Что такое синхронный двигатель конструкция принцип действия
УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ СИНХРОННОГО ДВИГАТЕЛЯ.
Синхронные машины, как и другие электрические машины, обратимы, т. е. они могут работать как в генераторном, так и двигательном режиме. Для того чтобы синхронная машина работала двигателем, трехфазную обмотку статора подключают к трехфазной системе напряжения. Протекающие по обмоткам статора токи создают вращающиеся поле статора, которое сцепляется с постоянным магнитным потоком ротора и заставляют вращаться ротор в направлении своего вращения, об/мин
. (18.1)
Система возбуждения магнитного поля ротора синхронных двигателей принципиально не отличается от системы возбуждения генераторов. И хотя синхронные машины обратимы, электротехническая промышленность выпускает синхронные машины, предназначенные для работы только в генераторном или только в двигательном режиме, так как особенности работы машины в том или ином случае предъявляют различные требования к конструкции машины.
Синхронные двигатели имеют по сравнению с асинхронными большое преимущество, заключающееся в том, что благодаря возбуждению постоянным током они могут работать с и не потребляют при этом реактивной мощности из сети, а при работе с перевозбуждением даже отдают реактивную мощность в сеть.
U-образные характеристики синхронных двигателей имеют такой же вид, что и для генераторов.
И при перевозбуждении синхронный двигатель по отношению к сети является емкостью (рис. 18.1).
Рис. 18.1. U-образные характеристики синхронного двигателя
В результате улучшается коэффициент мощности сети, уменьшаются падение напряжения в ней и потери мощности.
Максимальный момент синхронного двигателя пропорционален U, а асинхронного двигателя – U 2 . Поэтому при понижении напряжения синхронный двигатель сохраняет большую перегрузочную способность.
Вследствие большей величины воздушного зазора добавочные потери в стали и в клетке ротора синхронных двигателей меньше, чем у асинхронных благодаря чему кпд синхронных двигателей обычно выше.
К тому же синхронные двигатели имеют абсолютно жесткие механические характеристики, т. е. постоянство частоты вращения при изменении нагрузки на валу.
Одним из недостатков синхронных двигателей являются плохие пусковые свойства. Пуск синхронного двигателя нормального исполнения непосредственным включением в сеть невозможен, так как ротор из-за своей значительной инерции не может быть сразу увлечен вращающимся полем статора, частота вращения которого устанавливается мгновенно.
В результате устойчивая магнитная связь между статором и ротором не возникают. Для пуска синхронного двигателя применяют специальные способы, назначение которых состоит в предварительном приведении ротора во вращение до синхронной или близкой к ней частоте вращения, при которой между статором и ротором устанавливается устойчивая магнитная связь.
Пуск синхронных двигателей может быть:
– при помощи разгонного двигателя;
При пуске синхронного двигателя с помощью разгонного двигателя может использоваться асинхронный, имеющий большую, чем синхронную частоту вращения, или двигатель постоянного тока, если есть источник постоянного тока. Пуск с помощью разгонного двигателя применяется редко, так как разгонный двигатель используется только при пуске.
При частотном пуске обмотка статора синхронного двигателя подключается к преобразователю частоты. Синхронный двигатель с частотным пуском входит в синхронизм при малых частотах. Частотный пуск удобно использовать, если преобразователь частоты можно применять для пуска нескольких двигателей.
Наиболее распространенным является асинхронный пуск. Этот способ пуска возможен при наличии в полюсных наконечниках ротора пусковой короткозамкнутой обмотки (клетки). Схема включения двигателя при этом способе приведена на рис. 18.2.
Невозбужденный синхронный двигатель включают в сеть. Возникшее при этом вращающееся магнитное поле статора наводит в стержнях пусковой клетки эдс, которые создают токи I2. Взаимодействие этих токов с полем статора вызывает вращение ротора. После разгона ротора до частоты вращения близкой к синхронной (
) обмотку возбуждения подключают к источнику постоянного тока. Образующийся при этом синхронный момент втягивает ротор двигателя в синхронизм.
В процессе асинхронного пуска магнитный поток статора наводит в обмотке возбуждения ротора эдс, особенно значительной величины в начальный период пуска, так как скорость пересечения полем статора обмотки ротора в этот период наибольшая. Из-за большого числа витков обмотки возбуждения эта эдс достигает значений, опасных как для целости изоляции самой обмотки, так и для обслуживающего персонала. Для исключения этого обмотку возбуждения на период разгона замыкают на активное сопротивления r переключателем П (рис. 18.2).
Конструкция синхронных двигателей сложнее, чем короткозамкнутых асинхронных двигателей. Кроме того, синхронные двигатели должны иметь возбудитель или иное устройство для питания обмотки возбуждения постоянным током. Вследствие этого синхронные двигатели дороже асинхронных короткозамкнутых двигателей.
7. ПРИНЦИП ПОЛУЧЕНИЯ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ СТАТОРА 3000 обмин.
8. ПРИНЦИП ПОЛУЧЕНИЯ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ СТАТОРА 1500 обмин.
Принцип получения вращающегося
магнитного поля
Действие асинхронной машины основано на возможности возбуждения в ее воздушном зазоре вращающегося магнитного поля. Для возбуждения такого поля необходимо создать пространственный сдвиг токов в катушках.
Принцип получения вращающегося магнитного поля можно рассмотреть на простейшем трехфазном двигателе (рис. 1.1). Он состоит из стального кольцевого сердечника с шестью пазами и трех катушек, оси катушек находятся под углом 120° в пространстве. Каждая катушка условно изображена в виде одного витка, уложенного в два диаметрально противоположных паза; начала и концы катушек обозначены соответственно A, B, C и X, Y, Z.
Если на катушки подать трехфазную симметричную систему напряжений, то в них возникнут токи одинаковой частоты и амплитуды, периодические изменения которых относительно друг друга совершаются с запаздыванием на 1/3 периода Т. Графики изменения токов iA, iB, iC в катушках A-X, B-Y, C-Z представлены на рис. 1.2.
Условимся считать ток в любой катушке положительным, когда он направлен от начала катушки к её концу, и отрицательным, если направление обратное. Построим картину результирующего поля для момента времени t1 (рис. 1.2). Ток в фазе А (катушка A–X) положителен и максимален. Направление тока iA в сторонах катушки при условном разрезе статора обозначено в сечении витка крестиком (движение тока от нас) и точкой (движение тока к нам) (рис. 1.3, а).
Рис. 1.1. Расположение трехкатушечной обмотки в пазах статора | Рис. 1.2. График трехфазной системы токов |
Рис. 1.3. Картина магнитного поля при максимальном положительном токе:
а – катушке А–Х; б – катушке В–Y; в – катушке С–z
Из графиков токов (рис. 1.2) следует, что в рассматриваемый момент времени t1 токи во второй катушке (B–Y) и в третьей (C–Z) отрицательны,
т. е. направлены от концов катушек к их началам. Зная направления токов в сторонах катушек, можно построить приближенную картину результирующего поля, руководствуясь правилом правоходового винта. В рассматриваемый момент времени правая половина внутренней поверхности цилиндрического сердечника представляет собой северный полюс N, а левая – южный полюс S. При этом ось вращающегося магнитного поля располагается по оси той катушки, в которой ток максимален.
Для момента времени t2 ток во второй катушке (B–Y) будет положительным и максимальным, а токи в первой катушке (A–X) и третьей
(C–Z) – отрицательными. Аналогично рассуждая, можно построить картину результирующего поля, показанную на рис. 1.3, б. Из неё видно, что ось магнитного поля занимает новое положение в пространстве, совпадая с осью катушки B–Y.
Также строится картина результирующего поля для момента времени t3, когда ток в третьей катушке положителен и максимален (рис. 1.3, в).
Если изменить порядок чередования токов в катушках обмотки статора на обратный (поменять два вывода катушек их подсоединением к сети), то результирующее магнитное поле изменит своё направление вращения.
Из рассмотренных картин поля, изображенных на рис. 1.3, следует, что в этом двигателе образуется поле с одной парой полюсов (р = 1).
В этом случае ось поля за время периода Т совершает один оборот. При частоте 50 Гц за одну секунду будет совершенно 50 оборотов, а за одну минуту 3000 оборотов.
Принцип получения вращающегося магнитного поля с частотой вращения 1500 оборотов в минуту
Если уложить три катушки не по всей длине поверхности внутри кольцевого сердечника, а только на половине окружности, а во второй половине расположить еще три катушки (рис. 1.4) и эти катушки электрически включить, например, как показано на рис. 1.5, то получим четырехполюсное магнитное поле, картина которого показана для момента времени t1 (см. рис. 1.2).Теперь за один период изменения тока трехфазной системы магнитное поле переместится только на пол-оборота (180°).
Синхронная машина
Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре.
Содержание
Устройство
Основными частями синхронной машины являются якорь и индуктор. Наиболее частым исполнением является такое исполнение, при котором якорь располагается на статоре, а на отделённом от него воздушным зазором роторе находится индуктор.
Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии. Поле якоря оказывает воздействие на поле индуктора и называется поэтому также полем реакции якоря. В генераторах поле реакции якоря создаётся переменными токами, индуцируемыми в обмотке якоря от индуктора.
Индуктор состоит из полюсов — электромагнитов постоянного тока [1] или постоянных магнитов (в микромашинах). Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную. Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока. При неявнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, незаполненное проводниками (так называемый большой зуб). Неявнополюсные конструкции применяются в быстроходных машинах, чтобы уменьшить механическую нагрузку на полюса.
Для уменьшения магнитного сопротивления, то есть для улучшения прохождения магнитного потока применяются ферромагнитные сердечники ротора и статора. В основном они представляют собой шихтованную конструкцию из электротехнической стали (то есть набранную из отдельных листов). Электротехническая сталь обладает рядом интересных свойств. В том числе она имеет повышенное содержание кремния, чтобы повысить её электрическое сопротивление и уменьшить тем самым вихревые токи.
Принцип действия
Двигательный принцип
Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. Обычно якорь расположен на статоре, а индуктор — на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт щетка — кольцо), в маломощных — постоянные магниты. Существует обращённая конструкция двигателей, в которой якорь расположен на роторе, а индуктор — на статоре (в устаревших двигателях, а также в современных криогенных синхронных машинах, в которых в обмотках возбуждения используются сверхпроводники.)
Запуск двигателя. Двигатель требует разгона до частоты, близкой к частоте вращения магнитного поля в зазоре, прежде чем сможет работать в синхронном режиме. При такой скорости вращающееся магнитное поле якоря сцепляется с магнитными полями полюсов индуктора (если индуктор расположен на статоре, то получается, что вращающееся магнитное поле вращающегося якоря (ротора) неподвижно относительно постоянного поля индуктора (статора), если индуктор на роторе, то магнитное поле вращающихся полюсов индуктора (ротора) неподвижно относительно вращающегося магнитного поля якоря (статора)) — это явление называется «вход в синхронизм».
Для разгона обычно используется асинхронный режим, при котором обмотки индуктора замыкаются через реостат или накоротко, как в асинхронной машине, для такого режима запуска в машинах на роторе делается короткозамкнутая обмотка, которая также выполняет роль успокоительной обмотки, устраняющей «раскачивание» ротора при синхронизации. После выхода на скорость близкую к номинальной (>95%) индуктор запитывают постоянным током.
В двигателях с постоянными магнитами применяется внешний разгонный двигатель.
Часто на валу ставят небольшой генератор постоянного тока, который питает электромагниты.
Также используется частотный пуск, когда частоту тока якоря постепенно увеличивают от 0 до номинальной величины. Или наоборот, когда частоту индуктора понижают от номинальной до 0, т.е. до постоянного тока.
Частота вращения ротора [об/мин] остаётся неизменной, жёстко связанной с частотой сети
[Гц] соотношением:
,
где — число пар полюсов ротора.
Синхронные двигатели при изменении возбуждения меняют импеданс с емкостного на индуктивный. Перевозбуждённые СД на холостом ходу применяют в качестве компенсаторов реактивной мощности. Синхронные двигатели в промышленности обычно применяют при единичных мощностях свыше 300 кВт, при меньших мощностях обычно применяется более простой (и надежный) асинхронный двигатель с короткозамкнутым ротором.
Генераторный режим
Обычно синхронные генераторы выполняют с якорем, расположенным на статоре, для удобства отвода электрической энергии. Поскольку мощность возбуждения невелика по сравнению с мощностью, снимаемой с якоря (0,3. 2%), подвод постоянного тока к обмотке возбуждения с помощью двух контактных колец не вызывает особых затруднений. Принцип действия синхронного генератора основан на явлении электромагнитной индукции; при вращении ротора магнитный поток, создаваемый обмоткой возбуждения, сцепляется поочередно с каждой из фаз обмотки статора, индуцируя в них ЭДС. В наиболее распространенном случае применения трехфазной распределенной обмотки якоря в каждой из фаз, смещенных друг относительно друга на 120 градусов, индуцируется синусоидальная ЭДС. Соединяя фазы по стандартным схемам «треугольник» или «звезда», на выходе генератора получают трехфазное напряжение, являющееся общепринятым стандартом для магистральных электросетей.
Частота индуцируемой ЭДС [Гц] связана с частотой вращения ротора
[об/мин] соотношением:
,
где — число пар полюсов ротора.
Часто синхронные генераторы используют вместо коллекторных машин для генерации постоянного тока, подключая их обмотки якоря к трехфазным выпрямителям.
Разновидности синхронных машин
Гидрогенератор — явнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от гидравлической турбины (при низких скоростях вращения 50-600 об/мин).
Турбогенератор — неявнополюсный синхронный генератор, предназначенный для выработки электрической энергии в работе от паровой или газовой турбины при высоких скоростях вращения ротора (6000 (редко), 3000, 1500 об/мин.)
Синхронный компенсатор — синхронный двигатель, предназначенный для выработки реактивной мощности, работающий без нагрузки на валу (в режиме холостого хода); при этом по обмотке якоря проходит практически только реактивный ток. Синхронный компенсатор может работать в режиме улучшения коэффициента мощности или в режиме стабилизации напряжения. Дает ёмкостную нагрузку.
Машина двойного питания (в частности АСМ) — синхронная машина с питанием обмоток ротора и статора токами разной частоты, за счёт чего создаются несинхронные режимы работы
Ударный генератор — синхронный генератор (как правило, трёхфазного тока), предназначенный для кратковременной работы в режиме короткого замыкания (КЗ).
Также существуют безредукторные, шаговые, индукторные, гистерезисные, бесконтактные синхронные двигатели.
СИНХРОННЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА
Синхронные двигатели – это машины переменного тока, преобразующие электрическую энергию в механическое вращение приводного вала.
Их особенность проявляется в синхронном взаимодействии вращающейся ЭДС неподвижного статора с электромагнитным полем подвижного ротора.
Для понимания принципа этого взаимодействия важно ознакомиться с существующими разновидностями синхронных агрегатов и их устройством.
УСТРОЙСТВО И ПРИНЦИП РАБОТЫ СИНХРОННОГО ДВИГАТЕЛЯ
При рассмотрении устройства двигателей синхронного типа выделяются следующие основные части:
- литой корпус агрегата;
- неподвижный статор с комплектом обмоток;
- подвижный ротор с приводным валом;
- контактно-щеточный узел.
Статор или якорь электродвигателя набран из листов электротехнической стали, позволяющей усилить создаваемые в нем магнитные потоки.
В специальных пазах размещаются рабочие обмотки, создающие вращающееся магнитное поле. Кроме того, ротор электродвигателя оснащается обмоткой возбуждения, обеспечивающей электромагнитное взаимодействие с вращающимся полем статора.
При подаче напряжения в подвижном узле формируется собственное э/м поле, приводящее к вращению ротора с приводным валом. Контактные кольца с комплектом щеток необходимы для подачи питания на его обмотки.
Роторные обмотки имеют два исполнения. Первое представлено образцами с явно выраженными полюсами, а второе имеет катушки распределенного типа (в этом варианте они укладываются в пазы ротора). Помимо этого описываемый узел может выполняться в виде короткозамкнутого витка (так называемая «беличья клетка»).
ВИДЫ И ХАРАКТЕРИСТИКИ ДВИГАТЕЛЕЙ СИНХРОННОГО ТИПА
По числу обмоток, используемых для создания вращающегося поля статора, все известные модели синхронных двигателей делятся на:
- однофазные;
- трехфазные устройства.
Последние предназначаются для работы в условиях повышенных напряжений и нагрузок, что характерно для условий промышленного производства. Их полезная мощность порой достигает сотен кВт.
В отличие от них однофазные электродвигатели могут подключаться к бытовым электрическим сетям переменного тока частотой 50 Гц и напряжением 220 Вольт. Как правило, эти устройства имеют мощность в пределах от 5 Вт до 10 кВт.
По рабочей эффективности они существенно уступают своим трехфазным аналогам. Однофазная схема включения заметно снижает КПД двигателя и величину его пускового момента. Вместе с тем агрегаты этого типа способны выдерживать большие перегрузки на валу.
ПРЕИМУЩЕСТВА И НЕДОСТАТКИ СИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ
В сравнении с другими образцами машин переменного тока синхронные имеют следующие бесспорные преимущества:
- постоянство скорости вращения приводного вала при нагрузке, меняющейся в широких пределах;
- высокие показатели кпд и передачи полезной мощности в нагрузку;
- сравнительно низкий коэффициент реактивной составляющей;
- возможность длительной работы в режиме перегрузки;
- меньшая зависимость от колебаний напряжения в питающей сети.
Указанные преимущества и определяют области их применения: мощные вентиляционные системы, конвейерные линии, компрессоры и прокатные станы.
К числу существенных недостатков электродвигателей синхронного типа относят:
- сложность конструкции и сравнительно высокая стоимость;
- технические сложности с запуском электродвигателя в работу;
- потребность в дополнительном источнике постоянного напряжения;
- сложность управления основными параметрами двигателя (скоростью вращения и моментом на валу).
Все перечисленные недостатки синхронных машин переменного тока устраняются за счет использования дополнительных систем плавного запуска. Хорошего результата удается добиться, если для управления работой двигателя используются электронные устройства (частотные преобразователи).
СПОСОБЫ И УСТРОЙСТВА ПЛАВНОГО ПУСКА И УПРАВЛЕНИЯ
Добиться плавного пуска удается за счет использования дополнительного двигателя или же посредством асинхронного запуска.
Первый случай не требует пояснений, а во втором используется принцип асинхронности вращения э/м полей, приводящих к эффекту скольжения на начальном этапе работы. У каждого из этих вариантов имеются свои достоинства и недостатки.
Для эффективного управления режимами работы синхронного двигателя используется зависимость частоты вращения ротора от питающего напряжения.
При заданном значении токовой составляющей такое управление сводится к изменению мощности на валу. Реализовать его удается различными способами, но наиболее эффективными считаются электронные устройства (преобразователи).
Для управления режимами работы применяются современные полупроводниковые компоненты. К последним относятся транзисторы, тиристоры и симисторы.
С помощью этих быстродействующих элементов удается менять величину мощности в нагрузке, используя принципы широтно-импульсного или фазоимпульсного регулирования.
© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.
Принцип работы синхронного двигателя
Каков принцип работы синхронного двигателя? Что вам необходимо знать о нем? Как правильно использовать, чтобы ремонт электродвигателя понадобился как можно позже? Эту статью мы составили специально для наших клиентов (как существующих, так и будущих).
Каково строение синхронного двигателя? Какие основные свойства вам необходимо знать и иметь в виду?
- Оборудование не является самозапускающимся механизмом. Это значит, что для его работы требуется внешнее вмешательство/воздействие. В противном случае система не сможет начать работу на определенной синхронной скорости.
- Системы могут применяться для увеличения фактора силы. Благодаря уникальному строению и функциональным решениям синхронный двигатель может работать в условиях любых коэффициентов мощности.
- Двигатель имеет синхронный с частотой электрической сети принцип работы. Это значит, что на вашем объекте обязательно нужно подумать о наличии бесперебойного источника питания, который позволил бы двигателю работать с постоянной заданной скоростью.
Ключевые характеристики синхронных двигателей
Электромеханическое устройство, способное преобразовать электрическую энергию в механическую — ключевая характеристика. Строение синхронного двигателя мало чем отличается от того же 3-фазного асинхронного двигателя. Основным исключением является разве что принцип подачи постоянного тока (он идет на ротор).
В зависимости от типа подключения можно выделить оборудование 2-х видов:
- Однофазное
- Трехфазное.
Все трехфазные решения дополнительно разделяются на несколько подтипов. К примеру, на рынке представлены синхронные или асинхронные (также можно встретить и другое название – индукционные) решения.
Принцип работы синхронного двигателя
Чтобы вам проще было понять основные направления, мы представим информацию в кратком и схематичном виде. Если у вас появляются вопросы, то смело можете связаться с нашим специалистом. Опытный мастер расскажет о принципе действия, даст ответы на ваши вопросы, разъяснит те моменты, которые показались вам сложными и непонятными.
Мы работаем для того, чтобы вам было удобно!
- Требуется создание электронно-магнитного поля.
- Для этого в оборудовании используется 2 электрических ввода (обмотка и ротор).
- Обмотка статора включает 3 фазы, которые отвечают за процесс вращения магнитного потока.
- На ротор подается постоянный ток, здесь же и производится постоянный поток.
ВАЖНО ЗНАТЬ! Механика проста и понятна: если частота составляет 50 Гц, то в таком случае трехфазному потоку необходимо будет вращаться 3 тысячи оборотов на 60 секунд. Путем простых вычислений становится понятно, что для работы системы нужно 50 оборотов за 1 секунду. Принцип работы синхронного двигателя предусматривает возникновение явления так называемой инерции силы. Чтобы преодолеть ее, требуется сильное механическое воздействие.
Запускаем синхронный двигатель в работу
Оборудование не является самозапускающимся механизмом, о чем мы уже и указывали выше. Для удобства клиентов и заказчиков могут предусматриваться разные способы запуска:
- С помощью вспомогательного двигателя. В таком случае требуется надежное и прочное соединение; как только магнитное поле замыкается, то связь с «запускающим» двигателем прекращается.
- Через асинхронный пуск. Принцип работы синхронного двигателя предусматривает использование дополнительной короткозамкнутой обмотки.
Надеемся, вам стало более понятно и ясно, в каком направлении работать дальше, каких требований и критериев придерживаться.