0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Частотное управление асинхронным однофазным двигателем схема

Подбор однофазного преобразователя частоты

Применение преобразователя частоты для управления однофазными асинхронными двигателями позволяет улучшить качество работы двигателя, а также в разы повысить срок его службы. При этом значительно снижается расход электроэнергии для работы управляемого двигателя.

Однофазные преобразователи частоты производителей INNOVERT, INSTART, Delta, Siemens, Lenze, Mitsubishi представляют собой функциональные и надежные решения для управления двигателями.

Области применения однофазных преобразователей частоты

Однофазные преобразователи частоты успешно применяются в следующих отраслях:

  • Пищевая промышленность;
  • Металлургическая промышленность;
  • Добыча, переработка;
  • Фармацевтическая промышленность;
  • Деревообрабатывающая промышленность;
  • Гражданская отрасль и т.д.

В целом, однофазные преобразователи применяются там, где используются следующие виды оборудования:

  • Конвейеры, экструдеры;
  • Промышленные вентиляторы и кондиционеры воздуха;
  • Насосное оборудование;
  • Различные станки и металлообрабатывающее оборудование;
  • Лифты, эскалаторы;
  • Упаковочные и фасовочные машины и т.д.

Особенности частотных преобразователей однофазных

Главное отличие однофазного преобразователя от трехфазного, это возможность запуска и управления трехфазного асинхронного двигателя от бытовой сети 220 вольт. При этом двигатель подключается по схеме треугольник, что позволяет избежать потерь мощности.

Еще одним отличием является цена. Однофазные преобразователи намного дешевле и отлично подходят для управления двигателями небольших мощностей.

Преимущества однофазных преобразователей частоты

Ключевыми преимуществами однофазных преобразователей частоты можно назвать следующее:

  • компактный размер;
  • высокий коэффициент энергосбережения;
  • значительное улучшение вращающего момента двигателя;
  • широкий модельный ряд;
  • наличие высокого функционала;
  • наличие специальных исполнений для определенных видов оборудования;
  • защита двигателя;
  • отличное соотношение цена/качество.

Недостатки

Прямыми недостатками данный вид преобразователей не обладает. Некоторыми ограничениями обладают определенные модели ПЧ, что связанно с их узкой направленностью. В зависимости от необходимого для вашей задачи функционала будет зависеть и цена однофазного преобразователя частоты.

Это следует учитывать при выборе преобразователя для решения конкретной задачи.

Принцип работы однофазных преобразователей частоты

Принцип действия однофазных преобразователей частоты такой же, как и для трехфазных, а именно:

  • выпрямление напряжения сети (2);
  • фильтрация, которая сглаживает сигнал (3);
  • управляющий микропроцессор попеременно открывает/закрывает IGBT транзисторы, тем самым формируя сигнал необходимой частоты (4);
  • последовательность прямоугольных сигналов сглаживается благодаря индуктивности обмоток и приобретает синусоидальную форму(5).

Преобразователи частоты для однофазных асинхронных двигателей очень просто внедряются в уже существующие системы. ПЧ в таком случае выступает в роли промежуточного звена между питающей сетью и двигателем. После подключения требуется лишь задать настройки, оптимизирующие работу двигателя.

Выбор однофазных преобразователей частоты

Широкий выбор преобразователей частоты для однофазных двигателей позволяет очень точно подобрать модель для решения конкретной задачи. Для этого требуется обратить особое внимание на следующее:

  • Параметры управляемого однофазного двигателя (тип, мощность);
  • Тип рабочего оборудования (у многих частотников имеется своя специализация);
  • Функциональные параметры (режимы работы, выходы и т.д.);
  • Конструкционные параметры.

Чтобы купить однофазный преобразователь частоты, позвоните по бесплатному номеру или заполните анкету, нажав на «Заказать звонок». Наш специалист проконсультирует вас, а также сориентирует по цене и наличию на складе.

Подключение электродвигателя

Подключение асинхронного двигателя

Трехфазный переменный ток

Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным преимуществом трехфазной системы по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.

Трехфазный ток (разница фаз 120°)

Звезда и треугольник

Трехфазная обмотка статора электродвигателя соединяется по схеме «звезда» или «треугольник» в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

Фазное напряжение — разница потенциалов между началом и концом одной фазы. Другое определение: фазное напряжение это разница потенциалов между линейным проводом и нейтралью.

Линейное напряжение — разность потенциалов между двумя линейными проводами (между фазами).

ЗвездаТреугольникОбозначение
Uл, Uф — линейное и фазовое напряжение, В
Iл, Iф — линейный и фазовый ток, А
S — полная мощность, Вт
P — активная мощность, Вт

S = 1,73∙380∙1 = 658 Вт.

Теперь изменим схему соединения на «треугольник», линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы «треугольник» будет в три раза больше линейного тока схемы «звезда». А следовательно и потребляемая мощность будет в 3 раза больше:

S = 1,73∙380∙3 = 1975 Вт.

Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме «звезда», подключение данного электродвигателя по схеме «треугольник» может привести к его поломке.

Если в нормальном режиме электродвигатель подключен по схеме «треугольник», то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.

Читать еще:  Характеристика дизельного двигателя д 144

Подключение электродвигателя по схеме звезда и треугольник

Обозначение выводов статора трехфазного электродвигателя

Схема соединения обмоток, наименование фазы и выводаОбозначение вывода
НачалоКонец
Открытая схема (число выводов 6)
первая фазаU1U2
вторая фазаV1V2
третья фазаW1W2
Соединение в звезду (число выводов 3 или 4)
первая фазаU
вторая фазаV
третья фазаW
точка звезды (нулевая точка)N
Соединение в треугольник (число выводов 3)
первый выводU
второй выводV
третий выводW
Схема соединения обмоток, наименование фазы и выводаОбозначение вывода
НачалоКонец
Открытая схема (число выводов 6)
первая фазаC1C4
вторая фазаC2C5
третья фазаC3C6
Соединение звездой (число выводов 3 или 4)
первая фазаC1
вторая фазаC2
третья фазаC3
нулевая точка
Соединение треугольником (число выводов 3)
первый выводC1
второй выводC2
третий выводC3

Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента

Трехфазные асинхронные электродвигатели могут быть подключены к однофазной сети с помощью фазосдвигаюших элементов. При этом электродвигатель будет работать либо в режиме однофазного двигателя с пусковой обмоткой (рисунок а, б, г) либо в режиме конденсаторного двигателя с постоянно включенным рабочим конденсатором (рисунок в, д, е).

Схемы подключения трехфазного асинхронного электродвигателя к однофазной сети

Схемы приведенные на рисунке «а», «б», «д» применяются, когда выведены все шесть концов обмотки. Электродвигатели с соединением обмоток согласно схемам «а», «б», «г» практически равноценны двигателям, которые спроектированы как однофазные электродвигатели с пусковой обмоткой. Номинальная мощность при этом состовляет 40-50% от мощности в трехфазном режиме, а при работе с рабочим конденсатором 75-80%.

Емкость рабочего конденсатора при частоте тока 50 Гц для схем «в», «д», «е» примерно рассчитывается соответственно по формулам:

  • ,где Cраб — емкость рабочего конденсатора, мкФ,
  • Iном – номинальный (фазный) ток статора трехфазного двигателя, А,
  • U1 – напряжение однофазной сети, В.

Управление асинхронным двигателем

Прямое подключение к сети питания

Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.

С помощью магнитных пускателей можно реализовать схему:

  • нереверсивного пуска: пуск и остановка;
  • реверсивного пуска: пуск, остановка и реверс.

Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.

Нереверсивная схема

Нереверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитный пускатель
L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, SB1 — кнопка остановки, SB2 — кнопка пуска, KM1 — магнитный пускатель, KK1 — тепловое реле, HL1 — сигнальная лампа, M — трехфазный асинхронный двигатель

Реверсивная схема

Реверсивная схема подключения трехфазного асинхронного электродвигателя к трехфазной сети переменного электрического тока через магнитные пускатели
L1, L2, L3 — контакты для подключения к сети трехфазного переменного тока, QF1 — автоматический выключатель, KM1, KM2 — магнитные пускатели, KK1 — тепловое реле, Mм — трехфазный асинхронный двигатель, SB1 — кнопка остановки, SB2 — кнопка пуска «вперед», SB3 — кнопка пуска «назад» (реверс), HL1, HL2 — сигнальные лампы

Частотное управление асинхронным электродвигателем

Для регулирования скорости вращения и момента асинхронного двигателя используют частотный преобразователь. Принцип действия частотного преобразователя основан на изменении частоты и напряжения переменного тока.

Функциональная схема частотно-регулируемого привода

    В зависимости от функционала частотные преобразователи реализуют следующие методы регулирования асинхронным электродвигателем:
  • скалярное управление;
  • векторное управление.

Скалярное управление является простым и дешевым в реализации, но имеет следующие недостатки — медленный отклик на изменение нагрузки и небольшой диапазон регулирования. Поэтому скалярное управление обычно используется в задачах, где нагрузка либо постоянна, либо изменяется по известному закону (например, управление вентиляторами).

Скалярное управление асинхронным двигателем с датчиком скорости

Векторное управление используется в задачах, где требуется независимо управлять скоростью и моментом электродвигателя (например, лифт), что, в частности, позволяет поддерживать постоянную скорость вращения при изменяющемся моменте нагрузки. При этом векторное управление является самым эффективным управлением с точки зрения КПД и увеличения времени работы электродвигателя.

Среди векторных методов управления асинхронными электродвигателями наиболее широкое применение получили: полеориентированное управление и прямое управление моментом.

Полеориентированное управления асинхронным электродвигателем по датчику положения ротора

Полеориентированное управление позволяет плавно и точно управлять параметрами движения (скоростью и моментом), но при этом для его реализации требуется информация о направлениии вектора потокосцепления ротора двигателя.

    По способу получения информации о положении потокосцепления ротора электродвигателя выделяют:
  • полеориентированное управление по датчику;
  • полеориентированное управление без датчика: положение потокосцепления ротора вычисляется математически на основе той информации, которая имеется в частотном преобразователе (напряжение питания, напряжения и токи статора, сопротивление и индуктивность обмоток статора и ротора, количество пар полюсов двигателя).
Читать еще:  405 двигатель проверка датчика холостого хода

Полеориентированное управления асинхронным электродвигателем без датчика положения ротора

Прямое управление моментом имеет простую схему и высокую динамику работы, но при этом высокие пульсации момента и тока.

Работа частотника с однофазным двигателем

В силу ряда причин однофазные двигатели получили широкое распространение в быту. Их, как и трехфазные приводы, можно подключать через преобразователи частоты, при этом сохраняются все преимущества такой схемы подключения — плавный разгон и замедление, установка любой скорости вращения, контроль за током и моментом на валу, защита. Однако подключение однофазных двигателей имеет свои особенности, о которых мы и расскажем ниже.

Электродвигатель

В статье пойдет речь об однофазных асинхронных электродвигателях, имеющих два вывода питания и питающее напряжение 220 или 380 В при номинальной частоте 50 Гц. Как правило, такие агрегаты имеют в своей схеме пусковой либо фазосдвигающий конденсатор.

Частотный преобразователь

По способу подключения питания на входные клеммы различают однофазные и трехфазные частотники. При этом однофазные частотные преобразователи питаются фазным напряжением 220 В, трехфазные – линейным 380 В. Однако на выходе ПЧ обычно вырабатывается трехфазное напряжение со сдвигом фаз 120°, величина которого ограничена напряжением питания на входе.


Однофазный и трехфазный преобразователи SIEMENS Micromaster 420

В контексте однофазных двигателей преобразователи частоты можно условно разделить на три группы:

  1. Преобразователи, специально предназначенные для однофазных двигателей.
  2. Преобразователи с опциональной возможностью подключения однофазных двигателей, при этом необходимо использовать соответствующие настройки и схему подключения.
  3. Преобразователи без возможности подключения однофазного двигателя.

Мы рассмотрим частотники из второй группы.

Обратите внимание! Не стоит путать преобразователи с однофазным питанием по входу с частотниками, имеющими однофазный выход. Возможны комбинации, когда преобразователь с однофазным питанием имеет на выходе 3 фазы с напряжением 220 В, либо когда ПЧ с трехфазным питанием выдает на однофазный двигатель напряжение 220 или 380 В.

Особенности подключения

Как было сказано выше, не каждый частотный преобразователь может работать с однофазным двигателем, поскольку при его подключении третья (неподключенная) фаза фактически будет в обрыве, что вызовет ошибку. Поэтому необходимо внимательно ознакомиться с документацией к ПЧ — производитель должен явно указать, что имеется возможность подключения и работы однофазной нагрузки.

Поскольку однофазный двигатель содержит конденсатор, при изменении рабочей частоты не удастся обеспечить нужный сдвиг фаз, и двигатель на пониженных частотах (менее 30 Гц) будет перегреваться. Это следует учитывать при выборе диапазона рабочих частот и способа охлаждения привода.

При однофазном подключении двигателя оперативный реверс через панель управления или настройки ПЧ невозможен. Поменять направление вращения можно, изменив схему подключения обмоток внутри двигателя.

Настройка преобразователя частоты

При настройке частотника нужно обратить внимание на следующие моменты:

  • По возможности ограничить время разгона и торможения с целью уменьшения нагрева ПЧ и двигателя. Тоже самое касается и количества циклов включения/выключения в единицу времени.
  • Выбрать скалярный режим частотного управления.
  • Отключить контроль обрыва фаз на выходе ПЧ.
  • Перед первым пуском обязательно провести автоматическую настройку (адаптацию) согласно инструкции.

Здесь нужно обратить внимание на один важный момент. Однофазный двигатель имеет КПД ниже, чем трехфазный с теми же параметрами. Это следует учитывать при выборе пары ПЧ/двигатель. Для повышения КПД и уменьшения нагрева можно экспериментально выставить точки на вольт-частотном графике. Как вариант, можно отключить пусковой конденсатор, а выводы от пусковой и рабочей обмоток подключить к выходу трехфазного преобразователя. Далее провести настройку, как указано выше.

Переделка однофазного двигателя в трехфазный

Нередко однофазный асинхронный двигатель на деле оказывается трехфазным. Его переделка на одну фазу обычно связана с ограничениями по питанию, которое в некоторых локациях может быть только однофазным.

Перед тем, как подключать однофазный двигатель к ПЧ, можно проверить возможность его работы на трех фазах. Для этого нужно вскрыть борно, определить тип двигателя и его исходную схему. Чаще всего выясняется, что привод имеет трехфазное питание с линейным напряжением 220 В и собран по схеме «Треугольник», при этом для обеспечения его работы от одной фазы применяют фазосдвигающий конденсатор. Следовательно, достаточно исключить из схемы конденсатор и запускать двигатель по обычной трехфазной схеме.

Частотное регулирование однофазного асинхронного двигателя

Частотное управление электроприводами активно развивается и все чаще можно услышать о новом методе управления, или улучшенном частотнике, или о внедрении частотного электропривода в какой-то сфере, где ранее никто и подумать не мог что это возможно. Но это факт!

Если мы внимательно рассмотрим электродвигатели, к которым применяют частотное регулирование – то это асинхронные или синхронные трехфазные двигатели. Существует несколько разновидностей преобразователей частоты. Но ведь есть и однофазные асинхронные машины, почему прогресс не касается их? Почему частотное управление не применяют так активно к однофазным машинам? Давайте рассмотрим.
Содержание:

Читать еще:  Давление в цилиндре дизельного двигателя камаз

Принцип работы однофазной асинхронной машины

При однофазном питании асинхронника в нем вместо вращающегося магнитного поля возникает пульсирующее, которое можно разложить на два магнитных поля, которые будут вращаться в разные стороны с одинаковой частотой и амплитудой. При остановленном роторе электродвигателя данные поля создадут моменты одинаковой величины, но различного знака. В итоге результирующий пусковой момент будет равен нулю, что не позволит двигателю запустится. По своим свойствам однофазный электродвигатель похож на трехфазный, который работает при сильном искажении симметрии напряжений:

на рисунке а) показана схема асинхронной однофазной машины, а на б) векторная диаграмма

Основные виды однофазных электроприводов

Как упоминалось однофазный двигатель не может развивать пусковой момент, следствием чего становится невозможность его самостоятельного запуска. Для этого придумали несколько способов компенсации магнитного поля противоположного по знаку основному.

Двигатели с пусковой обмоткой

В данном способе пуска кроме основной обмотки Р, имеющей фазную зону 120 0 , на статор наматывают еще и пусковую П, которая имеет фазную зону 60 0 . Также пусковая обмотка сдвигается относительно рабочей на 90 0 электрических. Для того, чтоб создать фазовый сдвиг между токами обмоток Iр и Iп последовательно в пусковую обмотку подключают элемент, приводящий к сдвигу фаз ψ (фазосдвигающее сопротивление Zп):

Где: а) схема подключения машины, б) векторные диаграммы при использовании различных сопротивлений.

Наилучшими условиями для пуска будет включения конденсатора в пусковую обмотку. Но поскольку емкость конденсатора довольно велика, соответственно и его стоимость и габариты тоже возрастают. Зачастую его применяют для получения повышенного момента для пуска. Пуск с помощью индуктивности имеет наихудшие показатели и в настоящее время не используется. Довольно часто могут применять запуск с помощью активного сопротивления, при этом пусковую обмотку делают с повышенным активным сопротивлением. После запуска электродвигателя пусковая обмотка отключается. Ниже показаны схемы включений и их пусковые характеристики:

Где: а,б) двигатели с пусковой обмоткой, в,г) конденсаторные

Конденсаторный двигатель

Данный тип электродвигателя имеет две рабочие обмотки, в одну из которых подключают рабочую емкость Ср. Данные обмотки сдвинуты относительно друг друга на 90 0 электрических и имеют фазные зоны тоже 90 0 . При этом мощности обеих обмоток равны, но их токи и напряжения различны, также различны количества витков. Иногда величины конденсатора рабочего не достаточно для формирования нужного пускового момента, поэтому параллельно ему могут вешать пусковой, как это показано на рисунке выше. Схема приведена ниже:

Где: а) схема конденсаторного электродвигателя, б) его векторная диаграмма

В данном типе однофазных машин коэффициент мощности cosφ даже выше чем у трехфазных. Это объясняется наличием конденсатора. КПД такого электродвигателя выше, чем однофазного электродвигателя с пусковой обмоткой.

Частотное регулирование однофазных асинхронных электродвигателей

Итак, все чаще появляются предложения частотных преобразователей, которые могут управлять однофазными асинхронными машинами. В силу того что частотники предназначены для работы с трехфазными машинами, то для регулирования оборотов однофазной машинами необходим особый вид частотного преобразователя. Это обусловлено тем, что трехфазные и однофазные машины имеют немного разный принцип работы. Давайте рассмотрим схему включения, которую предоставляет один из официальных производителей частотных преобразователей для однофазных машин:

Это схема прямого подключения. Где: Ф-фаза питающего напряжения, N-нейтральный проводник, L1, L2 – обмотки двигателя, Ср – рабочий конденсатор.

А вот схема подключения преобразователя:

Как мы можем видеть, конденсатор при включении данной схемы отключается. Обмотка L1 переключается к выходу преобразователя фазы А, а L2 к В. Общий провод подключается к выходу С. Тем самым мы фактически получили двухфазную машину. Фазовый сдвиг теперь будет реализовывать частотный преобразователь, а не конденсатор. На выходе преобразователя будет обычное трехфазное напряжение.

Данный способ частотного регулирования трудно назвать однофазным, так как при питания двигателя от сети напрямую необходимо опять восстанавливать схему с конденсатором. Более того, этот способ регулирования частоты НЕ ПОДХОДИТ для машин с пусковой обмоткой, так как сопротивление рабочей и пусковой обмотки не равны, появится асимметрия.

Можем сделать вывод, что данный вид частотного регулирования подходит не всем электродвигателям, а только конденсаторным. Более того, при такой схеме подключения необходимо провести переподключение обмоток внутри электродвигателя (в коробке выводов электродвигателя), что после переподключения не позволит работать ему от сети напрямую. Поэтому если вы собираетесь питать электродвигатель от однофазной сети через частотник, то, может быть стоит купить преобразователь, который питается от однофазной сети, а двигатель обычный, трехфазный. Это лучше с точки зрения работы самой машины, также отсутствуют переделки внутри электрической машины. Если вы собираетесь таким образом модернизировать систему, то внимательно изучите характеристики электродвигателя, преобразователя, чтоб избежать пустой траты средств или выхода из строя элементов системы.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector