16 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Математический портал Дифференциал функции Дифференциалы первого порядка

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home
  • Математический анализ
  • Дифференциалы первого порядка.

Дифференциал функции. Дифференциалы первого порядка.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Определение. Функция $y=f(x)$ называется дифференцируемой в точке $x_0,$ если ее приращение $Delta y(x_0, Delta x)$ может быть представлено в виде $$Delta y(x_0, Delta x)=ADelta x+o(Delta x).$$

Главная линейная часть $ADelta x$ приращения $Delta y$ называется дифференциалом этой функции в точке $x_0,$ соответствующим приращению $Delta x,$ и обозначается символом $dy(x_0, Delta x).$

Для того, чтобы функция $y=f(x)$ была дифференцируема в точке $x_0,$ необходимо и достаточно, чтобы существовала производная $f'(x_0),$ при этом справедливо равенство $A=f'(x_0).$

Выражение для дифференциала имеет вид $$dy(x_0, dx)=f'(x_0)dx,$$ где $dx=Delta x.$

Свойства дифференциала:

1. $d(C)=0,$ где $C -$ постоянная;

2. $d(C_1u+C_2v)=C_1du+C_2dv;$

3. $d(uv)=udv+vdu;$

5. Пусть $z(x)=z(y(x)) -$ сложная функция, образованная компазицией функций $y=y(x)$ и $z=z(y).$ Тогда

$$dz(x, dx)=z'(y)dy(x, dx), $$ то ес т ь выражение для дифференциала сложной функции через дифференциал промежуточного аргумента имеет такую же форму, что и основное определение $dz(x, dx)=z'(x)dx.$ Это утверждение называется инвариантностью формы 1-го дифференциала.

Примеры.

Найти дифференциалы указанных функций при произвольных значениях аргумента $x$ и при произвольном его приращении $Delta x=dx:$

5.285. $xsqrt+a^2arcsinfrac-5.$

Решение.

Таким образом, $dy=2sqrtdx.$

Ответ: $dy=2sqrtdx.$

5.286. $sin x-xcos x+4.$

Решение.

Пусть $y(x)=sin x-xcos x+4.$

$y'(x)=(sin x-xcos x+4)’=cos x-x’cos x-x(cos x)’+4’=$ $=cos x-cos x+xsin x=xsin x.$

Таким образом, $dy=xsin xdx.$

Ответ: $dy=xsin xdx.$

Найти дифференциалы следующих неявно заданных функций $y=y(x):$

5.290. $y^5+y-x^2=1.$

Решение.

Перепишем заданное равенство в виде тождества

и вычислим дифференциалы левой и правой части. Используя свойства дифференциала, находим:

Приравнивая полученные выражения, получаем $-2xdx+(5y^4+1)dy=0.$ Из этого уравнения выражаем $dy$ через $x, y$ и $dx:$

Ответ: $dy=frac<2x><5y^4+1>dx.$

5.293. $e^y=x+y.$

Решение.

Перепишем заданное равенство в виде тождества

и вычислим дифференциалы левой и правой части. Используя свойства дифференциала, находим:

Приравнивая полученные выражения, получаем $e^ydy=dx+dy.$ Из этого уравнения выражаем $dy$ через $x, y$ и $dx:$

Ответ: $ dy=frac<1>dx$

5. 297. $cos (xy)=x.$

Решение.

Перепишем заданное равенство в виде тождества

и вычислим дифференциалы левой и правой части. Используя свойства дифференциала, находим:

$d(cos (xy))=-sin (xy)d(xy)=-sin (xy)(ydx+xdy)=-ysin (xy)dx-xsin (xy)dy;$

Приравнивая полученные выражения, получаем $-ysin (xy)dx-xsin (xy)dy=dx.$ Из этого уравнения выражаем $dy$ через $x, y$ и $dx:$

Домашнее задание.

Найти дифференциалы указанных функций при произвольных значениях аргумента $x$ и при произвольном его приращении $Delta x=dx:$

5.287. $x arctg x-lnsqrt<1+x^2>.$

Ответ: $arctg xdx.$

5.288. $xln x-x+1.$

Ответ: $ln xdx.$

Найти дифференциалы следующих неявно заданных функций $y=y(x):$

5.291. $x^4+y^4=x^2y^2.$

5.294. $y=x+arctg y.$

Ответ: $fracdx.$

5.295. $y=cos (x+y).$

5.296. $arctgfrac=lnsqrt.$

Ответ: $fracdx.$

Свойства первого дифференциала функции.

На мой взгляд, основным необходимым навыком для успешного вычисления неопределенных интегралов является умение вносить функцию под знак дифференциала или извлекать таковую из-под знака дифференциала, основанное на свойствах его инвариантности и линейности.

Свойство инвариантности первого дифференциала функции.

Точнее, свойство инвариантности его формы или формулы.

Такая формулировка вопроса часто встречается в экзаменационных билетах по математическому анализу в зимнюю сессию. Как правило, этот вопрос студенты относят к нежелательным: формализованным и непонятным. А зря. В самом деле, это свойство очень простое, полезное и весьма востребованное в процессе вычисления неопределённых интегралов. Оно является следствием правила дифференцирования сложной функции:

Пусть задана сложная функция y = f (φ(x)) .
Формула дифференциала функции имеет вид dy = y’ (xdx , где dx — дифференциал независимой переменной.
Введём дополнительное обозначение u = φ(x) , тогда y = f (u) и дифференциал dy с использованием правила дифференцирования сложной функции y’ (x) = f ‘ (uu’ (x) принимает вид dy = f ‘ (uu’ (xdx .
Но последние два сомножителя в этом произведении совпадают с дифференциалом функции u , который по определению имеет вид du = u’ (x)dx , т.е. в новых обозначениях dy = f ‘ (udu

Таким образом, мы получили формулы одного и того же вида для дифференциала функции f (φ(x)) от независимой переменной x и для дифференциала функции f(u) от промежуточного аргумента u, представляющего собой дифференцируемую функцию от x.
Это и есть свойство инвариантности формы (формулы) первого дифференциала.

Пример,
пусть y(x) = sin (π − √x _ )

Рассматриваем переменную х . Это независимая переменная, дифференциал

Рассматриваем переменную t = √x _ , тогда y(t) = sin (π − t) . Вычисляем дифференциал

Рассматриваем переменную u = π − √x _ , тогда y(u) = sin (u) . Вычисляем дифференциал

Здесь везде в конце вместо обозначений u и t подставлены их выражения в явном виде.
Нижний индекс показывает по какой переменной вычисляется производная.

Свойство инвариантности, утверждающее, что это один и тот же дифференциал, позволяет записать следующиую цепочку равенств

Это и есть процесс вынесения функций за знак дифференциала.
Сначала за знак дифференциала вынесена производная функции синус по его аргументу, аргумент остался под знаком следующего дифференциала. Затем вынесена производная поддиференциального выражения по переменной √x _ , она оказалась равной минус единице, под знаком дифференциала остался квадратный корень. И, наконец, после вынесения производной квадратного корня, остался дифференциал независимой переменной.

Другими словами «инвариантность» — это, когда «без вариантов». Какие переменные ни вводи, до какой степени подробности ни вычисляй производную, главное записывай единообразно, и результат будет верным.

Чтобы внести функцию под знак дифференциала, надо построить такую же цепочку в обратную сторону. Для этого уже потребуется определять не производные, а первообразные функций, стоящих перед знаком дифференциала. Например,

Функция косинус внесена под знак дифференциала. Для этого мы сначала убедились в идентичности переменных под знаками функции и дифференциала (здесь явной заменой переменных, что необязательно), а затем просто вспомнили, что первообразной косинуса является синус.

Дробь с квадратным корнем внесена под знак дифференциала. Здесь числитель и знаменатель дроби зависели от разных переменных, поэтому мы вынуждены были сначала выделить сомножитель, соответствующий производной корня второй степени, а затем записать его первообразную, т.е. сам корень, под знаком дифференциала.

Чем лучше вы ориентируетесь в производных и первообразных основных элементарных функций, тем легче будет увидеть следующий шаг. Полагаю, что и таблицу производных, и таблицу первообразных вы уже изучали, но теперь удобнее свести их в одну. Поэтому рекомендую повторить Единую таблицу производных и первообразных.

Свойства линейности первого дифференциала функции.

( f (x) ± C ) ‘ = f ‘ (x) ± 0 = f ‘ (x)
( C·f (x) ) ‘ = C·f ‘ (x)
.

О последней из них часто забывают и, пользуясь полной формулой дифференцирования дроби, делают совершенно необязательные ошибки из серии «на невнимательность». Поэтому напоминаю еще раз, постоянный множитель можно выносить за знак производной. Ориентируйтесь следующие примеры.

Поскольку дифференциал функции определяется через её производную, при вычислении дифференциала срабатывают те же свойства и правила.

Следствием этого свойства является возможность дописывать под знаком дифференциала любое постоянное слагаемое. Например,

Чтобы использовать это свойство при вычислении неопределенных интегралов, бывает удобно умножить и разделить на одно и то же число функцию, которую нужно внести под знак дифференциала. Например,

Дополнительные примеры и упражнения.

Пример 1.

Сначала расставили скобки, чтобы разобраться в сложных функциях, и выделили выражение с независимой переменной.

Первообразная выделенной дроби (функции, зависящей непосредственно от x) — натуральный логарифм. Внесли его под знак дифференциала.

Дифференциал логарифма сгруппировали с элементарной функцией, зависящей непосредственно от логарифма. Эта функция — синус логарифма. (Если трудно, можно сделать замену t = lnx .)

Первообразной синуса, является функция минус косинус того же аргумента. Вносим косинус логарифма под дифференциал. Получившееся выражение содержит только функцию cos ln x как под знаком дифференциала, так и вне его.

Находим первообразную дроби перед дифференциалом по формулам для степенной функции и вносим её под знак дифференциала. (Если трудно, можно сделать замену u = cos(lnx) .)

Здесь удалось внести под знак дифференциала всё выражение. К сожалению, это не всегда просто и даже не всегда возможно. Поэтому и интегрирование сложнее дифференцирования. Чаще всего мы можем внести под знак дифференциала только часть подынтегрального выражения, но и это существенно упрощает задачу.

Вынести функции из-под знака дифференциала

Внести функции под знак дифференциала

dx ______ √1 − x 2 _____ = d ( _______ )

√3x + 7 _____ dx = d ( 3 _______ 2 √3x + 7 _____ )

В первом выражении потеряны коэффициент и знак первообразной синуса.
Во втором, вероятно, была неправильно выделена производная арктангенса. В знаменателе этой функции должна стоять единица(!) плюс квадрат переменной.
В третьем случае вместо первообразной внесена под знак дифференциала производная, что является грубой ошибкой.
Ниже правильные решения подробно. Как уже упоминалось, замену переменных можно делать явно, как в первых двух случаях, или устно, как в последнем.

Читать еще:  Замена катализатора на ВАЗ 2114

При обнаружении ошибок или опечаток — сообщайте, пожалуйста, на e-mail.

Есть вопросы? пожелания? замечания? Обращайтесь — mathematichka@yandex.ru

Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено.

§24. Дифференциал функции

24. ДИФФЕРЕНЦИАЛ ФУНКЦИИ

24.1. Понятие дифференциала функции

Пусть функция у=ƒ(х) имеет в точке х отличную от нуля производную.

Тогда, по теореме о связи функции, ее предела и бесконечно малой функции, можно записать D у/ D х=ƒ'(х)+α, где α→0 при ∆х→0, или ∆у=ƒ'(х)•∆х+α•∆х.

Таким образом, приращение функции ∆у представляет собой сумму двух слагаемых ƒ'(х)•∆х и а•∆х, являющихся бесконечно малыми при ∆x→0. При этом первое слагаемое есть бесконечно малая функция одного порядка с ∆х, так кака второе слагаемое есть бесконечно малая функция более высокого порядка, чем ∆х:

Поэтому первое слагаемое ƒ'(х) · ∆х называют главной частью приращения функции ∆у.

Дифференциалом функции у=ƒ(х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ(х)):

Дифференциал dу называют также дифференциалом первого порядка. Найдем дифференциал независимой переменной х, т. е. дифференциал функции у=х.

Так как у’=х’=1, то, согласно формуле (24.1), имеем dy=dx=∆x, т. е. дифференциал независимой переменной равен приращению этой переменной: dх=∆х.

Поэтому формулу (24.1) можно записать так:

иными словами, дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной.

Из формулы (24.2) следует равенство dy/dx=ƒ'(х). Теперь обозначение

производной dy/dx можно рассматривать как отношение дифференциалов dy и dх.

Решение: По формуле dy=ƒ'(х) dx находим

dy=(3х 2 -sin(l+2x))’dx=(6х-2cos(l+2х))dx.

Подставив х=0 и dx=0.1, получим

24.2. Геометрический смысл дифференциала функции

Выясним геометрический смысл дифференциала.

Для этого проведем к графику функции у=ƒ(х) в точке М(х; у) касательную МТ и рассмотрим ординату этой касательной для точки х+∆х (см. рис. 138). На рисунке ½ АМ ½ =∆х, |AM1|=∆у. Из прямоугольного треугольника МАВ имеем:

Но, согласно геометрическому смыслу производной, tga=ƒ'(х). Поэтому АВ=ƒ'(х)•∆х.

Сравнивая полученный результат с формулой (24.1), получаем dy=АВ, т. е. дифференциал функции у=ƒ(х) в точке х равен приращению ординаты касательной к графику функции в этой точке, когда х получит приращение ∆х.

В этом и состоит геометрический смысл дифференциала.

24.3 Основные теоремы о дифференциалах

Основные теоремы о дифференциалах легко получить, используя связь дифференциала и производной функции (dy=f'(x)dx) и соответствующие теоремы о производных.

Например, так как производная функции у=с равна нулю, то дифференциал постоянной величины равен нулю: dy=с’dx=0•dx=0.

Теорема 24.1. Дифференциал суммы, произведения и частного двух дифференцируемых функций определяются следующими формулами:

Докажем, например, вторую формулу. По определению дифференциала имеем:

d(uv)=(uv) ‘ dx=(uv ‘ +vu ‘ )dx=vu ‘ dx+uv ‘ dx=udv+vdu

Теорема 24.2. Дифференциал сложной функции равен произведению производной этой функции по промежуточному аргументу на дифференциал этого промежуточного аргумента.

Пусть у=ƒ(u) и u=φ(х) две дифференцируемые функции, образующие сложную функцию у=ƒ(φ(х)). По теореме о производной сложной функции можно написать

Умножив обе части этого равенства на dx, поучаем у’хdx=у’u•u’хdx. Но у’хdx=dy и u’хdx=du. Следовательно, последнее равенство можно переписать так:

Сравнивая формулы dy=у’х•dx и dy=у’u•du, видим, что первый дифференциал функции у=ƒ(х) определяется одной и той же формулой независимо от того, является ли ее аргумент независимой переменной или является функцией другого аргумента.

Это свойство дифференциала называют инвариантностью (неизменностью) формы первого дифференциала.

Формула dy=у’х•dx по внешнему виду совпадает с формулой dy=у’u•du, но между ними есть принципиальное отличие: в первой формуле х — независимая переменная, следовательно, dx=∆х, во второй формуле и есть функция от х, поэтому, вообще говоря, du≠∆u.

С помощью определения дифференциала и основных теорем о дифференциалах легко преобразовать таблицу производных в таблицу дифференциалов.

24.4. Таблица дифференциалов

24.5. Применение дифференциала к приближенным вычислениям

Как уже известно, приращение ∆у функции у=ƒ(х) в точке х можно представить в виде ∆у=ƒ'(х)•∆х+α•∆х, где α→0 при ∆х→0, или ∆у=dy+α•∆х. Отбрасывая бесконечно малую α•∆х более высокого порядка, чем ∆х, получаем приближенное равенство

причем это равенство тем точнее, чем меньше ∆х.

Это равенство позволяет с большой точностью вычислить приближенно приращение любой дифференцируемой функции.

Дифференциал обычно находится значительно проще, чем приращение функции, поэтому формула (24.3) широко применяется в вычислительной практике.

3 -2х+1 при х=2 и ∆х=0,001.

Решение: Применяем формулу (24.3): ∆у≈dy=(х 3 -2х+1)’•∆х=(3х 2 -2)•∆х.

Посмотрим, какую погрешность допустили, вычислив дифференциал функции вместо ее приращения. Для этого найдем ∆у:

∆у=((х+∆х) 3 -2(х+∆х)+1)-(х 3 -2х+1)=х 3 +3х 2 •∆х+3х•(∆х) 2 +(∆х) 3 -2х-2•∆х+1-х 3 +2х-1=∆х(3х 2 +3х•∆х+(∆х) 2 -2);

Абсолютная погрешность приближения равна

Подставляя в равенство (24.3) значения ∆у и dy, получим

Формула (24.4) используется для вычислений приближенных значений функций.

Решение: Рассмотрим функцию ƒ(х)=arctgx. По формуле (24.4) имеем:

т. е.

Так как х+∆х=1,05, то при х=1 и ∆х=0,05 получаем:

Можно показать, что абсолютная погрешность формулы (24.4) не превышает величины М•(∆х) 2 , где М — наибольшее значение |ƒ»(х)| на сегменте [х;х+∆х].

Какой путь пройдет тело при свободном падении на Луне за 10,04 с от начала падения. Уравнение свободного падения тела

Решение: Требуется найти H(10,04). Воспользуемся приближенной формулой (ΔH≈dH)

H(t+∆t)≈H(t)+H'(t)•∆t. При t=10 с и ∆t=dt=0,04 с, H'(t)=gлt, находим

Задача (для самостоятельного решения). Тело массой m=20 кг движется со скоростью ν=10,02 м/с. Вычислить приближенно кинетическую энергию тела

24.6. Дифференциалы высших порядков

Пусть у=ƒ(х) дифференцируемая функция, а ее аргумент х — независимая переменная. Тогда ее первый дифференциал dy=ƒ'(х)dx есть также функция х; можно найти дифференциал этой функции.

Дифференциал от дифференциала функции у=ƒ(х) называется ее вторым дифференциалом (или дифференциалом второго порядка) и обозначается d 2 y или d 2 ƒ(х).

Итак, по определению d 2 y=d(dy). Найдем выражение второго дифференциала функции у=ƒ(х).

Так как dx=∆х не зависит от х, то при дифференцировании считаем dx постоянным:

d 2 y=d(dy)=d(f'(x)dx)=(ƒ'(х)dx)’•dx=f»(x)dx•dx=f»(x)(dx) 2 т. е.

Здесь dx 2 обозначает (dx) 2 .

Аналогично определяется и находится дифференциал третьего порядка

d 3 y=d(d 2 y)=d(ƒ»(х)dx 2 )≈f'(x)(dx) 3 .

И, вообще, дифференциал n-го порядка есть дифференциал от дифференциала (n-1)-го порядка: d n y=d(d n-l y)=f (n) (x)(dx) n .

Отсюда находим, что, В частности, при n=1,2,3

т. е. производную функции можно рассматривать как отношение ее дифференциала соответствующего порядка к соответствующей степени дифференциала независимой переменной.

Отметим, что все приведенные выше формулы справедливы только, если х — независимая переменная. Если же функцию у=ƒ(х), где х — функция от кαкой-mo другой независимой переменной, то дифференциалы второго и выше порядков не обладают свойством инвариантности формы и вычисляются по другим формулам. Покажем это на примере дифференциала второго порядка.

Используя формулу дифференциала произведения (d(uv)=vdu+udv), получаем:

d 2 y=d(f'(x)dx)=d(ƒ'(х))dx+ƒ'(х)•d(dx)=ƒ»(х)dx•dx+ƒ'(х)•d 2 x, т. е.

d 2 y=ƒ»(х)dx 2 +ƒ'(х)•d 2 x. (24.6)

Сравнивая формулы (24.5) и (24.6), убеждаемся, что в случае сложной функции формула дифференциала второго порядка изменяется: появляется второе слагаемое ƒ'(х)•d 2 х.

Ясно, что если х — независимая переменная, то

d 2 x=d(dx)=d(l•dx)=dx•d(l)=dx•0=0

и формула (24.6) переходит в формулу (24.5).

2 y, если у=е 3х и х — независимая переменная.

Решение: Так как у’=3е 3х , у»=9e 3х , то по формуле (24.5) имеем d 2 y=9e 3x dx 2 .

2 y, если у=х 2 и х=t 3 +1и t— независимая переменная.

Решение: Используем формулу (24.6): так как

у’=2х, у»=2, dx=3t 2 dt, d 2 x=6tdt 2 ,

то d 2 y=2dx 2 +2x•6tdt 2 =2(3t 2 dt) 2 +2(t 3 +1)6tdt 2 =18t 4 dt 2 +12t 4 dt 2 +12tdt 2 =(30t 4 +12t)dt 2

Другое решение: у=х 2 , х=t 3 +1. Следовательно, у=(t 3 +1) 2 . Тогда по формуле (24.5)

Что такое дифференциал функции?

Понятие дифференциала функции связано с такими важными математическими разделами как дифференциальное и интегральное исчисление и тесно связано с понятием производной функции. Наиболее часто дифференциал применяется для приближенных вычислений, а также для оценки погрешностей формул и измерений.

Дифференциал функции — это линейная часть приращения функции. Говоря о значении дифференциала функции, рассматривают конкретную точку функции и бесконечно малое изменение аргумента.

Пусть xo есть некоторая точка из области определения функции f(x), а Δx — есть бесконечно малая величина. Тогда дифференциал функции находится как произведение значения производной функции и приращения её аргумента. Дифференциал функции f(x) обозначается как df(x).

История открытия дифференциала

Чаще всего открытие дифференциально-интегрального исчисления принято связывать с именем Исаака Ньютона, однако, этот факт активно оспаривают учёные со всего света.

Читать еще:  Замена тормозной жидкости

Действительно, открытие целого нового направления в науке, столь значимого для её развития, было бы ошибочно считать заслугой только одного учёного. Изначально интегрирование связывали с вычислением площадей и объёмов криволинейных фигур. Такие задачи, как известно, решались ещё во времена Архимеда, поэтому его имя также имеет отношение к открытию дифференциального исчисления.

Также дифференцирование имеет отношение к решению задач на проведение касательных к различным кривым. Данное направление активно развивали греческие математики. В те времена математики столкнулись с трудностью, которую не смогли решить в дальнейшем и представители Нового времени.

Дело в том, что для определения направления прямой требовалось знать координаты как минимум двух точек, а касательная имеет лишь одну точку соприкосновения с кривой. Этот факт натолкнул учёных на мысль о том, что в одной точке кривая может иметь несколько касательных. В то время ученые пришли к выводу, что прямая состоит не из точек, а из отрезков минимальной длины. Таким образом, они считали направление касательной в некоторой точке совпадающим с направлением атомарного отрезка в данной точке.

В дальнейшем учёные Нового времени опровергли данную теорию. В этот период огромный вклад в развитие науки внёс Исаак Ньютон. Ученый сформулировал определения и принципы решения производных, а также основы дифференциального исчисления, которых придерживаются учёные и в наши дни.

Дифференциальное исчисление широко применяется в математике и других науках для решения различных задач.

Геометрический смысл дифференциала

Геометрический смысл дифференциала заключается в следующем: дифференциал функции f(x) равен приращению ординаты касательной к графику функции, которая проведена через некоторую точку с координатами (x,y) при изменении координаты x на величину Δх=dx.

Дифференциал является главной линейной частью функции относительно приращения аргумента. Чем меньше приращение функции, тем большая доля приращения приходится на эту линейную часть.

Таким образом, при бесконечно малом Δх, приращение функции можно считать равным ее дифференциалу. Это свойство дифференциала позволяет использовать его для приблизительных вычислений и оценки погрешностей измерений.

Применение дифференциала в приближенных вычислениях

Поскольку дифференциал функции является частью ее приращения, то при бесконечно малом приращении аргумента он приблизительно равен приращению функции. При этом чем меньше приращение аргумента, тем точнее значение функции. Этот факт даёт возможность использования дифференциалов для приближённых вычислений.

С помощью таких вычислений можно решать различные виды задач. Приближённые вычисления практически всегда связаны с наличием погрешности.

Использование дифференциала для оценки погрешностей

Результаты измерений в большинстве случаев содержат ошибку, обусловленную неточностью измерительных приборов.

Число, несколько превышающее или равное этой неточности, называется «предельной абсолютной погрешностью».

Отношение предельной погрешности к значению измеряемой величины называют «предельной относительной погрешностью».

Для оценки величины погрешностей измерений используют дифференциальное исчисление.

Дифференциальные уравнения для «чайников». Примеры решения

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение диффуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что диффуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х), которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.

Решение уравнений

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.

Математика

Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все «игреки», а в другой – «иксы»:

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, как правильно оформить презентацию, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему «Как решать дифференциальные уравнения»:

Дифференциалы — это что такое? Как найти дифференциал функции?

Наряду с производными функций их дифференциалы – это одни из базовых понятий дифференциального исчисления, основного раздела математического анализа. Являясь неразрывно связанными между собой, оба они уже несколько столетий активно используются при решении практически всех задач, которые возникали в процессе научно-технической деятельности человека.

Возникновение понятия о дифференциале

Впервые разъяснил, что такое дифференциал, один из создателей (наряду с Исааком Ньютоном) дифференциального исчисления знаменитый немецкий математик Готфрид Вильгельм Лейбниц. До этого математиками 17 ст. использовалось весьма нечеткое и расплывчатое представление о некоторой бесконечно малой «неделимой» части любой известной функции, представлявшей очень малую постоянную величину, но не равную нулю, меньше которой значения функции быть просто не могут. Отсюда был всего один шаг до введения представления о бесконечно малых приращениях аргументов функций и соответствующих им приращениях самих функций, выражаемых через производные последних. И этот шаг был сделан практически одновременно двумя вышеупомянутыми великими учеными.

Исходя из необходимости решения насущных практических задач механики, которые ставила перед наукой бурно развивающаяся промышленность и техника, Ньютон и Лейбниц создали общие способы нахождения скорости изменения функций (прежде всего применительно к механической скорости движения тела по известной траектории), что привело к введению таких понятий, как производная и дифференциал функции, а также нашли алгоритм решения обратной задачи, как по известной (переменной) скорости найти пройденный путь, что привело к появлению понятия интеграла.

В трудах Лейбница и Ньютона впервые появилось представление о том, что дифференциалы — это пропорциональные приращениям аргументов Δх основные части приращений функций Δу, которые могут быть с успехом применены для вычисления значений последних. Иначе говоря, ими было открыто, что приращение функции может быть в любой точке (внутри области ее определения) выражено через ее производную как Δу = y'(x) Δх + αΔх, где α Δх – остаточный член, стремящийся к нулю при Δх→0, гораздо быстрее, чем само Δх.

Читать еще:  Двигатель ЗМЗ-406 описание и технические характеристики

Согласно основоположникам матанализа, дифференциалы – это как раз и есть первые члены в выражениях приращений любых функций. Еще не обладая четко сформулированным понятием предела последовательностей, они интуитивно поняли, что величина дифференциала стремится к производной функции при Δх→0 — Δу/Δх→ y'(x).

В отличие от Ньютона, который был прежде всего физиком, и рассматривал математический аппарат как вспомогательный инструмент исследования физических задач, Лейбниц уделял большее внимание самому этому инструментарию, включая и систему наглядных и понятных обозначений математических величин. Именно он предложил общепринятые обозначения дифференциалов функции dy = y'(x)dx, аргумента dx и производной функции в виде их отношения y'(x) = dy/dx.

Современное определение

Что такое дифференциал с точки зрения современной математики? Он тесно связан с понятием приращения переменной величины. Если переменная y принимает сначала значение y = y1, а затем y = y2, то разность y2 ─ y1 называется приращением величины y.

Если величину Δу произвольной функции y = f (x) возможно представить в виде Δу = A Δх + α, где у A нет зависимости от Δх, т. е. A = const при данном х, а слагаемое α при Δх→0 стремится к нему же еще быстрее, чем само Δх, тогда первый («главный») член, пропорциональный Δх, и является для y = f (x) дифференциалом, обозначаемым dy или df(x) (читается «дэ игрек», «дэ эф от икс»). Поэтому дифференциалы – это «главные» линейные относительно Δх составляющие приращений функций.

Механическое истолкование

Пусть s = f (t) – расстояние прямолинейно движущейся материальной точки от начального положения (t – время пребывания в пути). Приращение Δs – это путь точки за интервал времени Δt, а дифференциал ds = f’ (t) Δt – это путь, который точка прошла бы за то же время Δt, если бы она сохранила скорость f'(t), достигнутую к моменту t. При бесконечно малом Δt воображаемый путь ds отличается от истинного Δs на бесконечно малую величину, имеющую высший порядок относительно Δt. Если скорость в момент t не равна нулю, то ds дает приближенную величину малого смещения точки.

Геометрическая интерпретация

Пусть линия L является графиком y = f (x). Тогда Δ х= MQ, Δу = QM’ (см. рисунок ниже). Касательная MN разбивает отрезок Δу на две части, QN и NM’. Первая пропорциональна Δх и равна QN = MQ∙tg (угла QMN) = Δх f ‘(x), т. е QN есть дифференциал dy.

Вторая часть NM’дает разность Δу ─ dy, при Δх→0 длина NM’ уменьшается еще быстрее, чем приращение аргумента, т.е у нее порядок малости выше, чем у Δх. В рассматриваемом случае, при f ‘(x) ≠ 0 (касательная не параллельна ОХ), отрезки QM’и QN эквивалентны; иными словами NM’ уменьшается быстрее (порядок малости ее выше), чем полное приращение Δу = QM’. Это видно на рисунке (с приближением M’к М отрезок NM’составляет все меньший процент отрезка QM’).

Итак, графически дифференциал произвольной функции равен величине приращения ординаты ее касательной.

Производная и дифференциал

Коэффициент A в первом слагаемом выражения приращения функции равен величине ее производной f ‘(x). Таким образом, имеет место следующее соотношение — dy = f ‘(x)Δх, или же df (x) = f ‘(x)Δх.

Известно, что приращение независимого аргумента равно его дифференциалу Δх = dx. Соответственно, можно написать: f ‘(x) dx = dy.

Нахождение (иногда говорят, «решение») дифференциалов выполняется по тем же правилам, что и для производных. Перечень их приведен ниже.

Что более универсально: приращение аргумента или его дифференциал

Здесь необходимо сделать некоторые пояснения. Представление величиной f ‘(x)Δх дифференциала возможно при рассмотрении х в качестве аргумента. Но функция может быть сложной, в которой х может быть функцией некоторого аргумента t. Тогда представление дифференциала выражением f ‘(x)Δх, как правило, невозможно; кроме случая линейной зависимости х = at + b.

Что же касается формулы f ‘(x)dx= dy, то и в случае независимого аргумента х (тогда dx = Δх), и в случае параметрической зависимости х от t, она представляет дифференциал.

Например, выражение 2 x Δх представляет для y = x 2 ее дифференциал, когда х есть аргумент. Положим теперь х= t 2 и будем считать t аргументом. Тогда y = x 2 = t 4 .

Далее следует (t +Δt) 2 = t 2 + 2tΔt + Δt 2 . Отсюда Δх = 2tΔt + Δt 2 . Значит: 2xΔх = 2t 2 (2tΔt + Δt 2 ).

Это выражение не пропорционально Δt и потому теперь 2xΔх не является дифференциалом. Его можно найти из уравнения y = x 2 = t 4 . Он оказывается равен dy=4t 3 Δt.

Если же взять выражение 2xdx, то оно представляет дифференциал y = x 2 при любом аргументе t. Действительно, при х= t 2 получим dx = 2tΔt.

Значит 2xdx = 2t 2 2tΔt = 4t 3 Δt, т. е. выражения дифференциалов, записанные через две разные переменные, совпали.

Замена приращений дифференциалами

Если f ‘(x) ≠ 0, то Δу и dy эквивалентны (при Δх→0); при f ‘(x) = 0 (что означает и dy = 0), они не эквивалентны.

Например, если y = x 2 , то Δу = (x + Δх) 2 ─ x 2 = 2xΔх + Δх 2 , а dy=2xΔх. Если х=3, то имеем Δу = 6Δх + Δх 2 и dy = 6Δх, которые эквивалентны вследствие Δх 2 →0, при х=0 величины Δу = Δх 2 и dy=0 не эквивалентны.

Этот факт, вместе с простой структурой дифференциала (т. е. линейности по отношению к Δх), часто используется в приближенных вычислениях, в предположении, что Δу ≈ dy для малых Δх. Найти дифференциал функции, как правило, легче, чем вычислить точное значение приращения.

Например, имеем металлический куб с ребром х=10,00 см. При нагревании ребро удлинилось на Δх = 0,001 см. Насколько увеличился объем V куба? Имеем V = х 2 , так что dV = 3x 2 Δх = 3∙10 2 ∙0/01 = 3 (см 3 ). Увеличение объема ΔV эквивалентно дифференциалу dV, так что ΔV = 3 см 3 . Полное вычисление дало бы ΔV =10,01 3 ─ 10 3 = 3,003001. Но в этом результате все цифры, кроме первой ненадежны; значит, все равно, нужно округлить его до 3 см 3 .

Очевидно, что такой подход является полезным, только если возможно оценить величину привносимой при этом ошибки.

Дифференциал функции: примеры

Попробуем найти дифференциал функции y = x 3 , не находя производной. Дадим аргументу приращение и определим Δу.

Δу = ( Δх + x) 3 ─ x 3 = 3x 2 Δх + (3xΔх 2 + Δх 3 ).

Здесь коэффициент A= 3x 2 не зависит от Δх, так что первый член пропорционален Δх, другой же член 3xΔх 2 + Δх 3 при Δх→0 уменьшается быстрее, чем приращение аргумента. Стало быть, член 3x 2 Δх есть дифференциал y = x 3:

dy=3x 2 Δх=3x 2 dx или же d(x 3 ) = 3x 2 dx.

При этом d(x 3 ) / dx = 3x 2 .

Найдем теперь dy функции y = 1/x через ее производную. Тогда d(1/x) / dx = ─1/х 2 . Поэтому dy = ─ Δх/х 2 .

Дифференциалы основных алгебраических функций приведены ниже.

Приближенные вычисления с применением дифференциала

Вычислить функцию f (x), а также ее производную f ‘(x) при x=a часто нетрудно, а вот сделать то же самое в окрестности точки x=a бывает нелегко. Тогда на помощь приходит приближенное выражение

f(a + Δх) ≈ f ‘(a)Δх + f(a).

Оно дает приближенное значение функции при малых приращениях Δх через ее дифференциал f ‘(a)Δх.

Следовательно, данная формула дает приближенное выражение для функции в конечной точке некоторого участка длиной Δх в виде суммы ее значения в начальной точке этого участка (x=a) и дифференциала в той же начальной точке. Погрешность такого способа определения значения функции иллюстрирует рисунок ниже.

Однако известно и точное выражение значения функции для x=a+Δх, даваемое формулой конечных приращений (или, иначе, формулой Лагранжа)

f(a+ Δх) ≈ f ‘(ξ) Δх + f(a),

где точка x = a+ ξ находится на отрезке от x = a до x = a + Δх, хотя точное положение ее неизвестно. Точная формула позволяет оценивать погрешность приближенной формулы. Если же в формуле Лагранжа положить ξ = Δх /2, то хотя она и перестает быть точной, но дает, как правило, гораздо лучшее приближение, чем исходное выражение через дифференциал.

Оценка погрешности формул при помощи применения дифференциала

Измерительные инструменты в принципе неточны, и привносят в данные измерений, соответствующие ошибки. Их характеризуют предельной абсолютной погрешностью, или, короче, предельной погрешностью – положительным числом, заведомо превышающим эту ошибку по абсолютной величине (или в крайнем случае равным ей). Предельной относительной погрешностью называют частное от ее деления на абсолютное значение измеренной величины.

Пусть точная формула y= f (x) использована для вычисляения функции y, но значение x есть результат измерения и поэтому привносит в y ошибку. Тогда, чтобы найти предельную абсолютную погрешность │‌‌Δу│функции y, используют формулу

где │Δх│является предельной погрешностью аргумента. Величину │‌‌Δу│ следует округлить в сторону увеличения, т.к. неточной является сама замена вычисления приращения на вычисление дифференциала.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector