0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Эффективность транспорта на бензине батарейках и водороде

Наука

Технологии

Топливные элементы для народа

Чудо-батарейка, работающая на водороде, уже не за горами

Чудо-батарейка, работающая на самом распространенном во Вселенной химическом элементе — водороде, становится реальностью. Новый тип катализатора без платины значительно удешевит стоимость водородных топливных элементов — перспективных источников энергии с областью применения от автономных электростанций и экологически чистого автотранспорта до ноутбуков и мобильников.

Исследовательская группа из Лос-Аламосской национальной лаборатории (США) заявила, что ей удалось получить дешевый, эффективный и долговечный катализатор без использования дорогостоящей платины для топливных электрохимических элементов, работающих на водородно-кислородном цикле. Пока это самые экологически дружественные приспособления, обеспечивающие прямое преобразование энергии химических связей топлива в электрическую.

Единственным продуктом реакции, протекающей в элементах такого типа, кроме, конечно, нужных в хозяйстве свободных электронов, является вода.

Подробности открытия, обещающего сделать топливные элементы питания более доступными для массового потребителя, опубликованы в последнем номере журнала Science.

Необходимость использование платины в конструкции водородного топливного элемента продиктована физикой происходящих в нем процессов. Главная задача электрохимического топливного элемента — направить свободные электроны, возникающие в процессе окислительно-восстановительной реакции, сразу на совершение работы, минуя стадию интенсивного горения, как это происходит в классических тепловых генераторах энергии, работающих на окислении углерода.

Результатом такого «теплового отсекания» должно стать высокоэффективное «холодное горение» (в данном случае горение водорода) при КПД, превышающем КПД тепловых генераторов, где большое количество энергии теряется на промежуточных стадиях нагрева рабочего тела, совершении механической работы (раскрутка турбины) или просто рассеивается в окружающей среде.

В топливном элементе выполнение нетривиальной задачи по достижению «холодного горения» происходит в три стадии.

Подробнее:

Карбонизированные волокна куриных перьев можно эффективно использовать в перевозке и хранении водорода

На аноде такого элемента, покрытом слоем катализатора, топливо (в нашем случае — водород) интенсивно диссоциирует, то есть, отдав электроны, которые поступают во внешнюю цепь для совершения работы, распадается на ионы (протоны). На другом конце цепи электроны подходят к катоду, где их, тоже посредством катализатора, присоединяет окислитель — кислород. Через слой ионопроводящего электролита ионы устремляются от анода к катоду, где воссоединяются с электронами и атомами водорода — образуется вода.

Как видим, эффективность работы топливного элемента зависит от двух ключевых элементов — электродов с функцией катализаторов и электролита.

Подробнее:

Ученые придумали, как синтезировать водород из мочи

На снижение их стоимости, повышение эффективности и расширение окна рабочих режимов брошены сейчас все основные силы разработчиков. Так, жидкий электролит уже удалось заменить на специальные полимерные мембраны, умеющие пропускать только ионы, позволив таким образом уменьшить размеры элемента до рыночно приемлемых в случае их использования в мобильных гаджетах. В идеале батарея из таких элементов должна укладываться в размеры спичечного коробка со сменяемым топливным картриджем или даже меньше.

Что касается электродов-катализаторов, на которых сосредоточили свою инженерную мысль сотрудники Лос-Аламосской лаборатории, то здесь главным камнем преткновения оставалась платина.

Проблемой, собственно, был не сам металл, проявляющий замечательно стабильные и эффективные каталитические качества в подходящих температурных и влажностных режимах, а его цена, доходящая до двух тысяч долларов за унцию (примерно 28 г), что делало водородные чудо-элементы совсем не народным удовольствием. К тому же мировые запасы платины конечны, и хватит их в случае широкого использования ТЭ максимум на 40—50 лет.

Перебрав несколько альтернативных вариантов, американские химики нашли-таки бесплатиновый рецепт катализатора — им оказалась сложносоставная композиция из кобальта, углерода и железа, получаемая по строго определенной технологии при участии полианилина — полимера, обладающего электронной проводимостью за счет специфических азотных связей между кольцами.

Подробнее:

Создано недорогое водородное топливо

Дешевый, демократичный катализатор на деле показал себя совсем не хуже платинового. Более того: финальная окислительная реакция с образованием воды шла с его участием по наиболее полному окислительному циклу без побочного выхода перекиси водорода, для нежной полимерной мембраны крайне нежелательной. Вторым приятным бонусом стало устойчивое поведение катализатора в циклах включения и выключения тока, что тоже очень важно, учитывая режимы, в которых топливные элементы и должны работать, снабжая энергией всякого рода мобильные девайсы.

В общем, чудо-катализатор оказался столь хорош, что авторы статьи, уверенные в светлом будущем своего создания и потенциально огромной цене вопроса, тут же его запатентовали.

Победные реляции, однако, несколько омрачает факт, что бесплатиновый катализатор найден пока лишь для одного из двух электродов топливного элемента — того, который запускает финальную окислительную реакцию с образованием воды. Но и тут не обошлось без бонуса: из-за специфики протекания реакции на этом электроде платины для его изготовления требуется намного больше, чем для разложения водорода на протоны, протекающего более быстро. Поэтому и экономия от замены платины на дешевые компоненты окажется более значительной.

Статью авторы резюмируют на оптимистической ноте: дальнейшее изучение кобальт-железно-углеродного катализатора, принцип работы которого ясен еще не до конца, позволит придумать эффективный бесплатиновый сплав и для второго электрода. Нет никаких сомнений, что к тому моменту подешевеют и пока что довольно дорогие протон-полимерные мембраны, а мы наконец получим дешевую батарейку, работающую на самом распространенном во Вселенной веществе — водороде.

Тенденции и перспективы водородных топливных элементов для экологически чистого транспорта

В данной статье речь пойдет о водородных топливных элементах, о тенденциях и перспективах их применения. Топливные элементы на основе водорода притягивают сегодня все большее внимание специалистов автомобильной отрасли, ведь если 20 век был веком ДВС, то 21 век может стать веком водородной энергетики в автомобилестроении. Уже сегодня благодаря водородным элементам действуют космические корабли, а в некоторых странах мира водород уже более 10 лет используют для получения электроэнергии.

Водородный топливный элемент представляет собой электрохимическое устройство вроде батарейки, которое вырабатывает электричество посредством химической реакции между водородом и кислородом, а продуктом химической реакции является чистая вода, тогда как при сжигании например природного газа образуется экологически вредный углекислый газ.

К тому же водородные элементы способны работать с более высоким КПД, вот почему на них возлагаются особенно большие надежды. Только представьте, эффективные двигатели автомобилей без вреда для окружающей среды. Вот только на данный момент вся инфраструктура выстроена и специализирована под нефтепродукты, и широкомасштабное внедрение водородных элементов в автомобилестроение натыкается на это и другие препятствия.

А между тем, еще с 1839 года известно, что водород и кислород можно соединить химическим путем и получить при этом электрический ток, то есть процесс электролиза воды обратим — это подтвержденный научный факт. Уже в 19 веке топливные элементы начали изучаться, однако развитие нефтедобычи и создание двигателя внутреннего сгорания оставило водородные источники энергии позади, и они стали чем-то экзотическим, не рентабельным, дорогим в производстве.

В 1950-е НАСА была вынуждена прибегнуть к водородным топливным элементам, и то по острой необходимости. Им требовался компактный и эффективный генератор электроэнергии для космических кораблей. В результате Apollo и Gemini полетели в космос на водородных топливных элементах — это оказалось лучшим решением.

На сегодняшний день топливные элементы полностью вышли из области экспериментальных технологий, и за последние 20 лет были достигнуты заметные успехи в плане их более широкой коммерциализации.

На водородные топливные элементы не зря возлагают большие надежды. В процессе их работы загрязнение окружающей среды минимально, технические преимущества и безопасность очевидны, кроме того данный вид топлива принципиально автономен и способен заменить тяжелые и дорогие литиевые батареи.

Топливо водородного элемента преобразуется в энергию прямо в ходе химической реакции, причем энергии здесь получается больше чем при обычном сгорании. Топлива расходуется меньше, а эффективность оказывается втрое выше чем у аналогичного устройства на ископаемом топливе.

Эффективность будет тем выше, чем лучше организован способ утилизации воды и тепла, образующихся в ходе реакции. Выброс вредных веществ минимален, ведь выделяется только вода, энергия и тепло, тогда как даже при самом успешно организованном процессе сжигания традиционного топлива неизбежно образуются оксиды азота, серы, углерода и прочие ненужные продукты сгорания.

К тому же отрасли добывающие обычное топливо сами по себе пагубно влияют на окружающую среду, а водородные топливные элементы позволяют избежать опасного вторжения в экосистему, поскольку добыча водорода возможна из полностью возобновляемых источников энергии. Даже утечка этого газа безопасна, так как он мгновенно улетучивается.

Топливному элементу без разницы, из какого известного топлива получен водород для его работы. Плотность энергии в кВт-ч/л будет одной и той же, причем данный показатель постоянно повышается с совершенствованием технологии создания топливных элементов.

Сам же водород может быть получен из любого удобного местного источника, будь то природный газ, уголь, биомасса или электролиз (за счет ветряной, солнечной энергии и т. д.) Зависимость от поставщиков электроэнергии из регионов пропадает, системы вообще независимы от электросетей.

Рабочие температуры элемента достаточно низки, и могут лежать в диапазоне от 80 до 1000°C, в зависимости от типа элемента, тогда как температура в обычном современном двигателе внутреннего сгорания доходит до 2300 °C. Топливный элемент компактен, издает минимум шума во время генерации, выброс вредных веществ отсутствует, поэтому он может быть размещен в любом удобном месте системы, в составе которой работает.

В принципе не только электроэнергия, но и тепло, которое высвобождается во время химической реакции, может быть утилизировано на полезные цели, например на подогрев воды, отопление помещений или получение холода, — при таком подходе КПД генерации энергии в элементе приблизится к 90%.

Элементы чувствительны к изменению нагрузки, поэтому при повышении мощности потребителя нужно подводить больше топлива. Это подобно тому, как работает бензиновый двигатель внутреннего сгорания или генератор. Технически топливный элемент реализуется достаточно просто, ведь тут нет подвижных деталей, конструкция получается простой и надежной, вероятность ее отказа принципиально крайне мала.

Водородно-кислородный топливный элемент с протонообменной мембраной (например, «с полимерным электролитом») содержит протонопроводящую полимерную (нафион, полибензимидазол и др.) мембрану, которая разделяет два электрода — анод и катод. Каждый электрод обычно представляет собой угольную пластину (матрицу) с нанесённым катализатором — платиной или сплавом платиноидов и др. композиции.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Катионы водорода проводятся через мембрану к катоду, но электроны отдаются во внешнюю цепь, так как мембрана не пропускает электроны. На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Да, электрокары сегодня работают на литиевых батареях. Однако топливные водородные элементы могут их заменить. Вместо батареи будет стоять источник питания гораздо легче весом. К тому же мощность машины может быть повышена вовсе не за счет увеличения веса из-за добавления ячеек аккумуляторов, а просто регулировкой подачи топлива в систему, пока оно есть в баллоне. Поэтому производители автомобилей возлагают на топливные элементы с водородом большие надежды.

Более 10 лет назад работы по созданию автомобилей на водороде начались во многих странах мира, особенно в США и Европе. Кислород может добываться прямо из атмосферного воздуха при помощи особой фильтрующей компрессорной установки, располагаемой на борту автомобиля. Сжатый водород хранится в сверхпрочном баллоне под давлением порядка 400 атм. Заправка длится считанные минуты.

