходя из приведенных формул, сделаем вывод, что скорость вращения ДПТ можно регулировать, изменяя сопротивление якоря, питающее напряжение и магнитный поток.

§ 46. Двигатели постоянного тока

Электрические двигатели служат для превращения электрической энергии в механическую. Первый в мире электродвигатель создал русский учёный академик Борис Семёнович Якоби в 1834 году.

Электродвигатели самых разных конструкций находят широкое применение в деятельности человека. На производстве и в быту электрические двигатели приводят в движение станки и механизмы, трамваи, троллейбусы, электровозы, доильные аппараты, приборы, игрушки и др. Перед другими видами двигателей (паровыми, внутреннего сгорания) электродвигатели имеют большие преимущества. При работе они не выделяют вредных газов, дыма или пара, не нуждаются в запасах топлива и воды, их легко установить в любом удобном месте (на стене, под полом трамвая или троллейбуса, в корпусе магнитофона или в колёсах лунохода).

Рассмотрим устройство и принцип действия широко применяемого на производстве и в быту коллекторного электродвигателя. Модель простейшего коллекторного электродвигателя показана на рисунке 99. Неподвижная часть электродвигателя — статор, представляющий собой постоянный магнит, служит для создания постоянного магнитного поля. Вращающаяся часть электродвигателя — ротор — состоит из якоря и коллектора.

Рис. 99. Устройство простейшего коллекторного двигателя: якорь электродвигателя начинает вращаться из-за отталкивания одноимённых полюсов якоря и статора. Коллектор вращается вместе с якорем

Простейший якорь — это электромагнит, состоящий из сердечника и обмотки. Коллектор, укреплённый на валу якоря, выполнен из двух полуколец, изолированных друг от друга и от вала двигателя. Каждый вывод обмотки якоря припаян к отдельному полукольцу. Электрический ток от источника (батарейки) подаётся в обмотку якоря через специальные скользящие контакты — щётки. Это две упругие металлические пластины, соединённые проводами с источником тока и прижатые к полукольцам коллектора.

Якорь, как любой электромагнит, должен иметь северный и южный полюса. Как же они образуются?

Щётка, расположенная на рисунке 99 с левой стороны, соединяется с отрицательным зажимом батарейки, а щётка, расположенная справа, — с положительным. Поэтому электрический ток, проходя по обмотке якоря, делает одну его сторону северным полюсом, а другую — южным. Из рисунка видно, что северный полюс якоря расположен рядом с северным полюсом статора, а южный полюс якоря — рядом с южным полюсом статора.

Благодаря отталкиванию одноимённых магнитных полюсов статора и якоря якорь начинает вращаться. Вместе с якорем поворачивается и коллектор (рис. 99).

При вращении якоря его северный полюс притягивается к южному полюсу статора. Однако ещё до момента сближения этих полюсов в результате взаимного притяжения полукольца коллектора, изменившие положение относительно щёток, изменяют полярность якоря. При этом изменяется направление тока в обмотке якоря. Таким образом, коллектор в электродвигателе является специальным переключателем, служащим для автоматического изменения направления тока в обмотке якоря. В результате изменения полярности якоря полюса снова отталкиваются друг от друга и вращение продолжается.

Читать еще:  Щелчки при запуске двигателя рено меган 2

Вместо постоянного магнита для создания магнитного поля в двигателях обычно используют электромагниты.

Обмотку возбуждения можно подключать к источнику тока по-разному. В одних случаях её присоединяют к тем же зажимам источника, что и обмотку якоря, т. е. параллельно. Такое соединение показано на рисунке 100, а.

Рис. 100. Электродвигатель постоянного тока: а — с параллельным возбуждением, б — с последовательным возбуждением

Возможно и последовательное соединение якоря с обмоткой возбуждения (рис. 100, б).

Способ включения обмотки возбуждения относительно якоря отражается на свойствах электродвигателя.

При параллельном возбуждении число оборотов двигателя мало меняется с увеличением механической нагрузки на вал. Поэтому двигатели с параллельным возбуждением используют для привода станков. В двигателях с последовательным возбуждением число оборотов резко уменьшается с увеличением механической нагрузки на вал. Это свойство позволяет использовать такие двигатели на электрическом транспорте.

Электромагнитное возбуждение двигателя даёт возможность не только усилить магнитное поле по сравнению с полем постоянных магнитов, но и управлять его интенсивностью. Для этого необходимо изменять реостатом величину тока в цепи обмотки возбуждения (рис. 101, а), изменяя тем самым число оборотов двигателя.

Рис. 101. Схемы регулирования скорости в двигателях постоянного тока: а — путём изменения величины тока возбуждения; б — путём смены напряжения электропитания

Менять число оборотов двигателя можно и путём перемены напряжения на его зажимах (рис. 101, б). Однако надо помнить, что такой путь экономически менее выгоден, так как через реостат будет проходить весь ток двигателя, что создаёт дополнительные потери электрической энергии в реостате.

Настоящий рабочий электродвигатель по конструкции более ело жен (рис. 102), чем рассмотренная модель.

Рис. 102. Коллекторный электродвигатель постоянного тока: а — общее устройство: 1 — подшипники, 2 — задняя крышка статора, 3 — обмотка, 4 — якорь, 5 — сердечник, 6 — обмотки электромагнита, 7 — коллектор, 8 — передняя крышка статора, 9 — вал, 10 — вентилятор; б — медные пластины коллектора

Вместо постоянного магнита магнитное поле статора образуется мощными электромагнитами — магнитными полюсами двигателя. Обмотка 3 одного из полюсов, служащая обмоткой возбуждения, и сердечник 5 отмечены на рисунке 102. Обмотки полюсов соединяются между собой так, чтобы полюсные наконечники сердечников имели разную полярность, обращённую к якорю (рис. 103).

Рис. 103. Соединение обмоток полюсов двигателя постоянного тока: 1 — обмотка возбуждения, 2 — соединительный провод

Вращающийся ротор двигателя состоит из якоря и коллектора (рис. 104).

Рис. 104. Ротор двигателя постоянного тока: 1 — щётки, 2 — коллектор, 3 — соединительные проводники, 4 — обмотка якоря, 5 — вал

Чтобы увеличить коэффициент полезного действия электродвигателя (см. рис. 102), на сердечнике якоря 4 размещают несколько обмоток 6. Поэтому и коллектор 7 состоит не из двух полуколец, а из многих изолированных друг от друга и от вала двигателя медных пластин (рис. 102, б). Коллектор имеет гладкую внешнюю поверхность, на которую накладывают щётки. Щётки из графита прижимаются к коллектору с помощью пружин. Движение якоря передаётся по валу, а с него — непосредственно рабочим органам потребителя. Вал вращается в подшипниках 1, запрессованных в заднюю 2 и переднюю 8 крышки статора. Охлаждение электродвигателя обеспечивается вентилятором 10, крыльчатка которого закреплена на валу 9.

Практическая работа № 37

Задание 1. Изучить устройство двигателя постоянного тока.

  1. По плакатам, моделям и натурным образцам изучите устройство и принцип действия коллекторного электродвигателя постоянного тока.
  2. Определите название и назначение входящих в двигатель основных узлов и деталей.
  3. Подготовьте таблицу по предлагаемой форме и занесите данные в соответствующие графы:

Задание 2. Собрать простейшую схему двигателя постоянного тока.

  1. Начертите схему подключения двигателя постоянного тока с возбуждением от постоянных магнитов к источнику тока. В схеме предусмотрите использование выключателя для пуска двигателя.
  2. После проверки разработанной схемы учителем соберите электрическую цепь и опробуйте двигатель в работе.
  3. Измените направление вращения якоря двигателя.
  4. Дополните разработанную схему реостатом для изменения напряжения на зажимах двигателя и вольтметром для измерения указанного напряжения.
  5. После проверки схемы учителем соберите электрическую цепь.
  6. Запустите двигатель и проследите, как изменение напряжения на зажимах двигателя влияет на число оборотов якоря.
  7. Результаты наблюдений занесите в лабораторную тетрадь.
  8. Отключите источник. Разберите схему.
  9. Приведите рабочее место в порядок.

Практическая работа № 38

Инструменты и материалы: подковообразный магнит, батарейка на 4,5 В, кнопочный выключатель, медный провод 00,6-0,8 мм и длиной 450 мм, деревянные планки и листовой металл для крепления магнита и проволочной рамки.

Задание. Собрать установку для демонстрации принципа действия электродвигателя.

  1. Установите магнит на деревянной подставке так, чтобы один из его полюсов располагался непосредственно над другим (см. рис. 105).

Рис. 105. Устройство (а) и схема (б) для демонстрации движения проводника с током в магнитном поле: 1 — кнопочный выключатель, 2 — проводники к проволочной рамке, 3 — рамка, 4 — магнит

  1. Соедините концы рамки последовательно с кнопочным выключателем и батарейкой (см. схему рис. 105), пользуясь гибким монтажным проводом из выданного комплекта.
  2. После проверки учителем выполненных соединений замкните на мгновение контакты выключателя. Понаблюдайте за перемещениями рамки.
  3. Поясните, почему проволочная рамка начинает качаться при замыкании собранной вами электрической цепи.
  4. Как на основе проведённой демонстрации можно объяснить принцип действия электродвигателя постоянного тока?

Новые слова и понятия

Коллекторный двигатель, якорь, статор, ротор, щётки, обмотка возбуждения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты