13 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Разновидности датчиков температуры воды

Виды датчиков температуры и принцип их работы

Датчики измерения температуры используются для контроля веществ в твердом, жидком или газообразном состоянии. В зависимости от целей применения, схема строения прибора будет видоизменяться. Но чтобы выбрать подходящий инструмент необходимо обращать внимание на одни и те же нюансы.

Виды, конструкция и принципы действия

Термопара

Датчик включает в себя две проволоки из разных металлов, спаянных между собой. Для отношения концов друг с другом в зоне постоянной температуры, в конструкцию добавляют удлиняющие провода из двух металлов. Когда на концы проводов действуют разные температуры (например, при помещении датчика в горячую воду), то в цепи появляется электрический ток. Сила возникшего тока (от 40 до 60 мкВ) зависит от используемого материала термопары, который влияет на термоэлектрическую силу прибора.

В практике можно встретить железоникелевые, хромоалюминиевые, медно-константановые и так далее. В дешевых моделях используются неблагородные металлы (аналогичных термоэлектродам) для удлиняющих проводов, а в дорогих – благородные металлы, которые способы развивать аналогичную термо-ЭДС, что и электроды (необходимо для уменьшения стоимости высококлассным приборов).

Термопара относится к датчикам с высокой точностью. Проблемой устройства является сложность получения замеренного значения. Термопара действует по принципу относительности отличия температур между разъемами. Горячий спай помещается в замеряемое вещество, а холодный остается находиться в окружающей среде.

При необходимости использования термопары работа проводится следующим образом. Температуру холодного спая необходимо компенсировать, для чего вторую термопару помещают в среду с известным показателем.

Если используется программный способ компенсации, второй датчик помещается в изометрическую камеру, где находятся холодные спаи, что позволяет контролировать температуру с высокой точностью. Самое сложное в работе с одноконтактной термопарой – снять показатели.

В ГОСТе прописаны коэффициенты, необходимые для перевода ЭДС в показатель температуры и наоборот. Подсчет также может вестись при помощи контроллера.

Но получаемый от термопары показатель ЭДС измеряется в единицах и сотнях микровольт. Поэтому использование аналоговых преобразователей не будет успешным. Для сборки специальной конструкции, цель которой – получение точных результатов, потребуются малошумящие аналоговые преобразователи.

На практике для устранения имеющихся погрешностей используют автоматическое введение поправки на температуру свободных концов. Под этим подразумевают введение моста с плечами в виде медного и манганинового терморезисторов.

Терморезисторы

Терморезисторы делятся по типу зависимости сопротивления от температуры. Они могут быть отрицательными (NTC) или положительными (PTC).

Измерения легче проводить при помощи терморезисторов. Принцип работы построен на сопротивлении материалов внешней температуре. Высокая точность присуща для приборов, изготовленных из платины. На работу терморезисторов влияют две характеристики.

Первая – базовое сопротивление, второе – температура, при которой оно определяется. ГОСТ устанавливает, что определение должно проходить при 0 градусов по Цельсию. В нормативном документе указывается, что рекомендуется использовать несколько номиналов сопротивлений, определяемых в Омах, а также температуры, что позволит сопоставить результаты при 0°С и другом показателе. Для этого используется следующая формула:

Температурный коэффициент будет изменяться в зависимости от используемого материала для термометров, что отражено в ГОСТе. В нормативном документе также указываются коэффициенты полинома, необходимые для расчета в зависимости от текущего сопротивления.

Термометры сопротивления обладают одним минусом – низкий температурный коэффициент сопротивления. Несмотря на этот нюанс, использование терморезисторов проще по сравнению с принципом работы термопары.

Способы измерения будут зависеть от комплектации модели. Базовые терморезисторы необходимо включать в цепь с источником тока и контролируемого дифференциального напряжения. Чтобы корректно определить доли единицы процента получаемых от температурного коэффициента проводников, лучше использовать аналого-цифровые преобразователи.

Если в датчик уже встроен аналоговый выход, соответствующий питаемому напряжению, то для оцифровывания можно напрямую подключать терморезистор к преобразователю

Комбинированные

Комбинированные датчики включают в себя несколько полупроводников, объединенных в единое устройство. Датчики могут иметь встроенный цифровой интерфейс, а не только интегральные схемы с выходом. Часто используется комбинированный датчик благодаря возможности подключения параллельных устройств. Погрешность при расчете температуры равна 2 °С, а при определении влажности – 5%. Проблема в таком датчике одна – оптимизация интерфейса.

Цифровые

В цифровых датчиках устанавливается трехвыводная микросхема. Показатели считываются с нескольких параллельно работающих датчиков, что позволяет получить показания с точностью 0,5 °С. Работа электронного термометра возможна от -55 до +125 °С. Единственным минусом устройства является скорость получения результатов – 750 секунд для получения максимально точного показателя. Определение точности прибора осуществляется при помощи соответствующих регулировок, которые необходимы для уменьшения количества затрачиваемого времени на получение результата. Опрос датчика не имеет смысла, так как корпус является инерционным.

Бесконтактные

Работа датчика основана на нагревании тонкой пленки, что осуществляется благодаря воздействию инфракрасных лучей. Встретить подобную технологию можно в пирометрических устройствах. В отличии от контактного, получить данные можно на расстоянии.

Кварцевые преобразователи температуры

Если диапазон изменяемых температур превышает стандартные значения и достигает отметки от -80 до +250°С, то используются кварцевые преобразователи. Такие устройства работают на принципе взаимодействия кварца и температуры, отражаемого частотной зависимостью. Преобразователь имеет несколько функций, которые меняются в зависимости от расположения среза по осям кристалла.

Кварцевые датчики отличаются высокой точностью, стабильностью и разрешением. Являются более перспективными способами измерения температуры. Часто можно встретить в цифровых термометрах.

Шумовые

Шумовой датчик служит для получения показателей по принципу разности потенциалов на резисторе, которые меняются в зависимости от температуры. На практике подобный способ измерения имеет условие – одна из температур должна быть известна, а вторая — измеряемая. Два полученных шума от различных температур сравнивают и находят искомое значение.

Работа датчика возможна от -270 до +1100 °С. Из преимуществ отмечается возможность измерения температур в термодинамике. Но минусом является сложность реализации такого способа измерения напряжения шумом из-за наличия различий с шумом усилителя.

