1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что означает cos на двигателе

Мощность в цепи переменного тока и коэффициент мощности (косинус φ)

—>Мощность в цепи переменного тока и коэффициент мощности (косинус φ)

В профессиональном лексиконе электрика наиболее популярны слова: фаза, ток, напряжение и словосочетание «косинус-фи». Этот «косинус-фи» всегда головная боль заводского энергетика. Попробуем популярно объяснить причину такого уважения электриков к тригонометрической функции cos φ. «Косинус-фи» в электроэнергетике еще называют коэффициентом мощности.
Коэффициент мощности характеризует потребителя электрической энергии с точки зрения наличия в нагрузке реактивной составляющей, при которой переменный ток и напряжение не совпадают по фазе. Коэффициент мощности показывает, насколько переменный ток в нагрузке сдвигается по фазе относительно напряжения на ней (отстает или опережает). Численно коэффициент мощности равен косинусу этого фазового сдвига. В электроэнергетике для коэффициента мощности принято обозначение cos φ (где φ — угол сдвига по фазе между током и напряжением). При наличии в нагрузке реактивной составляющей наряду со значением коэффициента мощности часто указывают и характер нагрузки: активно-ёмкостная или активно-индуктивная. Тогда коэффициент мощности называют соответственно опережающим или отстающим.

Мощность в цепи переменного тока

Для начала следует подробно рассмотреть вопрос электрической мощности. В электрической цепи постоянного тока все просто и достаточно понятно. В такой цепи зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение:

В цепи переменного тока формулы для расчета мощности и само понятие мощности несколько сложнее. В общем случае в электрической цепи синусоидального переменного тока изменение напряжения и тока во времени не совпадают. Или другими словами напряжение и ток не совпадают по фазе. Ток отстает по фазе от напряжения при индуктивной нагрузке, и опережает напряжение при емкостной нагрузке. Только в частном случае, когда нагрузка чисто активная, ток и напряжение совпадает по фазе. В сети переменного тока различают полную, активную и реактивную мощность. Отметим, что само понятие реактивной мощности актуально только для электротехнических устройств переменного тока. Оно никогда не применяется к потребителям постоянного тока в силу малости (мизерности) соответствующих эффектов, проявляющихся кратковременно только при переходных процессах (включении/выключении, регулирование, изменение нагрузки).
Полная мощность в цепи переменного тока (для однофазной нагрузки) равна произведению действующего значения тока на действующее значение напряжения (измеряется в ВА , кВА – вольт-амперах, кило вольт-амперах)
.
Полная мощность представляет практический интерес, как величина, определяющая фактические электрические нагрузки на обмотки, провода, кабели, аппаратуру распределительных щитов, силовые трансформаторы, линии электропередач. Собственно поэтому номинальная мощность генераторов и трансформаторов, нагрузки аппаратов распределительных щитов и пропускная способность линий электропередач указывается в вольт-амперах, а не в ваттах.
Полная мощность состоит из двух составляющих – активной Р, и реактивной Q мощности. Активная мощность это та часть электрической энергии выработанной генератором, которая безвозвратно преобразуется в тепловую (лампы накаливания, электроплиты, электропечи сопротивления, потери в трансформаторах и линиях электропередачи) или в механическую (электрические двигатели) энергию. Активная мощность измеряется в Вт, кВт (ватт, киловатт). Активную мощность можно определить по следующей формуле (для однофазной нагрузки):

Вот здесь и появляется знаменитый cos φ
.
Если ток совпадает по фазе с приложенным напряжением то угол φ = 0, и соответственно cos φ =1. Для электрической сети это оптимальный вариант. В этом случае полная мощность равна активной мощности и вся электрическая энергия в нагрузке превращается в другие виды энергии. Например, в электрочайнике – в тепловую энергию.
Чаще потребители электрической энергии имеют обмотки и магнитопроводы (электрические двигатели, трансформаторы, дроссели газорязрядных ламп, пускатели и реле) необходимые для их нормальной работы. В общем случае такая нагрузка называется индуктивной. При чисто индуктивной нагрузке ток отстает от напряжения на угол φ = 90О , при котором cos φ = 0 и активная мощность также P = 0. Для характеристики таких потребителей в электротехнике введено понятие реактивной мощности:
.
Реактивная мощность измеряется в Вар, кВАр (вольт-амперах реактивных, кило вольт-амперах реактивных). Кстати, реактивную мощность можно измерить с помощью счетчика реактивной энергии, также как и активную счетчиком активной энергии.
Названа мощность реактивной совсем не по аналогии с «ракетой». Мы помним, что в физике термин «реактивный» обычно употребляется как связанный с возникновением движения под действием силы отдачи струи пара, газа и т. п., вытекающей с большой скоростью в противоположную силе отдачи сторону. В электротехнике это элемент электрической цепи, обладающий индуктивностью и/или электрической ёмкостью, и термин реактивный употребляется для характеристики элемента электрической цепи, обладающего этими свойствами.
Источниками реактивной мощности в сети переменного тока являются катушки индуктивности и конденсаторы. Физически реактивная мощность, это мощность, которая накапливается в электрических и магнитных полях. При наличии в сети индуктивности и, например, статического конденсатора электромагнитная энергия в один полупериод изменения тока накапливается в электромагнитном поле катушки индуктивности, в следующий полупериод возвращается конденсатору, где накапливается в его электрическом поле, а затем возвращается обратно к индуктивности. Следует понимать, что реактивная мощность не расходуется на выполнение работы электротехнического устройства (нагрев, выполнение механической работы) но она необходима для его нормальной работы. Так в трансформаторе электрическая энергия передается с первичной обмотки во вторичную цепь посредством электромагнитного поля, для создания которого и необходима реактивная мощность. Преобразование электрической энергии в асинхронном электродвигателе осуществляется с помощь того же электромагнитного поля, и снова для его создания также требуется источник реактивной мощности. На генерацию активной мощности расходуются первичные энергоресурсы – газ, мазут, уголь, энергия ветра или падающей воды. Поскольку каждые полпериода переменного тока накопленная в магнитном поле реактивная энергия отдается обратно в источник (синхронный генератор, конденсатор) то в идеале на генерацию реактивной мощности не требуется расход первичного энергоносителя. Однако при более глубоком рассмотрении оказывается, что реактивная энергия не такая уж безобидная. На генерацию реактивной мощности все- таки требуется расходовать некоторое количество первичного энергоносителя для покрытия механических и электрических потерь в генераторах, диэлектрических потерь в конденсаторах. Кроме того при передаче реактивной энергии в линиях и трансформаторах возникают потери на нагрев. Еще одна неприятность состоит в том, что генерация и передача реактивной энергии требует увеличения установленной мощности генераторов, увеличения сечения проводов и мощности трансформаторов, т. е. связана с большими экономическими затратами.
В энергетической системе источниками реактивной мощности могут быть синхронные генераторы, синхронные компенсаторы, перевозбужденные синхронные двигатели и конденсаторы. Решение о способе компенсации реактивной мощности всегда необходимо принимать на основе технико–экономического анализа.
Большинство потребителей электрической энергии имеют обмотки на магнитопроводах, т.е. представляют собой индуктивность. Чисто условно принято говорить, что они потребляют положительную реактивную мощность. Реактивная мощность статических конденсаторов отрицательна и принято говорить, что они генерируют реактивную мощность. Синхронные генераторы в зависимости от величины тока возбуждения могут, как производить, так и потреблять реактивную мощность. Т.е. ведут себя относительно электрической сети как емкость или как индуктивность. То же можно сказать и о синхронных двигателях и синхронных компенсаторах. Впрочем, есть класс синхронных машин – реактивные машины, которые такой способностью не обладают.
Численное значение коэффициента мощности электроустановок переменного тока может находится в диапазоне от 0,05-0,1 для трансформаторов в режиме холостого хода до 1,0 для нагревательных электроприборов и ламп накаливания. Коэффициент мощности асинхронных электродвигателей при номинальной нагрузке может быть 0,7 – 0,9 и зависит от номинальной мощности, конструктивного исполнения, а также числа полюсов. Маломощные и тихоходные (многополюсные) двигатели отличаются пониженным значением cos φ . С уменьшением загрузки двигателей и трансформаторов их cos φ также значительно уменьшается.

Читать еще:  Характеристика двигателя на митсубиси мираж

Измерение коэффициента мощности
Для прямого измерения cos φ и фазы применяются специальные электроизмерительные приборы — фазометры.

При отсутствии таких приборов коэффициент мощности можно определить косвенным методом по показаниям трех приборов :амперметра, вольтметра и ваттметра. Тогда в однофазной цепи
cos φ = P / (U х I),
где Р, U, I — показания ваттметра, вольтметра и амперметра, соответственно.
В симметричной трехфазной цепи
cos φ = Pw / (√3 х Uл х Iл);
где Pw – активная мощность трехфазной системы,
Uл, Iл – соответственно линейные напряжение и ток.
В симметричной трехфазной цепи значение коэффициента мощности можно определить также по показаниям двух ваттметров Pw1 и Pw2 по формуле

Коэффициент мощности величина не постоянная, он зависит от характера и величины нагрузки. Для асинхронного двигателя изменение нагрузки от нуля до номинальной приводит к изменению cos φ от 0,1 на холостом ходу до 0,86 — 0,87 при номинальной нагрузке. Для практических целей расчета мощности компенсирующих устройств в электрических сетях используют средневзвешенный коэффициент мощности за некоторый интервал времени — сутки или месяц. Для этого за рассматриваемый период снимают показания счетчиков активной и реактивной энергии Wa и Wр и расчитывают средневзвешенный коэффициент мощности по формуле

Компенсация реактивной мощности
Для уменьшения потерь, устранения перегрузок трансформаторов и линий электропередач прибегают к искусственному повышению коэффициента мощности электрических установок путем компенсации реактивной мощности непосредственно у потребителей с помощью батарей статических конденсаторов.

Энергетическая диаграмма, иллюстрирующая передачу электрической энергии между генератором Г и потребителем Д, потребляющим активную и реактивную энергию. а) — при отсутствии компенсатора, б) — при наличии его (батарея статических конденсаторов С) . Синим цветом показано поток активной энергии, красным – реактивной.

Читать еще:  Бав феникс двигатель плохо заводится

Итак, потребители переменного тока имеют такой параметр, как коэффициент мощности cosφ.

На графике ток сдвинут на 90° (для наглядности), то есть на четверть периода. Например, электрооборудование имеет cosφ = 0,8, что соответствует углу arccos 0,8 ≈ 36.8°. Этот сдвиг происходит из-за наличия в потребителе электроэнергии нелинейных компонентов – ёмкостей и индуктивностей (например, обмотки электродвигателей, трансформаторов и электромагнитов).

Для дальнейшего понимания происходящего требуется учет того факта, что, чем выше коэффициент мощности (максимум 1), тем более эффективно потребитель использует получаемую из сети электроэнергию (то есть большее количество энергии преобразуется в полезную работу) – такую нагрузку называют резистивной.

При резистивной нагрузке ток в цепи совпадает с напряжением. А при низком коэффициенте мощности нагрузку называют реактивной, то есть часть потребляемой мощности не совершает полезной работы.

Таблица ниже демонстрирует классификацию потребителей по коэффициенту мощности.

Классификация потребителей переменного тока

Следующая таблица демонстрирует коэффициент мощности распространённых в быту потребителей электроэнергии.

Коэффициент мощности бытовых электроприборов

Юмор электрика

Что такое реактивная мощность? Все очень просто!

Способы компенсации реактивной мощности

Из сказанного выше вытекает, если нагрузка индуктивная, то следует компенсировать ее с помощью емкостей (конденсаторов) и наоборот емкостную нагрузку компенсируют с помощью индуктивностей (дросселей и реакторов). Это помогает увеличить косинус фи (cos φ) до приемлемых значений 0.7-0.9. Этот процесс называется компенсацией реактивной мощности.

Экономический эффект от компенсации реактивной мощности

Экономический эффект от внедрения установок компенсации реактивной мощности может быть очень большим. По статистике он составляет от 12 до 50% от оплаты электроэнергии в различных регионах России. Установка компенсации реактивной мощности окупается не более чем за год.

Для проектируемых объектов внедрение конденсаторной установки на этапе разработки позволяет экономить на стоимости кабельных линий за счет снижения их сечения. Автоматическая конденсаторная установка, например, может поднять cos φ с 0.6 до 0.97.

Выводы

Итак, установки по компенсации реактивной мощности приносят ощутимые финансовые выгоды. Они также позволяют дольше сохранять оборудование в рабочем состоянии.

Вот несколько причин, по которым это происходит.

1. Уменьшение нагрузки на силовые трансформаторы, увеличение в связи с этим срока их службы.

2. Уменьшение нагрузки на провода и кабели, возможность использования кабелей меньшего сечения.

3. Улучшение качества электроэнергии у электроприемников.

4. Ликвидация возможности штрафов за снижение cos φ.

5. Уменьшение уровня высших гармоник в сети.

6. Снижение уровня потребления электроэнергии.

Для чего необходима компенсация реактивной мощности?

Основной нагрузкой в промышленных электросетях являются асинхронные электродвигатели и распределительные трансформаторы. Эта индуктивная нагрузка в процессе работы является источником реактивной электроэнергии (реактивной мощности), которая совершает колебательные движения между нагрузкой и источником (генератором), не связана с выполнением полезной работы, а расходуется на создание электромагнитных полей и создает дополнительную нагрузку на силовые линии питания. Поэтому очень важен компенсатор реактивной мощности.

Реактивная мощность характеризуется задержкой (в индуктивных элементах ток по фазе отстает от напряжения) между синусоидами фаз напряжения и тока сети. Показателем потребления реактивной мощности является коэффициент мощности (КМ), численно равный косинусу угла (ф) между током и напряжением. КМ потребителя определяется как отношение потребляемой активной мощности к полной, действительно взятой из сети, т.е.: cos(ф) = P/S. Этим коэффициентом принято характеризовать уровень реактивной мощности двигателей, генераторов и сети предприятия в целом. Чем ближе значение cos(ф) к единице, тем меньше доля взятой из сети реактивной мощности.

Пример: при cos(ф) = 1 для передачи 500 KW в сети переменного тока 400 V необходим ток значением 722 А. Для передачи той же активной мощности при коэффициенте cos(ф) = 0,6 значение тока повышается до 1203 А.

Соответственно все оборудование питания сети, передачи и распределения энергии должны быть рассчитаны на большие нагрузки. Кроме того, в результате больших нагрузок срок эксплуатации этого оборудования может соответственно снизиться. Дальнейшим фактором повышения затрат является возникающая из-за повышенного значения общего тока теплоотдача в кабелях и других распределительных устройствах, в трансформаторах и генераторах. Возьмем, к примеру, в нашем выше приведенном случае при cos(ф) = 1 мощность потерь равную 10 KW. При cos(ф) = 0,6 она повышается на 180% и составляет уже 28 KW. Таким образом, наличие реактивной мощности является паразитным фактором, неблагоприятным для сети в целом.

В результате этого:

  • возникают дополнительные потери в проводниках вследствие увеличения тока;
  • снижается пропускная способность распределительной сети;
  • отклоняется напряжение сети от номинала (падение напряжения из-за увеличения реактивной составляющей тока питающей сети).

Все сказанное выше является основной причиной того, что предприятия электроснабжения требуют от потребителей снижения доли реактивной мощности в сети. Решением данной проблемы является компенсация реактивной мощности – важное и необходимое условие экономичного и надежного функционирования системы электроснабжения предприятия. Эту функцию выполняют устройства компенсации реактивной мощности КРМ-0,4 (УКМ-58) - конденсаторные установки, основными элементами которых являются конденсаторы.

Правильная компенсация позволяет:

  • снизить общие расходы на электроэнергию;
  • уменьшить нагрузку элементов распределительной сети (подводящих линий, трансформаторов и распределительных устройств), тем самым продлевая их срок службы;
  • снизить тепловые потери тока и расходы на электроэнергию;
  • снизить влияние высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • добиться большей надежности и экономичности распределительных сетей.

Кроме того, в существующих сетях

  • исключить генерацию реактивной энергии в сеть в часы минимальной нагрузки;
  • снизить расходы на ремонт и обновление парка электрооборудования;
  • увеличить пропускную способность системы электроснабжения потребителя, что позволит подключить дополнительные нагрузки без увеличения стоимости сетей;
  • обеспечить получение информации о параметрах и состоянии сети.

А во вновь создаваемых сетях - уменьшить мощность подстанций и сечения кабельных линий, что снизит их стоимость.

Зачем компенсировать реактивную мощность?

Реактивная мощность и энергия ухудшают показатели работы энергосистемы, то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива; увеличиваются потери в подводящих сетях и приемниках; увеличивается падение напряжения в сетях.

Читать еще:  Блок картера двигателя из чего состоит

Реактивный ток дополнительно нагружает линии электропередачи, что приводит к увеличению сечений проводов и кабелей и соответственно к увеличению капитальных затрат на внешние и внутриплощадочные сети.

Компенсация реактивной мощности, в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения практически на любом предприятии.

По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает величину порядка 30-40% в стоимости продукции. Это достаточно веский аргумент, чтобы руководителю со всей серьезностью подойти к анализу и аудиту энергопотребления и выработке методики компенсации реактивной мощности. Компенсация реактивной мощности – вот ключ к решению вопроса энергосбережения.

Основные потребители реактивной мощности:

  • асинхронные электродвигатели, которые потребляют 40% всей мощности совместно с бытовыми и собственными нуждами;
  • электрические печи 8%;
  • преобразователи 10%;
  • трансформаторы всех ступеней трансформации 35%;
  • линии электропередач 7%.

В электрических машинах переменный магнитный поток связан с обмотками. Вследствие этого в обмотках при протекании переменного тока индуктируются реактивные э.д.с. обуславливающие сдвиг по фазе (fi) между напряжением и током. Этот сдвиг по фазе обычно увеличивается, а косинус фи уменьшается при малой нагрузке. Например, если косинус фи двигателей переменного тока при полной нагрузке составляет 0,75-0,80, то при малой нагрузке он уменьшится до 0,20-0,40.

Мало нагруженные трансформаторы также имеют низкий коэффициент мощности (косинус фи). Поэтому, применять компенсацию реактивной мощности, то результирующий косинус фи энергетической системы будет низок и ток нагрузки электрической, без компенсации реактивной мощности, будет увеличиваться при одной и той же потребляемой из сети активной мощности. Соответственно при компенсации реактивной мощности (применении автоматических конденсаторных установок КРМ) ток потребляемый из сети снижается, в зависимости от косинус фи на 30-50%, соответственно уменьшается нагрев проводящих проводов и старение изоляции.

Кроме этого, реактивная мощность наряду с активной мощностью учитывается поставщиком электроэнергии, а следовательно, подлежит оплате по действующим тарифам, поэтому составляет значительную часть счета за электроэнергию.

Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок).

Использование конденсаторных установок для компенсации реактивной мощности позволяет:

  • разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
  • снизить расходы на оплату электроэнергии
  • при использовании определенного типа установок снизить уровень высших гармоник;
  • подавить сетевые помехи, снизить несимметрию фаз;
  • сделать распределительные сети более надежными и экономичными.

продольная и поперечная компенсация реактивной мощности

Дополнительная информация, консультации, цены

Мы предложим эффективное и экономичное решение. Воспользуйтесь опытом наших технических специалистов - заполните форму справа, или позвоните.

Расчет, производство и поставка конденсаторных установок. Установки компенсации реактивной мощности, в наличии и под заказ.

Что означает cos на двигателе

§ 75. Коэффициент мощности ("косинус фи")

Коэффициентом мощности, или "косинусом фи" (cos φ), цепи называется отношение активной мощности к полной мощности.

Коэффициент мощности =активная мощность
полная мощность

В общем случае активная мощность меньше полной мощности, т. е. у этой дроби числитель меньше знаменателя, и поэтому коэффициент мощности меньше единицы.

Только в случае чисто активной нагрузки, когда вся мощность является активной, числитель и знаменатель этой дроби равны между собой, и поэтому коэффициент мощности равен единице.

Чем большую часть полной мощности составляет активная мощность, тем меньше числитель отличается от знаменателя дроби и тем ближе коэффициент мощности к единице.

Величину cos φ можно косвенно определить по показаниям ваттметра, вольтметра и амперметра:

Коэффициент мощности можно также измерить особым прибором - фазометром.

Пример 14. Амперметр показывает ток 10 а, вольтметр - 120 в, ваттметр - 1 квт. Определить cos φ потребителя:

Пример 15. Определить активную мощность, отдаваемую генератором однофазного переменного тока в сеть, если вольтметр на щите генератора показывает 220 в, амперметр - 20 а и фазометр - 0,8:

Пример 16. Вольтметр, установленный на щитке электродвигателя, показывает 120 в, амперметр - 450 а, ваттметр - 50 квт. Определить z, r, xL, S, cos φ, Q:

Так как Р = I 2 ⋅ r, то

Из построения треугольников сопротивлений, напряжений и мощностей для определенной цепи видно, что эти треугольники подобны один другому, так как их стороны пропорциональны. Из каждого треугольника можно найти "косинус фи" цепи, как показано на рис. 168. Этим можно воспользоваться для решения самых разнообразных задач.


Рис. 168. Определение коэффициента мощности из треугольников сопротивлений (а), напряжений (б) и мощностей (в)

Пример 17. Определить z, xL, U, Uа, UL, S, Р, Q, если I = 6 а, r = 3 ом, cos φ = 0,8 и ток отстает по фазе от напряжения.

Из треугольника сопротивлений известно, что

Основными потребителями электрической энергии являются электрические двигатели, машины и электронагревательные устройства. Все они потребляют активную мощность, которую преобразуют в механическую работу и тепло. Электрические двигатели потребляют также реактивную мощность. Последняя, как известно, совершает колебательное движение от источника к двигателю и обратно.

У ламп и электрических печей сопротивления S = Р и cos φ = 1. У электрических двигателей S = √(P 2 + Q 2 ) и cos φ меньше 1.

При неизменной передаваемой активной мощности Р величина нагрузочного тока обратно пропорциональна значению cos φ:

Это означает, что при тех же значениях активной мощности Р и напряжения U нагрузочный ток электрических двигателей больше, чем у электрических ламп. Если, например, коэффициент мощности электрического двигателя равен 0,5, то он потребляет в 2 раза больший ток, чем электрическая печь сопротивления той же мощности Р.

Потери мощности на нагрев проводов линии пропорциональны квадрату тока (ΔР = I 2 r).

Таким образом, при cos φ = 0,5 потери мощности в линии, по которой энергия передается потребителям, больше в 4 раза, чем при cos φ = 1. Кроме того, генераторы и трансформаторы будут загружены током в 2 раза больше и в этом случае требуется примерно в 2 раза большее сечение проводов для обмоток.

Отсюда видно, какое важное значение имеет величина cos φ в электроэнергетических установках. Для повышения коэффициента мощности промышленных установок, на которых преобладающая часть потребителей - электрические двигатели, параллельно им включают конденсаторы, т. е. добиваются резонанса токов, при котором cos φ близок к 1.

Ссылка на основную публикацию
Adblock
detector