Ядерного квадрупольного резонанса

Принцип работы биметаллического термометра основывается на действии градиента поля тока решетки кристалла и момента ядра, вызванного отклонением заряда от симметрии сферы. При помощи такого процесса создается процессия ядер. Частота напрямую зависит от градиента поля решетки. В зависимости от вещества, величина показателя может подниматься до нескольких тысяч МГц. Чем выше температура, тем меньше частота ЯКР.

ЯКР образует ампулу с веществом, которая помещается в обмотку индуктивности для дальнейшего соединения с контуром генератора. Если частота генератора и частота ЯКР совпадают, то исходящая от генератора энергия поглощается. При измерении вещества с температурой -263°С погрешность составляет 0,02 градуса, а при температуре 27°С, погрешность равна 0,002 градуса. Из преимуществ датчика выделяют неизменную стабильность. Минусом является значительная нелинейность преобразующей функции.

Объемные преобразователи

Принцип работы иного рода биметаллического термометра построен на свойстве веществ расширяться и сжиматься в зависимости от действующей температуры. Диапазон действия преобразователя определяется в зависимости от стабильности материала. Датчик может использоваться при температурах от -60 до +400°С. Погрешность составит от 1 до 5%.

При определении температуры датчиками на жидкости погрешность падает до 1-3% в зависимости от температурной среды. Температура закипания и замерзания жидкости также будет влиять на интервал работы датчика.

Если датчик измеряет преобразователи на газе, то граница измерения зависит от точки перехода газа в жидкое состояние и стойкостью баллона в воздействующей температуре.

Канальный

Все цифровые термометры относятся к канальным, так как для передачи сигналов они используют каналы. В зависимости от количества таких “магистралей” определяется канальность устройства. Так термометр Testo 925 относится к 1-канальным, в основе работы лежит термопара, как и у термометра Testo 735-2 – 3-канального. А Testo 810 – 2-канальный прибор с инфракрасным термометром.

Параметры выбора

Чтобы осуществить корректный выбор подходящего термометра, необходимо определить несколько условий, которые должны соответствовать для комфортной работы прибором.

Диапазон рабочей температуры

Необходимо знать, в каких температурах будет задействован термометр. Также нужно определить, какая погрешность будет приемлемой при получении результатов. Если диапазон температур небольшой, то подойдут термисторы. В самых суровых условиях работоспособны преимущественно шумовые приборы.

Условия проведения замеров

Возможно ли поместить термометр в среду или материал, который нужно заменить. Если нет, то получить данные можно при помощи радиационных термометров, которые замеряют температуру сквозь препятствия.

Время работы до калибровки или замены

Установить условия работы датчика. Окружающая обстановка может быть стандартной, с высокой влажность, окислительной, пожароопасной и так далее.

Величина сигнала выхода

Сигнал выхода должен соответствовать возможностям электроизмерительных приборов для дальнейшей обработки получаемых данных. Зависит это от полученных показателей температуры, преобразуемых в энергию.

Другие технические данные

Также при определении подходящего типа датчика температуры необходимо обращать внимание на второстепенные факторы. Эти нюансы позволяют выбрать самый подходящий аппарат для получения необходимых данных.

Погрешность

Для получения самых точных результатов потребуется большое количество времени. Лучший показатель выдает биметаллический термометр, построенный по принципу ЯКР и цифровые. Первые – быстрее, а вторые – точнее.

Разрешение

Этот показатель позволяет получить от датчика более точные приращениям дискретности измерения температуры. Ярким представителем является DS18B20, который может работать в разрешении 9,10,11 и 12 бит. Самый малый режим даст 0.5°C, а максимальный — 0.0625°C.

Напряжение

На величину выходного напряжения будет влиять сопротивление резистора. В зависимости от этого напряжение может быть линейным (изменяться в зависимости от температуры) и нелинейным. Для каждого датчика существуют свои эталонные величины на выводах термометра, который зависит от температуры измеряемого объекта.

Время сработки

Показатель отвечает за скорость получения результатов замера. Как правило, быстрые замеры можно получить, имея крупную погрешность. Для устранения этого недостатка потребуется пренебречь временем сработки и увеличить его до необходимого показателя точности.

Промышленные термодатчики и сенсоры

Кроме стандартных бытовых термодатчиков бывают промышленные, которые используются исключительно на специальных объектах. Их распространение направлено на определенную группу лиц из-за избыточных возможностей, которые требуются только на производстве. Некоторые из них способны работать в различных нетрадиционных средах и суровых условиях. Выбор подходящих типов осуществляется тем же образом, что и для подбора бытовых датчиков.

Применение

Стоит понимать, что каждый из типов датчиков создан для использования в специальных условиях. Практически во всех сферах производства и жизни требуется знать температуру. Так применять термисторы необходимо для получения абсолютных показателей, для сбора показателей в помещениях – шумовые, для получения максимально точных данных – цифровые и так далее.

Мир датчиков температур охватывает все сферы жизни, где требуется измерение показателей. Это может быть помещение, жидкость или предмет с совершенно различными нюансами. В одних помещениях высокая влажность, в другие нельзя попадать. Аналогичные параллели можно проводить с жидкостями и объектами. При выборе подходящего термометра необходимо обращать внимание на нюансы условий измерения.

Датчики температуры

Принцип работы

Термометры сопротивления (терморезисторы, термосопротивления)

Термометр сопротивления (Resistance Thermometer) — датчик для измерения температуры, принцип действия которого основан на зависимости электрического сопротивления от температуры.

Термосопротивления могут быть металлические (платина, никель, медь) или полупроводниковые.

Для большинства металлов температурный коэффициент сопротивления положителен — их сопротивление растёт с ростом температуры. Для полупроводников без примесей он отрицателен — их сопротивление с ростом температуры падает.

Термисторы

Термисторы – это полупроводниковые термосопротивления с большим температурным коэффициентом.

  • PTC-термисторы (Positive Temperature Coefficient), обладают свойством резко увеличивать свое сопротивление, когда достигнута заданная температура – широко используются для защиты двигателей
  • NTC-термисторы (Negative Temperature Coefficient), обладают свойством резко уменьшать свое сопротивление при достижении заданной температуры
Читать еще:  Диагностика двигателя по свечам зажигания

PT100, PT1000

Платиновые термометры сопротивления (Platinum Resistance Thermometers) обладают высокой стойкостью к окислению и большой точностью измерения.

Кремниевые терморезисторы с положительным коэффициентом сопротивления, отличаются высокой линейностью характеристики, высоким быстродействием, надёжной твёрдотельной конструкцией и небольшой стоимостью.

Схемы включения термосопротивления в измерительную цепь

  • 2-х проводная схема используется там, где не требуется высокой точности, так как сопротивление присоединительных проводов суммируется с измеренным сопротивлением, что приводит к появлению дополнительной погрешности
  • 3-х проводная схема обеспечивает значительно более точные измерения, т.к. появляется возможность измерить сопротивление подводящих проводов и вычесть его из суммарного измеренного сопротивления
  • 4-х проводная схема — наиболее точная схема, обеспечивает полное исключение влияния подводящих проводов

Сравнение термометров сопротивления с термопарами

  • выше точность и стабильность
  • можно исключить влияние сопротивления присоединительных проводов на результат измерения при использовании 3-х или 4-х проводной схемы измерений
  • практически линейная характеристика
  • не требуется компенсация холодного спая
  • малый диапазон измерений
  • не могут измерять высокую температуру.

Термопары

Термопара (Thermocouple) — это два проводника из разных металлов, спаянные в одной точке. Эта точка измерения температуры называется — рабочий спай. Свободные концы называются холодным спаем. Если рабочий спай нагреть относительно холодного спая, то между свободными концами возникает напряжение (термо-ЭДС), пропорциональное разности температур.

Так как с помощью термопары всегда измеряется разность температур, то, чтобы определить температуру точки измерения, свободные концы у холодного спая должны содержаться при известной неизменной температуре.

Подключение к ПЛК

Холодные концы подключаются (непосредственно или с помощью компенсационных проводов, которые должны быть выполнены из тех же металлов, что и термопара) к клеммам соответствующего аналогового входа (с соблюдением полярности!) промышленного контроллера, который программно выполняет компенсацию температуры холодного спая и рассчитывает температуру в точке измерения.

При внутренней компенсации контроллер использует температуру модуля, к которому подключена термопара. При более точной внешней компенсации эталонная температура холодного спая измеряется с помощью дополнительного термометра сопротивления, который подключается к специальному входу контроллера.

Типы термопар

  • K: хромель-алюмель
  • J: железо-константан
  • S, R: платина-платина/родий и др.

Термопары отличаются диапазоном измеряемых температур и погрешностью измерений.

Преимущества термопар

  • Большой температурный диапазон измерения
  • Измерение высоких температур.

Недостатки

  • Невысокая точность
  • Необходимость вносить поправку на температуру холодного конца.

Термостаты

Термостат (Thermostat) – это регулятор, который поддерживает постоянную температуру воздуха или жидкости в системах отопления, кондиционирования и охлаждения.

Как выбрать

Измеряемая среда

  • Измеряемая среда (выхлопные газы, морская вода, бензин и т.п.)
  • Диапазон рабочих температур измеряемой среды
  • Давление измеряемой среды
  • Скорость потока измеряемой среды.

Окружающая среда

  • Температура окружающей среды
  • Влажность
  • Наличие агрессивных сред
  • Взрывоопасная зона.

Первичный преобразователь

Чувствительный элемент (сенсор)

  • Тип датчика:
    • термосопротивление (Pt, Ni.)
    • термопара
  • Класс точности.

Способ монтажа защитной арматуры в резервуары и трубопроводы:

  • фланцевый (размер)
  • резьбовой (шаг)
  • приварной
  • асептическое (гигиеническое) присоединение.

Схема электрического подключения для терморезистора:

  • 2-х проводная
  • 3-х проводная
  • 4-х проводная.

Защитная трубка (гильза)

  • Материал
  • Длина погружаемой части датчика
  • Диаметр
  • Гигиеническая конструкция.

Соединительные кабели:

  • Длина
  • Материал.

Соединительная головка:

  • Степень защиты корпуса
  • Материал (алюминий, нержавеющая сталь, пластик)
  • Тип кабельного ввода
  • Материал электрических контактов (позолоченные).

Преобразователь

  • Тип преобразователя:
    • встраиваемый в соединительную головку (Head)
    • для монтажа на DIN-рейку
    • для полевой установки на кронштейне, с индикатором
  • Тип подключаемого датчика:
    • термосопротивление
    • термопара
    • универсальный
  • Количество подключаемых датчиков к одному преобразователю
  • Вычисление (при подключении нескольких датчиков)
    • среднего значения
    • разности температур
  • Схема электрического подключения:
    • 2-х проводная
    • 3-х проводная
    • 4-х проводная
  • Точность измерения
  • Повторяемость измерения
  • Цикл измерения
  • Единицы измерения
  • Характеристика:
    • линейная
    • программируемая
  • Смещение нулевой точки
  • Контроль:
    • обрыва линии
    • короткого замыкания
  • Питание
  • Выходной сигнал:
    • токовый 4..20мА
      • гальваническая изоляция
      • сигнал ошибки
      • защита от обратной полярности
    • HART
    • PROFIBUS PA
    • Foundation Fieldbus.

Датчики температуры. Виды и принцип действия, Как выбрать

Датчики температуры нужны для того, чтобы проконтролировать температуру в помещении, жидкости, твердого объекта или расплавленного металла.

Основой действия температурных датчиков в автоматизированном управлении является изменение температуры в электрический сигнал. Это обуславливает преимущества электрических измерений: результаты легко передавать по сети, скорость передачи может быть достаточно высокой. Величины могут преобразовываться друг в друга и обратно. Цифровой код создает повышенную точность замера, скорость и чувствительность.

Виды и принцип действия

Термопары

Термопара представляет собой две проволоки из разных металлов, спаянных между собой. При разности температур между горячим и холодным концом в цепи возникает электрический ток. Величина этого электрического тока зависит от термоэлектрической силы термопары, составляет от 40 до 60 мкВ, в зависимости от материала термопары. Материал термопары может быть разным. Это могут быть никель-хромовые, хромо-алюминиевые, железо-никелевые, железо-константановые и т.д.

Термопара является высокоточным датчиком температуры, однако эту точность достаточно проблематично снять. Термопара является относительным датчиком температуры, уровень ее напряжения имеет зависимость от температурной разности между спаями. При этом холодный спай находится при комнатной температуре или при какой-либо другой.

Рассмотрим работу термопары ближе. Есть две термопары и две температуры горячего и холодного конца. Соответственно ЭДС зависит от разности температур. Температуру холодного спая необходимо компенсировать. Аппаратным способом компенсации является использование второй термопары, которая помещена в заранее известную температуру.

Программным способом компенсации является использование другого датчика температуры, на этот раз абсолютного, который помещается в изотермическую камеру вместе с холодными спаями и контролирует их температуру с заданной точностью. Имеются трудности снятия данных с термопары.

Во-первых , она нелинейная. В ГОСТе заботливо введены коэффициенты полинома для перевода ЭДС в температуру и обратно. Эти полиномы большого порядка, но ничто не запрещает спокойно их посчитать силами контроллера.

Во-вторых , другая проблема заключается в том, что термо-ЭДС термопары измеряется в единицах и сотнях микровольт. Соответственно, использование широко доступных аналогоцифровых преобразователей приведет к полному провалу. Нужны прецизионные многоразрядные малошумящие аналогоцифровые преобразователи для того, чтобы использовать термопару в своих конструкциях.

Терморезисторы

Гораздо более простым способом измерения стало применение терморезисторов. Они работают на зависимости сопротивления материалов от внешней температуры. Металлические термометры сопротивления, в частности платиновые обладают очень высокой точностью и линейностью. Термометры сопротивления определяются двумя основными характеристиками.

Это базовое сопротивление термометра при определенной температуре. В ГОСТе базовым сопротивлением считается сопротивление при 0 градусах по Цельсию. ГОСТ рекомендует использование нескольких номиналов сопротивлений в Омах и температурный коэффициент, который определяется как разность сопротивлений нашей температуры и при 0 градусов, деленной на нашу температуру и t нуля градусов, умноженную на единицу, деленную на базовое сопротивление.

Ткс = (Re – R0c) / (Te – T0c) *1/R0c

В ГОСТе на терморезисторы вы найдете температурный коэффициент для различных термометров из платины, меди и никеля. Кроме того, там присутствуют коэффициенты полинома для расчета температуры из текущего сопротивления резистора. Одной из проблем термометров сопротивления является очень низкий температурный коэффициент сопротивления. Однако, измерять сопротивление с высокой точностью гораздо проще, чем очень малые значения напряжения в отличие от термопар.

Одним из способов измерения сопротивления является включение нашего термосопротивления в цепь источника тока и измерение дифференциального напряжения. Использование полупроводников даст нам температурный коэффициент доли единицы процента, их гораздо проще измерять с помощью аналогоцифровых преобразователей. Есть интегральные микросхемы датчиков температуры, аналоговый выход которых уже соответствует питаемому напряжению. Такие датчики температуры можно напрямую подключать к аналогоцифровому преобразователю и спокойно оцифровывать его с помощью восьми- или десятибитного АЦП.

Комбинированный датчик

Помимо интегральных схем с выходом, существуют датчики с цифровым интерфейсом. Одним из популярных датчиков является комбинированный датчик температуры и влажности серии SHT1. Этот датчик позволяет измерять температуру с точностью + 2 градуса и влажность с точностью + 5 градусов. Главной проблемой данного датчика температуры является то, что там решили оптимизировать интерфейс. Он позволяет подключать параллельные устройства.

Цифровой датчик

Цифровой датчик температуры DS18B20, который представляет собой трехвыводную микросхему, позволяет с высокой точностью до 0,5 градуса получать температуру с множеством параллельно работающих датчиков. В этом датчике широкий интервал температур от -55 до +125 градусов. Основной его недостаток – медлительность. Вычисления с максимальной точностью он делает за 750 мс. Ввиду инерционности корпуса датчика температуры опрашивать его нет никакого смысла.

Бесконтактные датчики (пирометры)

В этом датчике имеется специальная тонкая пленка, поглощающая инфракрасные излучения, тем самым нагревающаяся. Такие бесконтактные термосенсоры используются в тепловизорах. Там имеется не один тепловой датчик, а матрица. Они позволяют на расстоянии до 3 метров детектировать тепловой объект.

Кварцевые преобразователи температуры

Для того, чтобы измерить температуру в интервале -80 +250 градусов применяют кварцевые преобразователи. Они работают на частотной зависимости кварца от температуры. Действие датчиков происходит на частотной зависимости. Функция преобразователя меняется от расположения среза по осям кристалла.

Кварцевые датчики работают с высокой чувствительностью, разрешением, стабильностью. Эти свойства делают их перспективными в использовании. Они получили большое распространение в цифровых термометрах.

Шумовые датчики температуры

Работа шумовых датчиков заключается на зависимости шумовой разности потенциалов на резисторе от температуры. Практически реализовать способ измерения температуры шумовыми датчиками можно, сделав сравнение шумов 2-х одинаковых резисторов, один находится при определенной температуре, 2-й при измеряемой температуре. Шумовые датчики температуры применяются для температурного интервала -270 -1100 градусов.

Преимуществом шумовых датчиков стала возможность измерения температуры в термодинамике на вышеописанной закономерности. Но это осложнено трудным измерением напряжения шума, так как оно мало и сравнимо с шумом усилителя.

Датчики температуры ЯКР (ядерного квадрупольного резонанса)

Термометры ЯКР работают за счет действия градиента поля тока решетки кристалла и момента ядра, которое вызвано отклонением заряда от симметрии сферы. Это создает процессию ядер. Частота имеет зависимость от градиента поля решетки. Для разных веществ имеет величину до тысяч МГц. Градиент зависит от температуры, с ее возрастанием частота ЯКР уменьшается.

Датчики температуры ЯКР образуют ампулу с веществом, помещенную в обмотку индуктивности, которая соединена с контуром генератора. Когда частота генератора совпадает с частотой ЯКР, то энергия генератора поглощается. Допуск замера температуры -263 градуса равен + 0,02 градуса, а температуры 27 градусов +0,002 градуса. Преимуществом термометров ЯКР становится стабильность, неограниченная по времени, недостатком является значительная нелинейность преобразующей функции.

Объемные преобразователи

Объемные датчики действуют на расширении и сжатии веществ при изменении температуры. Диапазон действия преобразователей определяется, насколько стабильны свойства материалов. Датчиками делают измерения температуры в интервале -60 -400 градусов. Допуск измерения составляет от 1 до 5%. Интервал работы датчика с жидкостью может зависеть от температуры закипания и замерзания. Погрешности измерения датчиков на жидкости от 1 до 3%, определяются температурой среды.

Нижняя граница измерения преобразователей на газе определяется температурой перехода газа в жидкое состояние, верхняя граница – стойкостью баллона к воздействию температуры.

Датчики температуры

Что такое и какие бывают датчики температуры. Рассмотрена классификация термодатчиков по принципу действия, когда какие типы датчиков лучше применять. На какие характеристики необходимо обратить внимание при выборе датчиков температуры. Обзор производителей и продавцов.
Вы также можете посмотреть другие статьи. Например, «Датчики измерения влажности(гигрометры)» или «Виды давления».

Читать еще:  Помогите Выбрасывает антифриз через расширительный бачок

Большинство технологических процессов идет сейчас по пути автоматизации. Кроме того, управление многочисленными механизмами и агрегатами, а зачастую и машинами просто немыслимо без точных измерений всевозможных физических величин. Не маловажными являются измерение давления, измерение угловой скорости, а также линейной и многие-многие другие. Но самыми распространенными (около 50%) являются температурные измерения. К примеру, средняя по величине атомная станция располагает приблизительно 1500-ю контрольных (измерительных) точек, а крупное химпроизводство, насчитывает таких уже около 20 тыс.

Так как диапазон измерений и их условия могут сильно отличатся друг от друга, разработаны разные по точности, помехоустойчивости и быстродействию типы датчиков (и первичных преобразователей). Какого бы типа не был температурный датчик, общим для всех является принцип преобразования. А именно: измеряемая температура преобразуется в электрическую величину (как раз за это и отвечает первичный преобразователь). Это обусловлено тем, что электрический сигнал просто передавать на большие расстояния (высокая скорость приема-передачи), легко обрабатывать (высокая точность измерений) и, наконец, быстродействие.

Дальше, предлагаем вам ознакомиться с различными видами датчиков температуры, а в конце статьи со список вопросов которые необходимо решить перед покупкой датчика температуры. Если же вы хотите сразу перейти к выбору и покупке термодатчика, можете воспользоваться нашим каталогом.

Виды датчиков температуры, по типу действия

Терморезистивные термодатчики

Терморезистивные термодатчики — основаны на принципе изменения электрического сопротивления (полупроводника или проводника) при изменении температуры. Разработаны они были впервые для океанографических исследований. Основным элементом является терморезистор — элемент изменяющий свое сопротивление в зависимости от температуры окружающей среды.

Несомненные преимущества термодатчиков этого типа это долговременная стабильность, высокая чувствительность, а также простота создания интерфейсных схем.

На изображении приведен датчик 702-101BBB-A00, диапазон измерения которого от -50 до +130 °С. Этот датчик относиться к группе кремневых резистивных датчиках(что это такое читайте двумя абзацами ниже). Обратите внимание, на его размеры. Производит этот датчик фирма Honeywell International

В зависимости от материалов используемых для производства терморезистивных датчиков различают:

  1. Резистивные детекторы температуры(РДТ). Эти датчики состоят из металла, чаще всего платины. В принципе, любой мета изменяет свое сопротивление при воздействии температуры, но используют платину так как она обладает долговременной стабильностью, прочностью и воспроизводимостью характеристик. Для измерений температур более 600 °С может использоваться также вольфрам. Минусом этих датчиков является высокая стоимость и нелинейность характеристик.
  2. Кремневые резистивные датчики. Преимущества этих датчиков —хорошая линейность и высокая долговременная стабильностью. Также эти датчики могут встраиваться прямо в микроструктуры.
  3. Термисторы. Эти датчики изготавливаются из металл-оксидных соединений. Датчики измеряет только абсолютную температуру. Существенным недостатком термисторов является необходимость их калибровки и большой нелинейностью, а также старение, однако при проведении всех необходимых настроек могут использоваться для прецизионных измерений.

Полупроводниковые

В качестве примера изображен полупроводниковый датчик температуры LM75A, выпускаемый фирмой NXP Semiconductors. Диапазон измерений этого датчика от -55 до +150.

Полупроводниковые датчики регистрируют изменение характеристик p-n перехода под влиянием температуры. В качестве термодатчиков могут быть использованы любые диоды или биполярные транзисторы. Пропорциональная зависимость напряжения на транзисторах от абсолютной температуры (в Кельвинах) дает возможность реализовать довольно точный датчик.

Достоинства таких датчиков — простота и низкая стоимость, линейность характеристик, маленькая погрешность. Кроме того, эти датчики можно формировать прямо на кремневой подложке. Все это делает полупроводниковые датчики очень востребованными.

Термоэлектрические(термопары)

Термоэлектрические преобразователи — иначе, термопары. Они действуют по принципу термоэлектрического эффекта, то есть благодаря тому, что в любом замкнутом контуре (из двух разнородных полупроводников или проводников) возникнет электрический ток, в случае если места спаев отличаются по температуре. Так, один конец термопары (рабочий) погружен в среду, а другой (свободный) – нет. Таким образом, получается, что термопары это относительные датчики и выходное напряжение будет зависеть от разности температур двух частей. И почти не будет зависеть от абсолютных их значений.

Выглядеть термопара может так, как показано на рисунке. Это термопара ДТПКХХ4, она измеряет температуры в пределах от -40 до +400. Производит его российская компания Овен.

Диапазон измеряемых с их помощью температур, от -200 до 2200 градусов, и напрямую зависит от используемых в них материалов. Например, термопары из неблагородных металлов – до 1100 °С. Термопары из благородных металлов (платиновая группа) – от 1100 до 1600 градусов. Если необходимо произвести замеры температур свыше этого, используются жаростойкие сплавы (основой служит вольфрам). Как правило используется в комплекте с милливольтметром, а свободный конец (конструктивно выведенный на головку) удален от измеряемой среды с помощью удлиняющего провода. Одним из недостатков термопары является достаточно большая погрешность. Наиболее распространенным способом применения термопар являются электронные термометры.

Пирометры

Пирометры – бесконтактные датчики, регистрирующие излучение исходящее от нагретых тел. Основным достоинством пирометров (в отличие от предыдущих температурных датчиков) является отсутствие необходимости помещать датчик непосредственно в контролируемую среду. В результате такого погружения часто происходит искажение исследуемого температурного поля, не говоря уже о снижении стабильности характеристик самого датчика.

Различают три вида пирометров:

  1. Флуоресцентные. При измерении температуры посредством флуоресцентных датчиков на поверхность объекта, температуру которого необходимо измерить, наносят фосфорные компоненты. Затем объект подвергают воздействию ультрафиолетового импульсного излучения, в результате которого возникает послеизлучение флуоресцентного слоя, свойства которого зависят от температуры. Это излучение детектируется и анализируется.
  2. Интерферометрические. Интерферометрические датчики температуры основаны на сравнении свойств двух лучей – контрольного и пропущенного через среду, параметры которой меняются в зависимости от температуры. Чувствительным элементом этого типа датчиков чаще всего выступает тонкий кремниевый слой, на коэффициент преломления которого, а, соответственно, и на длину пути луча, влияет температура.
  3. Датчики на основе растворов, меняющих цвет при температурном воздействии. В этом типе датчиков-пирометров применяется хлорид кобальта, раствор которого имеет тепловую связь с объектом, температуру которого необходимо измерить. Коэффициент поглощения видимого спектра у раствора хлорида кобальта зависит от температуры. При изменении температуры меняется величина прошедшего через раствор света.

Акустические

Акустические термодатчики – используются преимущественно для измерения средних и высоких температур. Акустический датчик построен на принципе того, что в зависимости от изменения температуры, меняется скорость распространения звука в газах. Состоит из излучателя и приемника акустических волн (пространственно разнесенных). Излучатель испускает сигнал, который проходит через исследуемую среду, в зависимости от температуры скорость сигнала меняется и приемник после получения сигнала считает эту скорость.

Используются для определения температур, которые нельзя измерить контактными методами. Также применяются в медицине для неинвазивных (без операционного проникновения внутрь тела больного) измерения глубинной температуры, например, в онкологии. Недостатками таких измерений является то, что при прикосновении они могут вызывать ответные физиологические реакции, что в свою очередь влечет искажение измерения глубинной температуры. Кроме того, могут возникать отражения на границе «датчик-тело», что также способно вызывать погрешности.

Пьезоэлектрические

В датчиках этого типа главным элементов является кварцевый пьезорезонатор.

Как известно пьезоматериал изменяет свои размеры при воздействии тока(прямой пьезоэффект). На этот пьезоматериал попеременно передается напряжение разного знака, от чего он начинает колебаться. Это и есть пьезорезонатор. Выяснено, что частота колебаний этого резонатора зависит от температуры, это явление и положено в основу пьезоэлектрического датчика температуры.

Датчик температуры – традиционная составляющая электроники

Главная страница » Датчик температуры – традиционная составляющая электроники

Наиболее часто в области электроники находят применение датчики определения значений температуры окружающей среды. Такого типа датчик температуры представлен приборами от простых термостатических включателей-выключателей, контролирующих систему нагрева воды, до высокочувствительных полупроводников, управляющих сложными технологическими установками. Рассмотрим существующие варианты конструкций датчиков, которыми наделяется современная электроника, а также электрика.

О температурных датчиках в целом

Разработано и выпускается под применение масса датчиков температуры. Приборы обладают разными характеристиками, чем устанавливаются цели фактического применения. Между тем, датчик температуры в любом случае представляет устройство одного из двух физических типов:

Контактным температурным датчикам присуща физическая связь с измеряемым объектом, как присущ эффект проводимости в момент контроля изменений.

Этот вид сенсоров используется для контроля твердых веществ, жидкостей, газов в широком температурном диапазоне.

Бесконтактные температурные датчики используют принцип конвекции или излучения для контроля температурных изменений.

Приборы используются под контроль жидкостей и газов, излучающих лучистую энергию с повышением температуры или излучающих энергию, передаваемую объектом инфракрасного излучения.

Помимо этой классификации, оба типа датчиков подразделяются по исполнению на устройства:

  • электромеханические,
  • резистивные,
  • электронные.

Термостатическая конструкция (термостат)

Термостат является электромеханическим температурным датчиком (выключателем контактного типа). Основа термостата — два разных металла (например, никель и медь или вольфрам и алюминий и т.п.), соединенные вместе, образующие биметаллическую пластину.

Различные скорости линейного расширения двух разнородных металлов способствуют механическому изгибающему движению, когда биметаллическую пластину подвергают нагреванию.

Биметаллическую пластину допустимо использовать как электрический выключатель или как механический способ управления электрическим выключателем в термостатических элементах управления.

Подобные конструкции широко используется для управления нагревом воды:

  • котлов,
  • печей,
  • резервуаров,
  • радиаторов транспортных средств.

Биметаллический термостат

Биметаллический термостат состоит из двух термически различных металлов, плотно связанных один с другим. Когда термостат находится в холодной среде, контакты замкнуты, ток проходит через образованную цепь.

Устройство контактного датчика: 1 – электрический контакт 1; 2 – биметаллическая пластина; 3, 4 – различные металлы; 5 – контактная площадка; 6 – электрический контакт 2; 7 – направление деформации биметалла; 8 – разомкнутая цепь; 9 – поток тепла; 10 – точка крепления

Когда же конструкция термостата нагревается, один из металлов расширяется больше, чем другой за счёт разницы коэффициентов расширения материалов. Биметаллическая пластина сгибается (или разгибается), разрывает контакты цепи, препятствуя протеканию тока.

Существуют два основных типа биметаллических термостатов, основанных главным образом на движении биметаллических пластин при изменении температуры.

При этом есть устройства мгновенного действия и замедленного действия. Первые отличаются быстротой реакции на температурные изменения, вторые обладают замедленным (плавным) действием.

Термостаты мгновенного действия часто можно встретить в конструкциях бытовых приборов:

  • духовок,
  • утюгов,
  • резервуаров воды,
  • систем внутреннего отопления.

Термостаты замедленного действия состоят из биметаллической спирали, которая медленно разжимается или сжимается при изменениях температуры.

Как правило, биметаллические пластины замедленного действия более чувствительны к изменениям окружающей среды, благодаря чему более приемлемы для использования в калибровочных, циферблатных и аналогичных датчиках.

Приборы быстрого действия дёшевы и доступны в широком диапазоне рабочих характеристик. Однако быстродействующие термостаты характерны увеличенным диапазоном гистерезиса (зона между закрытием/открытием контакта).

Например, термостат отрегулирован на 20ºC, но фактически открывается при 22ºC и закрывается при 18ºC.

Термистор как температурный датчик

Термистор тоже относится к ряду температурных датчиков. Название «термистор» сформировано комбинацией двух слов «термический» и «резистор».

Таким образом, это необычный тип резистора, способного менять физическое сопротивление под температурным воздействием.

Классическое исполнение термисторов. Именно в таком виде этот вид электронных компонентов чаще всего встречается в составе электронных плат различных приборов, с указанием на корпусе класса температурного коэффициента

Термисторы обычно изготавливаются на основе керамических материалов:

Сверху материал термистора покрыт тонким слоем стекла. Основным преимуществом термисторов над переключающими приборами является скорость реакции на малейшие изменения температуры, точность и стабильность действия.

Читать еще:  Пятачковая резина на ниву

Большинство термисторов наделены отрицательным температурным коэффициентом сопротивления (NTC). То есть в этом варианте исполнения значение сопротивления термистора снижается с увеличением температуры.

Вместе с тем выпускаются термисторы, наделённые положительным температурным коэффициентом (PTC). Значение сопротивления в этом случае, соответственно, увеличивается с повышением температуры окружающей среды.

Полупроводниковый материал термистора обычно формируют мелкими прессованными дисками или шарами, тщательно герметизированными, чтобы обеспечивалась относительно быстрая реакция на малые колебания температуры.

Термисторы оцениваются следующими показателями:

  • резистивным значением при комнатной температуре (25°C),
  • постоянной времени (время реакции),
  • номинальной мощностью по отношению к проходящему току.

Как и постоянные резисторы, термисторы наделяются значениями сопротивления при комнатной температуре в диапазоне от нескольких Ом до десятков МОм.

Для целей измерения, как правило, используются экземпляры, имеющие сопротивление в несколько кОм.

Термисторы следует рассматривать пассивными резистивными устройствами. То есть, чтобы получить измеримое выходное напряжение, необходимо через прибор пропускать электрический ток.

При построении схем термисторы обычно соединяются последовательно с резистором смещения для формирования делителя потенциалов.

Подбором конкретного резистора определяется выходное напряжение в некоторой заранее определенной точке температуры.

Пример термисторного датчика

На схеме примера термистор имеет значение сопротивления 10 кОм при 25ºC и значение сопротивления 100 Ом при 100ºC.

Нужно рассчитать падение напряжения на термисторе и, следовательно, выходное напряжение (Vвых) для обеих температур при последовательном соединении с резистором 1 кОм через источник питания 12 В.

Пример схемы включения датчика: +V – напряжение питания (12 В); R1 – термистор с отрицательным температурным коэффициентом; R2 – резистор смещения; V темп – напряжение, соответствующее конкретной температуре; ОУ – операционный усилитель; V вых – напряжение выхода

Пример расчёта под Т= 25ºС, R2=10 кОм, при напряжении питания схемы 12 В:

V вых = R2 / (R1 + R2) * xV;

В цифрах: (1000 / (10000 + 1000) * x * 12 = 1.09 В

Пример расчёта под Т= 100ºС, R2=100 Ом, при напряжении питания схемы 12В:

В цифрах: (1000 / (100 + 1000) * x * 12 = 10.9 В

Изменяя фиксированное значение резистора R2 (в примере 1 кОм) потенциометром или предварительной установкой, можно получить выход напряжения при заданной температуре.

Например, если на выходе напряжение 5 В соответствует 60°С, тогда изменением потенциометром конкретного уровня выходного напряжения можно получить более широкий температурный диапазон.

Между тем, термисторы являются нелинейными устройствами. Стандартные значения сопротивления при комнатной температуре различны для отдельных термисторов. Это обусловлено, главным образом, полупроводниковыми материалами, из которых приборы сделаны.

Термистор реагирует на экспоненциальное изменение и, следовательно, имеет константу бета-температуры, которая может быть использована для расчета сопротивления под любой заданный параметр окружающей среды.

Однако при использовании в схеме с последовательным резистором (например, в делителе напряжения или устройстве с мостом Уитстона) ток, полученный в ответ на напряжение, подаваемое на делитель (мост), линеаризуется с температурой. Соответственно, выходное напряжение на резисторе также линеаризуется.

Резистивные температурные датчики (RTD)

Другим типом измерительного датчика с электрическим сопротивлением является резистивный температурный датчик (RTD). Это прецизионные датчики температуры, изготовленные из высокочистых проводящих металлов:

Электрическое сопротивление таких приборов изменяется в зависимости от температуры, аналогично термистору. Также доступны тонкопленочные RTD. Эти устройства имеют тонкую пленку платиновой пасты, осажденную на белую керамическую подложку.

Структурная схема одного из вариантов резистивного датчика: 1 – свинцовая пломба; 2 – оболочка зонда; 3 – изолированный пакет проводов; 4 – RTD сенсор; 5 – термо-карман; 6 – пружинные крепления; 7 – съёмный стопор; 9 – терминальный блок; 9 — наконечник

Резистивные датчики имеют положительные температурные коэффициенты (PTC), но в отличие от термистора, выход этих приборов предельно линейный. Поэтому получаются очень точные параметры измерения.

Тем не менее, приборы PTC имеют очень слабую тепловую чувствительность. То есть изменение температуры приводит к очень малым изменениям на выходе, например, 1 Ом на градус.

Широко распространённые RTD сделаны на основе платины и называются «Platinum Resistance Thermometer» — PRT. Часто встречающийся представитель PRT — датчик Pt100.

Прибор обладает стандартным значением сопротивления 100 Ом при 0ºC. Однако платина дорогая, соответственно этот тип устройства также является дорогостоящим.

Как и термистор, RTD пассивные резистивные устройства. Путём пропускания постоянного тока через этот тип датчика можно получить выходное напряжение, линейно возрастающее с температурой.

Типичный RTD имеет базовое сопротивление около 100 Ом при 0ºC, увеличиваясь примерно до 140 Ом при 100ºC. Общий поддерживаемый диапазон рабочих значений RTD простирается от -200 до + 600ºC.

Поскольку RTD является резистивным устройством, необходимо пропускать через него ток и контролировать результирующее напряжение.

Тем не менее, любая вариация сопротивления, обусловленная нагреванием резистивных проводников при протекании через них тока (Закон Ома) вызывает ошибку в показаниях.

Чтобы этого избежать, RTD обычно подключается к схеме через мост Уитсона, который имеет дополнительные соединительные провода для компенсации. Или же применяется подключение к источнику постоянного тока.

Термопары как измерительные датчики

Термопара представляет наиболее распространенный вид температурных датчиков. Термопары популярны благодаря нескольким факторам:

  • несложному устройству,
  • простоте использования,
  • скорости реакции,
  • малогабаритным размерам.

Термопары обладают непревзойденно широким температурным диапазоном среди всех существующих температурных датчиков (от -200ºC до 2000ºC).

Этот вид термоэлектрических датчиков традиционно строится на соединении двух разнородных металлов — меди и константана, которые свариваются или сжимаются в единый спай.

Принцип действия термопары: J1 – горячий спай; J2 – холодный спай; 1 – металл железо; 2 – металл константан; 3 – поток тепла; V1, V2 – разница напряжений; Vвых – напряжение выхода

Одна часть соединения называется эталонным (холодным) спаем. Другая часть — измерительным (горячим) спаем. Когда оба контакта находятся под разными температурами, на стыке используется напряжение, которое используется для измерения температурного датчика, как показано ниже.

Конструкция термопар

Принцип работы термопары прост. Слияние двух разнородных металлов образует «термоэлектрический» эффект, который дает постоянную разность потенциалов всего в несколько милливольт (мВ).

Разность напряжений между двумя переходами называется «эффектом Зеебека». Поскольку градиент температуры генерируется вдоль проводящих контактов, создающих ЭДС, выходное напряжение термопары становится зависимым от изменений окружающей среды.

Если оба контакта находятся при одинаковой окружающей среде, разность потенциалов на двух переходах равна нулю. Другими словами, напряжение отсутствует, когда V1 = V2. Однако если соединения подключены внутри схемы и находятся под разными температурами, ситуация меняется.

Появляется выход напряжения относительно разницы значений между двумя переходами V1 — V2. Это различие в напряжении будет увеличиваться с температурой до тех пор, пока не будет достигнут пиковый уровень напряжения перехода. Этот момент будет определяться характеристиками двух разных разнородных металлов.

Конструкция одного из вариантов датчика на термопаре: 1 – спай; 2 – специальная проводка типа «J»; 3 – оболочка их нержавеющей стали; 4 – настраиваемый уплотнительный фитинг; 5 – армирование из нержавеющей стали

Термопары изготавливаются из различных материалов, что позволяет измерять экстремальные температуры в диапазоне от -200°С до + 2000°С.

Благодаря такому большому выбору материалов и диапазону измерений, были разработаны международно-признанные стандарты в комплекте с цветовыми кодами термопары.

Цветовые коды позволят пользователю выбрать правильный датчик на базе термопары для конкретного применения. Ниже в качестве примера приведена таблица с британским цветовым кодом стандартных термопар:

Датчики измерения температуры: типы, принцип работы

Практически в любой современной аппаратуре есть датчики температуры. Это устройство, которое позволяет измерить температуру объекта или вещества, используя при этом различные свойства и характеристики измеряемых тел или среды. Не смотря на то, что все термодатчики призваны измерять температуру, разные типы датчиков делают это абсолютно по-разному. Давайте подробнее разберем принцип работы и характеристики основных видов термодатчиков.

Классификация термодатчиков по принципу работы

По принципу измерения все датчики измерения температуры подразделяются на:

  • Термоэлектрические (термопары);
  • Терморезистивные;
  • Полупроводниковые;
  • Акустические;
  • Пирометры;
  • Пьезоэлектрические.

Термоэлектрические датчики температуры (термопары)

Принцип работы этой группы датчиков основан на том, что в замкнутых контурах проводников или полупроводников возникает электрический ток, если места спайки различаются по температуре. Для измерения температуры, один конец термопары помещают в среду измерения, а другой служит для снятия значений. Единственным, но существенным недостатком этого вида измерителей является их довольно большая погрешность, что недопустимо для многих технологических процессов.

Примером такого датчика может служить датчик ТСП Метран-246, который предназначен для измерения температуры твердых тел.

Он применяется в металлообработке, и служит для контроля температуры подшипников. Диапазон измерения от -50 до +120 градусов по Цельсию, выходной сигнал для считывания – аналоговый.

Видео о датчиках температуры смотрите ниже:

Терморезистивные датчики

Как следует из названия, этот тип датчиков работает по принципу изменения сопротивления проводника при изменении его температуры. Благодаря простой и надежной конструкции, датчики этого типа широко применяются в электронике и машиностроении. Неоспоримым плюсом этих измерителей является высокая точность, чувствительность и простые устройства считывания.

Примером терморезистивного датчика может служить модель 700-101BAA-B00, которая имеет начальное сопротивление в 100 Ом, и диапазон измерений от -70 С° до +500 С°.

Выполнен он с применением платиновой пластинки и никелевых контактов. Широко используется в электронике и промышленных автоматах.

Полупроводниковые термодатчики

Этот тип датчиков работает на принципе изменения характеристик p-n перехода под воздействием температуры. Так как зависимость напряжения на транзисторе от температуры всегда пропорциональна, можно сделать датчик с высокой точностью измерения. Несомненными плюсами такого решения является дешевизна, высокая точность данных, и линейность характеристик на всем диапазоне измерения. Кроме того, их можно монтировать прямо на полупроводниковой подложке, что делает этот тип датчиков незаменимым для микроэлектронной промышленности.

Примером такого устройства может стать датчик LM75A. Температурный диапазон — от -55 С° до +150 С°, погрешность измерений – ±2 С°. Шаг измерения – всего 0,125 С°. напряжение питания – от 2.5 до 5.5 В, а время преобразования сигнала – до 0.1 секунды.

Акустические датчики температуры

Принцип работы этих устройств – разная скорость звука в среде при разной температуре. Зная изначальные данные, можно рассчитать изменения температуры по скорости прохождения звуковой волны в веществе. Это бесконтактный метод, позволяющий измерять температуру в закрытых полостях, а также в среде, недоступной для прямого измерения. Используются такие датчики в медицине и промышленности – там, где проникновение к измеряемому веществу невозможно.

Пирометры (тепловизоры)

Бесконтактный тип термодатчиков, считывающих излучение, которое исходит от нагретых тел. Этот тип устройств позволяет измерять температуру дистанционно, без приближения к среде, в которой производятся замеры. Это позволяет работать с большими температурами и сильно разогретыми объектами без опасного сближения.

Все пирометры по принципу работы подразделяют на интерферометрические, флуоресцентные и датчики на основе растворов, меняющих цвет в зависимости от температуры.

Пьезоэлектрические датчики температуры

Все датчики этого типа работают при помощи кварцевого пьезорезонатора. Вся суть работы – прямой пьезоэффект, то есть изменение линейных размеров пьезоэлемента под воздействием электрического тока. При попеременной подаче разнофазного тока с определенной частотой, пьезорезонатор колеблется, при этом частота его колебаний зависит от температуры. Зная эту зависимость, можно легко преобразовать данные о частоте колебаний резонатора в температуру.

Ещё одно видео о разновидностях термодатчиков:

Благодаря широкому диапазону измерений и высокой точности, такие датчики применяют в основном при проведении исследований и опытов, где нужна высокая надежность и долговечность.

Ссылка на основную публикацию
Adblock
detector