Концепция экологически чистого городского транспорта с середины нулевых годов 21 века реализуется в Европе: в Амстердаме, Гамбурге, Барселоне и Лондоне уже давно можно встретить такие пассажирские автобусы. В условиях мегаполиса крайне важно отсутствие вредных выбросов и пониженный шум. В Германии в 2018 г. пущен первый железнодорожный пассажирский состав на водородном топливе Coradia iLint. К 2021 г. запланирован пуск ещё 14 таких поездов.

В ближайшие 40 лет переход на водород как на основной источник энергии для автомобилей мог бы перевернуть энергетику и экономику мира. Хотя сейчас ясно, что нефть и газ останутся главными на рынке топлива как минимум еще лет 10. Тем не менее некоторые государства уже сейчас вкладывают деньги в создание машин на водородных топливных элементах, несмотря на то, что предстоит преодолеть много технических и экономических барьеров.

Читать еще:  Как слить бензин с ларгуса

Создание водородной инфраструктуры, безопасных заправочных станций — вот главная задача, ведь водород — взрывоопасный газ. Так или иначе, с водородом стоимость топлива и содержания транспорта может быть сильно уменьшена, а надежность — повышена.

По прогнозам Bloomberg, к 2040 году автомобили будут расходовать 1900 тераватт-час вместо нынешних 13 млн баррелей в сутки, что составит 8% от спроса на электричество, в то время как 70% добываемой в мире нефти уходит сегодня именно на производство топлива для транспорта. Конечно, на данный момент перспективы рынка аккумуляторных электромобилей куда более явные и впечатляющие, чем в случае с водородными топливными элементами.

В 2017 году рынок электромобилей составлял 17,4 млрд долларов, в то время как водородный автомобильный рынок оценивался всего в 2 млрд долларов. Несмотря на такую разницу, инвесторы продолжают интересоваться водородной энергетикой и финансировать новые разработки.

Так, в 2017 году был создан «Водородный совет» (Hydrogen Council), включающий 39 крупных производителей автомобилей, таких как Audi, BMW, Honda, Toyota, Daimler, GM, Hyundai. Его целью является исследование и разработка новых водородных технологий и их последующее широкое внедрение.

Водород в автомобилях: Опасности и сложности использования

Плюсы и минусы использования водорода в качестве автомобильного топлива

Начало 21-го века, как и само начало XX века, также считается временем перемен. Вновь перед населением нашей Планеты замаячила технологическая революция и вновь главное место в ней занимают, как и всегда — автомобили. Как и сто лет назад быстрыми темпами начали развиваться альтернативные виды транспорта, не связанные с привычными нам двигателями внутреннего сгорания. Все чаще можно увидеть на дорогах мира автомобили гибриды, которые приводятся в движение электродвигателем и ДВС. В развитых странах Мира и Европы все чаще входят в обиход электрокары. Совсем еще недавно, каких-то 7 — 10 лет назад, ученные и инженеры пророчили таким машинам с ДВС большое будущее, работающим на самом распространенном элементе в нашей вселенной — водороде. Все это человечество уже проходило в начале прошлого столетия. А потому, заново и вновь подтверждает свою актуальность распространенное по всему белу свету изречение: «Все новое — это хорошо забытое старое».

Сейчас наша Планета переживает новый кризис,- нефтяной. Только связан он не с дефицитом черного золота ставшего на 100 лет локомотивом развития всего человечества, а с перенасыщенностью данного вида товара на рынке. Это быть может и есть тот первый сигнал говорящий нам о том, что «нефтяной век» подходит к своему концу. Как говорят, — каменный век закончился не потому что закончились камни. Поэтому нам так важно сегодня развивать запасной план (запасной источник знергии, для авто в том числе) на случай, если…

21 век в автомобильном мире будет веком распространения технологий будущего. Но не всем новым технологиям суждено выиграть в этом естественном отборе.

И так, приступим. Менее десяти лет назад единственной реальной альтернативой ископаемым видам топлива был по сути водород. Прошли годы, а никаких серьезных подвижек в этом направлении так сделано и не было. Наоборот, аутсайдер того времени то есть электрокар, из пешек, перешел в дамки, с появлением автомобиля Tesla и разработкой очень надежных и прогрессивных аккумуляторов, из которых всем стало ясно, что электрические автомобили — это всерьез и надолго.

Почему так получилось? Ведь водородный ДВС был практически идеальным способом приводить в движение автомобиль. Он не требовал больших вложений в разработку нового агрегата (водород может использоваться в качестве топлива в обычном двигателе внутреннего сгорания). По данным статистики, в случае использования водородного топлива мощность мотора упадет с 82 — до 65%, по сравнению с обычным бензиновым мотором. Но внеся небольшие изменения в саму систему зажигания, мощность того же двигателя сразу увеличится до 118%.

Первый плюс ДВС работающего на водороде: -необходимы минимальные изменения в конструкции двигателя для того, чтобы мотор перевести на новый вид топлива

Экологичность такого вида топлива тоже не подвергается сомнениям. Последняя серийная разработка японской автомобилестроительной корпорации «Toyota» доказала, что «выхлоп» водородного автомобиля можно…по-просту пить. Это лмчно продемонстрировал один зарубежный автожурналист. Он сделал несколько глотков воды поступающей прямо из выхлопной трубы автомобиля Toyota Mirai, и тут-же сказал, что на вкус данная вода вполне себе даже ничего, настоящая дистиллированная, без примесей.

Второй плюс этих ДВС — экологичность. Никакого загрязнения окружающей среды вредными выбросами в атмосферу. Значит, сведение к минимуму этих парниковых газов и спасение нашей прекрасной Планеты. Вот к чему может привести использование этого вида топлива.

Следующий фактор о водородных двигателях (его косвенно можно считать таковым). Исторически так уж сложилось, что водородом заправляли еще «автопионеров» среди ДВС. Первый такой водородный двигатель был построен французским конструктором Франсуа Исаак де Ривазом аж в 1806 году.

Не забудем и те героические времена истории Нашей с вами страны. В блокадном Ленинграде на водород было переведено более 500 автомобилей. И они без особых проблем несли свою непростую но нужную службу.

Получается, что водород, как топливо для сжигания в ДВС, используют уже достаточно давно. Значит и особых проблем в создании современного автомобиля не должно просто быть.

Четвертый значительный фактор говорящий за целесообразность использования вещества с формулой H2- это его колоссальная распространенность на планете. H2 (водород) можно получать даже из отходов и сточных вод.

Часто встречающиеся в природе вещества достаточно дешево стоят. Значит и водородное топливо не должно быть дорогим.

Пятый фактор. — Водород может использоваться не только в ДВС. Технологии также позволяют применять его в так называемом «топливном элементе».

Топливный элемент отделяет один электрон в атоме водорода от одного протона и использует электроны для получения электрического тока. Это электричество способно питать двигатель в электрокаре. В самих топливных элементах также не используется ископаемое топливо, поэтому таковые (топливные элементы) по-просту не загрязняют окружающую среду. И главное достоинство — они безопасны, водород не может сам по себе самопроизвольно испарится из них. Казалось бы, просто идеальный преемник двигателю внутреннего сгорания в качестве источника энергии для автомобилей 21-го века.

Использование водорода может происходить в различных силовых установках, делая его таким образом более гибким к развитию технологий. Разрабатываемые современные водородные автомобили в основном используют эту данную схему, как наиболее безопасную и продуктивную.

Не мало плюсов, неправда ли друзья? И они все очень даже весомые. Но почему тогда до сих пор мы не видим миллионы водородных самодвижущихся экипажей вокруг нас по всей планете? На то есть свои определенные причины, и они также очень сегодня важны.

Давайте рассмотрим некоторые из причин, в том числе серьезные опасности, которые могут быть связаны с водородной энергетикой.

Первый минус. -Да, это правда, водород самый распространенный элемент во всей Вселенной, однако на самой Земле в чистом виде газообразный водород найти сегодня практически невозможно. Этот газ необычайно легок. Поэтому в чистом виде он очень быстро (почти моментально) поднимается к верхним слоям атмосферы и уходит дальше в безвоздушное пространство.

В подавляющем большинстве случаев атомы водорода связаны с другими типами атомов в разнообразные молекулы, которые образуют после этого различные вещества. Вот например, H2O, более известная нам всем, как вода, или тот же СН4, также известный, как метан, оба эти элемента содержат в себе молекулы водорода.

Поэтому получается, прежде чем водород может быть использован в качестве альтернативного топлива, он сначала должен быть извлечен из этих самых веществ, а затем уже переведен в особое состояние, то есть как правило, в тот самый сжиженный и необходимый нам вид.

На все эти действия потребуются очень большие затраты энергии, а значит и коллосальные материальные средства. К примеру, для извлечения H2 (водорода) из воды с помощью электролиза требуется большое количество электроэнергии, что на данный момент просто нерентабельно. По разным подсчетам стоимость 1 литра сжиженного водорода составляет примерно от $2 долларов и до 8 Евро, в зависимости от способа его добычи.

Следующим звеном в цепочке под номером два идет: -отсутствие развитой структурной сети самих водородных заправок. Стоимость оборудования для таких заправочных станций в разы выше, чем у обычной АЗС. Существует различные проекты для водородозаправляющих станций, как от классических АЗС, так и до частных минизаправок. При сегодняшнем развитии смежных технологий все эти проекты чрезвычайно дороги и относительно опасны.

Развитие сети водородных заправок дело будущих десятилетий. Именно столько должно пройти времени, чтобы стоимость их постройки была целесообразной.

Существуют ли опасности, которые связаны с наличием большого количества чистого водорода скопившегося в одном месте? Безусловно существует. Когда жидкий водород хранится в резервуарах, это безопасно, но стоит ему просочится в окружающую среду, как он моментально превращается в гремучую смесь (гремучий газ).

В плюсах мы уже отметили, что водородом можно заправлять автомобили с обычным двигателем внутреннего сгорания (в домашних условиях не повторять! ОПАСНО. ), но однако, этот обычный двигатель проработает на чистом водороде не долго. Он быстро сломается. При сгорании водородной смеси выделяется большее количество тепла, чем при сгорании того же бензина, а это может привести под высокими нагрузками к перегреву клапанов и поршней двигателя. Помимо этого ,под воздействием высоких температур H2 (водород) может влиять на саму смазку в двигателе и на материалы из которых сделан мотор, что непременно приведет к повышенному износу рабочих частей агрегата.

Отсюда мы делаем неутешительный вывод: -без очень дорогостоящей модернизации ДВС, которая должна приспособить мотор к работе на этом виде горючего, использование водорода как топлива не приведет к ожидаемому результату.

А пока все построенные объекты для заправки автомобилей водородом скорее всего используются в качестве рекламного хода и для демонстрации возможностей будущего.

Топливные ячейки стоят на третьей позиции в качестве минусов. Эти вроде безопасные элементы тоже не избежали тернистого пути метода проб и ошибок. Как и с теми же заправочными станциями и с теми же двигателями ДВС, все упирается именно в стоимость применяемых на данный момент технологий.

Приведем один пример. В качестве катализатора в этих топливных элементах используется на данный момент платина. А теперь представляете друзья стоимость такой детали?!

Некоторые технологии для ДВС настолько дороги, что проще купить жене платиновое кольцо с бриллиантом, чем заменить сломавшуюся деталь в водородном автомобиле.

Хорошая новость в этом достаточно дорогом деле заключается в том, что ученные непрерывно день-изо-дня ищут замену этому драгоценному металлу. Разрабатываются все новые технологии, проходят тестирования новые современные материалы. В конечном итоге ученые надеются, что «топливные элементы будущего» могут существенно снизить себестоимость сегодняшних элементов в 1000 раз и более.

И наконец последними, возглавляющими наш список минусов водородных технологий являются: — смертельные опасности, связанные с жидким и газообразным водородом.

Возглавляет окончательный список проблем — само возгорание водорода. В присутствии окислителя, т.е. кислорода, водород может сам по-себе просто загореться. Иногда такое возгорание происходит в виде взрыва. Согласно проведенным исследованиям было установлено, что для воспламенения водорода достаточно всего одной 10(десятой) частички энергии, что требуется для воспламенения бензина. Проще говоря можно сказать, что достаточно всего маленькой искры от статического электричества, чтобы этот гремучий газ вспыхнул.

Еще одна проблема кроется в том, что это пламя водорода почти невидимо. При возгорании водорода пламя настолько тускло, что с ним не так-то просто бороться (справиться).

А вот друзья еще одно летальное свойство водорода: -он может привести к удушью. H2 конечно не ядовит, но, если вы начнете дышать чистым водородом, то можете просто задохнуться и все потому, что будете просто-напросто лишены обычного кислорода. И хуже того, распознать, что концентрация водорода в воздухе очень высока просто невозможно, так как он совсем невидим и не имеет запаха, так же как и сам кислород.

Читать еще:  Камаз 4326 сколько масла в двигателе

И наконец последняя причина. Как и любой сжиженный газ водород имеет очень низкую температуру. При утечке из бака и непосредственным контактом с открытыми участками тела человека, он может привести к серьезному обморожению.

Действительно ли водород на столько опасен?

Наверное, после всего прочитанного Вы будете уважаемые читатели просто в шоке, что водород на столько опасен. И возможно никогда не захочете покупать себе водородный автомобиль, если в будущем у вас появится такая возможность(?).

На самом деле не все так уж и плохо. Поскольку газообразный водород чрезвычайно легок, то при утечке он быстро рассеется в самой атмосфере. Тогда ни какой гремучей смеси не получится и опасность взрыва будет сведена к минимуму.

Что касается опасности удушья, то мы ответим вам так: –такая проблема может случиться только в замкнутом пространстве, например в гараже. Если же утечка водорода произойдет на открытом воздухе, то его концентрация будет незначительной и небольшой, опасности для жизни она не представляет.

Новый автомобиль Toyota Mirai, работающий на водороде

Представьте, что вместо того, чтобы выбрасывать вредную смесь двуокиси углерода, окиси углерода, углеводородов, бензола и различных твердых частиц, выхлопная труба Вашего автомобиля испускает только воду.

Это может звучать как научно-фантастический рассказ, но на самом деле является реальным новым автомобилем под названием Toyota Mirai, который появится на улицах уже в этом году.

Авто на водороде

В то время, как мы привыкли заполнять бензином или дизельным топливом свой автомобиль, новое «японское чудо» – Мирай – работает на наиболее распространенном элементе во вселенной — водороде.

Газообразный водород заправляют в бак автомобиля так же, как и бензин, а затем особый топливный элемент, производящий химическую реакцию за счет водорода и кислорода, преобразует электроэнергию, которая и является движущей силой машины. Что удивительно: единственным побочным продуктом этого процесса является вода.

Несомненно, Вы уже слышали про электромобили, которые далеко не могут уехать без подзарядки, а их максимальная скорость варьируется в пределах 70 км/ч. Однако Мирай на альтернативном виде топлива вне конкуренции.

Этот автомобиль может разогнаться до 179 км/ч, причем до 100 км/ч машина разгоняется за 9.6 секунд и, самое главное, она способна проехать без дополнительной дозаправки 482 км. Ультрасовременные баки из углеродного волокна заполняются примерно за десять минут.

При упоминании водорода в качестве топлива некоторые люди могут вспомнить о немецком дирижабле Гинденбурга, который сгорел над штатом Нью-Джерси, США в 1937 году.

Однако конструкторы Toyota Mirai заверяют, что на данном автомобиле такая ситуация сведена на «нет» благодаря пуленепробиваемым резервуарам, в которых размещены водородные топливные элементы. Поэтому у обычного бензинового бака гораздо больше шансов быть взорванным в результате ДТП.

В целом авто имеет амбиции покорить весь мир. Но компании Toyota нужно спешить, ибо в следующем году Honda, Ford и Nissan планируют выпустить на рынок автомобили с похожими технологиями.

Если бы все автомобили ездили на водороде, то воздух в наших городах был бы намного чище. К тому же всем известен факт, что нефть на планете заканчивается, а, следовательно, рано или поздно бензин будет стоить безумно дорого (хотя и сейчас это уже не дешевое удовольствие).

Получается, что если все люди пересядут на такие автомобили, то человечество может сделать шаг к избавлению от проблем, связанных с загрязнениями окружающей среды.

Недостатки автомобиля на водороде

Но, конечно же, не все так радужно, как хотелось бы. Существуют серьезные проблемы, которые могут стать камнем преткновения на пути к альтернативе бензиновых двигателей.

1. В настоящее время автомобили на водороде очень дорогие. Мирай, четырехдверный седан, должен поступить в продажу за 99 700 долларов. В то время как стоимость автомобиля с бензиновым двигателем такого же класса составляет приблизительно 30 000 долларов.

2. Следующая проблема — это заправка автомобиля будущего. Вам нужно будет найти ближайшую водородную заправочную станцию, чтобы ехать после того, как бак опустеет, а в настоящее время таких АЗС единицы в некоторых европейских странах и США, в то время как в большинстве стран водородных АЗС вообще нет. Предположительно к 2020 году количество водородных заправочных станций увеличат в разы, но и этого будет совершенно недостаточно.

3. Заправка полного бака Toyota Mirai будет стоить около 103 доллара, что примерно в два раза больше, чем заправить автомобиль на бензиновом двигателе того же класса, который проезжает те же 482 км.

Субсидии для авто на водороде

Конечно, вопросы стоимости инфраструктуры могут быть частично решены правительствами, которые в состоянии создать стимулы: предоставлять покупателям различные скидки или даже обеспечивать людей заправкой водородом бесплатно.

Это уже происходит в Японии – в стране, где беспокоятся о своей энергетической безопасности (особенно после ядерной катастрофы на Фукусиме).

Правительство Японии очень помогает населению субсидиями на покупку водородных автомобилей (сумма субсидии составляет почти 27 000 долларов) в рамках программы, для которой выделят 400 млн. долларов из государственного бюджета.

С помощью данной программы планируется помочь населению Японии закупить 6 000 частных транспортных средств, работающих на водороде.

Между тем в США комитет энергетики штата Калифорния пообещал 205 млн. долларов для обеспечения почти 70 АЗС водородным топливом к концу следующего года. В Калифорнии также выплачивают 12 000 долларов тем, кто покупает автомобили на водороде.

Британское правительство, со своей стороны, пообещало 17 млн. долларов для постройки еще 15 водородных станций на Юго-Востоке страны.

Производство водорода

Еще одной проблемой таких машин является производство водорода, так как это довольно проблематичное мероприятие.

Наиболее распространенный метод называется паровой реформинг. Он заключается в том, что пар смешивается с природным газом, затем нагревается до определенной температуры с последующим добавлением катализатора, такого как никель, в результате чего получается водород и моноксид углерода (ядовитый газ). Около 95 % водорода в мире производится этим путем.

К сожалению, это не экологически чистый процесс, потому что результатом являются и побочные продукты. Таким образом, хотя сам по себе водород в автомобиле не загрязняет окружающую среду, производство данного топлива будет загрязнять наш с Вами воздух.

В результате даже защитники автомобилей на водородном топливе признаются, что производство водорода будет загрязнять окружающую среду в лучшем случае как автомобили на бензиновых двигателях, а в худшем – значительно больше.

В настоящее время не было придумано экологически чистых и достаточно эффективных методов производства водородного топлива для каждодневной заправки миллионов автомобилей.

Конечно же, поклонники автомобилей, работающих на водородном топливе, непреклонны: они уверены, что мы должны продвигаться вперед, ибо наше будущее зависит от работы автотранспорта, который не будет причинять ущерб нашей планете.

Проблемы водородных автомобилей

Компания Toyota утверждает, что Mirai выделяет всего 100 мл воды на примерно 2 км пути. Подсчитано, что, например, в Великобритании все автомобили проезжают около 488 млрд. км в год. Это означает, что если бы каждый автомобиль был бы Toyota Mirai, то утечка от всех автомобилей составила бы 3 млрд. л воды и водяного пара каждый год.

Для сравнения: такого огромного количества воды хватило бы, чтобы заполнить около 12 000 плавательных бассейнов, предназначенных для проведения олимпийских игр.

Конечно, вода сама по себе является безобидной для нас всех субстанцией, но только не для наших дорог во время морозов. Представьте себе автомагистраль с интенсивным движением в середине зимы, и с каждого транспортного средства выливается 1 литр воды каждые 20 км. Ведь вся эта вода превратится в каток в считанные минуты. А если вода выбрасывается в виде пара, то предсказуемый результат — туман.

По сообщениям, в городе Рейкьявик, Исландия, пассажиры автобусов на водородном топливе тревожатся о количестве водяного пара, который выходит только из одного автобуса из множества.

Таким образом, хотя водородные автомобили имеют массу преимуществ (например, беззвучность и экологичность), существует много проблем с ними, которые требуют решения, иначе такие машины будут не востребованы.

Возможно, водородные топливные элементы станут успешно использоваться, например, вилочными погрузчиками, работающими в закрытых помещениях, где бензиновый или дизельный дым особенно нежелательны.

Так что еще предстоит выяснить, будем ли мы все наслаждаться водородными семейными автомобилями в следующем десятилетии или нет.

Автомобиль на воде (видео)

Топливо будущего: в каких видах транспорта водород используется уже сейчас

На протяжении всей истории человечества мобильность выступала верным индикатором прогресса. От колеса, конной тяги и парового двигателя до двигателя внутреннего сгорания и электробатареи – с появлением новых средств передвижения жизнь человека выходила на качественно новый уровень. Одно из многообещающих решений на этом пути – водородная энергетика.

Использование водорода в качестве топлива – идея не столь новая: способность этой молекулы производить большое количество энергии была открыта еще в XIX веке. Им можно заправить как двигатель внутреннего сгорания, так и газотурбинный двигатель, но из-за ограничений, которые он накладывает на работу этих механизмов, и возможных неблагоприятных последствий для окружающей среды водород сегодня преимущественно используется в специальных топливных элементах.

В них происходит элементарная электрохимическая реакция, которая позволяет водороду высвобождать энергию, оставляя после себя лишь водяной пар. Эта энергия, в свою очередь, превращается в электричество, которое питает электродвигатель, приводящий транспортное средство в движение.

Главное преимущество этого вида топлива – отсутствие выхлопных газов и шума. Этим же могут похвастаться и электромобили, но в отличие от них, автомобилям на водороде достаточно пятиминутной заправки, чтобы подготовиться к длительному путешествию на более чем 500 км. И что немаловажно, эффективные способы производства этого топлива уже давно освоены.

У водородного топлива огромный потенциал, и убедиться в этом можно, взглянув на то, как его используют на различных видах транспорта уже сейчас.

Водородные автомобили

Первые автомобили на водородных топливных элементах появились на рынке в 2013 году Большую ставку на эту технологию сделали азиатские автогиганты, и сейчас водителям доступны три водородные модели: Toyota Mirai, Hyundai Nexo, Honda Clarity.

По данным Международного энергетического агентства, на конец 2018 года в мире насчитывалось 11 200 водородных автомобилей, и их продажи в тот год возросли на 80% в сравнении с 2017 годом.

Наиболее популярны эти автомобили в США (Калифорния), Японии, Южной Корее и Германии. Главным фактором распространения личного водородного транспорта является наличие соответствующей заправочной инфраструктуры, и неудивительно, что упомянутые выше страны являются также лидерами по числу водородных станций. Наращиванием инфраструктуры занимаются отнюдь не автопроизводители, а компании, для которых газы, и, в частности, водород, являются основой бизнеса.

Например, французская компания Air Liquide, мировой лидер в производстве газов, технологий и услуг для промышленности и здравоохранения, уже установила более 120 заправочных станций в Европе, Азии, Северной Америке и на Ближнем Востоке.

«Переход на водородное топливо – это уже не вопрос инноваций. У нас есть все необходимые технологии, чтобы его осуществить. Сейчас важно наращивать производственные мощности и выстроить полноценную заправочную инфраструктуру наравне с существующей «ископаемой», и здесь важна поддержка государства, а главное, инвесторов, заинтересованных в создании новых бизнес-моделей для эры чистого топлива», – говорит вице-президент Air Liquide по водородной энергетике Пьер-Этьен Франк.

В космос на альтернативном топливе

У водородного топлива есть перспективы и в общественном транспорте. Он заправляется централизовано и не нуждается в масштабной заправочной инфраструктуре. Водородные автобусы уже курсируют в нескольких европейских городах, включая Осло, Роттердам и Аргау, а регион Нижняя Саксония в Германии пошел еще дальше – там водородный поезд перевозит пассажиров по 100-километровому маршруту.

Для сознательных пассажиров в Париже есть целый таксопарк, полностью состоящий из водородных автомобилей. Компания под ярким названием Hype насчитывает 100 такси и планирует расширить свой парк до 600 автомобилей к 2020 году.

Читать еще:  Тема расход топлива на холостом ходу

Водород также проникает в сферу складского транспорта. Им заправляют свои вилочные погрузчики Coca-Cola в США, Walmart в Канаде и Carrefour во Франции. Даже разъезжая по замкнутому пространству, эти машины накатывают километры ежедневно. В этой связи такое свойство водородного топлива, как экономичный расход, приходится очень кстати.

Использование водорода в качестве топлива не ограничивается наземным транспортом. В 2017 году в воды Мирового океана вышло судно будущего – Energy Observer. Его уникальность заключается в том, что его энергообеспечение осуществляется исключительно за счет природных ресурсов: энергии солнца, ветра и водорода, получаемого из морской воды.

Это своего рода плавучая лаборатория, где экологически чистые технологии тестируются и оптимизируются в экстремальных условиях. За шесть лет плавания команда Energy Observer обошла 50 стран и совершила 101 остановку, и их одиссея красноречиво говорит о надежности и целесообразности использования водородного топлива.

К таким выводам пришли и специалисты аэрокосмической отрасли. Хотя авиаконструкторы пока только подступаются к идее самолета на электродвигателе, возможность обеспечить его бортовые функции чистой дешевой энергией кажется слишком привлекательной, чтобы не попробовать.

Водород также способен помочь человечеству в его амбициях покорить космос: существует целое семейство ракет – Ariane – основным топливом для запуска которых, помимо жидкого кислорода, является жидкий водород.

Молекула водорода составляет основу жизни на планете. Как и движение. На дорогах, на складах, в море и небе водород показывает себя как серьезная альтернатива традиционным видам топлива. Его потенциал заметили и испытывают страны, города, автоконцерны, компании-производители газов и визионеры.

Грустные мысли по поводу транспорта на альтернативном топливе

Классическая термодинамика – это единственная физическая теория общего содержания, относительно которой я убеждён, что в рамках применимости её основных понятий она никогда не будет опровергнута. – А. Эйнштейн

Как думаете, в чём содержится больше энергии – в килограмме человеческого жира или килограмме тротила? Вы удивитесь, но животный жир на единицу массы содержит в 8 раз больше энергии, чем тринитротолуол (37 МДж / кг против 4,184 МДж / кг). Жир, конечно, не взрывается так же, как тротил, но способен запасать гораздо больше энергии. Это свойство химических веществ называется плотностью энергии.

Самые лучшие литий-ионные аккумуляторы имеют плотность энергии в 6 – 10 раз меньше, чем тринитротолуол (0,46 – 0,72 МДж / кг).

Если посмотреть на таблицу плотности энергии различных химических веществ, станет понятно, что любые аккумуляторы в этом плане серьёзно уступают тому же бензину или дизельному топливу. Также становится очевидно, почему, когда требуется взять с собой большое количество энергии, бензин, дизельное топливо или авиакеросин становятся практически безальтернативными. Аккумуляторы запасают почти в 30 раз меньше энергии на единицу своей массы, чем химическое топливо (топливо для горения требует кислород, и на 1 часть топлива надо добавить примерно 2 части кислорода, чтобы оно загорелось).

Въедливый читатель может возразить – батареи генерируют электрическую энергию, в то время как из взрывчатки и химического топлива энергия освобождается в виде тепла. Это весомый аргумент, поэтому посмотрим на современный дизель-генератор. При оптимальной нагрузке в 60-70%, он выдаст примерно 3 КВт*ч электроэнергии на 1 литр топлива (https://bryan-power.com/wp-content/uploads/diesel-generator-fuel-consumption.pdf). Это соответствует примерно 10,8 МДж энергии, что по-прежнему будет примерно в 20 раз больше, чем вы получите с 1 кг батарей.

Теперь давайте ещё раз взглянем на таблицу плотностей энергии, чтобы понять, что никаких прорывов в части аккумуляторов ожидать не следует. Какие бы мы батареи не изобретали, принцип их устройства окажется неизменным: для того, чтобы она дала электрический ток в виде хотя бы одного электрона, нам потребуется как минимум 1 атом на аноде, чтобы этот электрон отдать, 1 атом на катоде, чтобы его принять, и ещё нужно N атомов для разделения анода и катода (электролит). Химическое топливо или взрывчатка запасают энергию в 100% молекул, у аккумулятора этот показатель много меньше 50% при том, что сейчас литий-металлические аккумуляторы имеют плотность энергии лишь в 10 раз меньше.

Для аккумулятора это весьма хороший показатель, так как взамен уменьшенной плотности энергии мы получаем относительную безопасность использования. Представьте, что мы могли бы запасать в аккумуляторах энергию с такой же плотностью энергии, как в тротиле. Захотелось бы вам иметь такой аккумулятор?

Что будет, если вы «закоротите» такую батарею? Сделаем очень щедрое предположение, и дадим ей, например, теплоёмкость как у воды – 4180,6 Дж/(кг•К), то есть, для того, чтобы подогреть воду на 1 градус, необходимо потратить столько энергии, и я повторяю, это очень щедро – круче воды в этом плане только гелий, аммиак и водород. Так вот, если 1 кг батарея высвободит около 4 млн. джоулей, то она «согреется» на 1000 градусов Цельсия. На практике же, нагрев будет ещё больше, так удельная теплоёмкость этой батареи не будет и близко подходить к такому значению, как у воды.

Собственно, даже современные аккумуляторы представляют собой определённую опасность:

Теперь, наверное, становится понятно, почему бензин (и прочее углеводородное топливо) является сегодня наиболее предпочтительным «переносным» источником энергии. Бензин является почти что идеальным топливом – при огромной плотности энергии, он остаётся относительно безопасным. Да, пары бензина тоже могут взрываться, но на миллиард автомобилей в мире, на подобные случаи статистика отводит доли процента. Кроме того, чтобы потушить бензин, необходимо всего лишь перекрыть доступ кислорода пламени. Повреждённая батарея, с другой стороны, будет продолжать отдавать свою энергию, пока не освободит её полностью. Потушить её нельзя. Энергия, способная заставлять автомобиль двигаться 600-800 км, легко и безопасно запасается в бензобаке объёмом 40-60 литров, в то время как аккумуляторы электромобиля сейчас занимают в 3-4 раза больший объём, и при этом имеют запас хода всего 200-250 км.

Я уже не говорю про авиацию, где аккумуляторы не применимы в принципе – вы не сможете сделать хоть сколько-нибудь годный самолёт, так как для необходимой мощности двигателей потребуется большая масса батарей, чтобы поднять которую потребуется более мощный двигатель, чтобы его запитать потребуется больше батарей. ну вы поняли.

Сейчас активно продвигаются два вида автомобилей, не использующих углеводородное топливо – электромобили и автомобили на водородных ячейках.

Водород, казалось бы, идеальное топливо. Его плотность энергии 142 МДж на 1 кг. Выше – только у ядерного и термоядерного топлива. Однако, добавьте к массе, собственно, водорода, массу баллона для его хранения, и всё уже не выглядит таким радостным. Обычный стальной промышленный баллон для сжатого газа, выдерживающий давление 150 атм. имеет массу почти 60 кг и вмещает всего 40 литров газа. Плотность водорода в нормальных условиях 0,08987 г/л, это значит, что при давлении в 150 атмосфер, масса водорода, помещающегося в этот баллон составит… всего около 0,45 кг. Для хранения 450 грамм водорода требуется «тара» массой 60 кг! Сжигая это количество, я получу

63,9 МДж энергии, что эквивалентно

1,5 кг дизельного топлива.

Возьмём обычный автомобиль с объёмом топливного бака, скажем 50 л. Масса пустого топливного бака пусть будет 10 кг, масса всей топливной системы при плотности топлива 875 г/л составляет 53,75 кг, при этом, в таком автомобиле запасено 2,1 ГДж энергии.

Чтобы запасти такое же количество энергии, в случае с водородом мне потребуется 14 кг водорода… то есть примерно 33 баллона, которые весят по 60 кг каждый, то есть почти 2 тонны. При этом кто-то ещё должен будет потратить энергию на то, чтобы сжать весь этот водород до 150 атмосфер.

Вот Тойота-Миллениум. Одна заправка для неё – это примерно 5 кг водорода (эквивалент

22 литра бензина), однако суммарная масса топливной системы вместе с баками составляет 92,5 кг. (и это при использовании высокотехнологичных ультра-лёгких материалов, а не стали).

Дальность хода на одной заправке для такого автомобиля составляет 500 км. Вроде неплохо, но если мы возьмём эквивалентную массу бензина (

80 кг или 91 л) на обычном автомобиле сходного класса мы проедем в 2 – 2,5 раз большее расстояние.

Ещё не стоит забывать тот факт, что водород взрывается при смеси с воздухом в концентрациях от 18,3 до 59% (то есть, практически всегда) И взорваться он может просто от искры статического электричества на вашей одежде или просто от косого взгляда. Представьте себе, что будет, если водородные баки такого автомобиля повредятся в результате ДТП!

Да, сейчас безопасности водородных автомобилей уделяется большое внимание, но посмотрите на это видео, где в топливный водородный бак стреляют практически в упор. Посмотрите внимательно на скорость, с которой из бака исходит струя газа – она сопоставима со скоростью пули. И, помните, этот газ может взорваться от любой искры чуть позже, даже если он не взорвался от выстрела.

Теперь посмотрим на флагман электромобилестроения Tesla Model 3. В документации указано, что на одной зарядке, этот «лучший электромобиль» пробегает 215 миль или 346 км (это если используется форм-фактор 18650). На элементах форм-фактора 2170 будет на 100 миль больше и Тесла догонит среднюю дальность пробега стандартной легковушке на 1 заправке (500 км). При этом масса батарей составляет около 500 кг! То есть, у Теслы топливная система имеет массу почти в 10 раз больше при меньшем пробеге! Характеристики даже хуже, так как разряженный аккумулятор весит столько же, чем заряженный (на самом деле нет, но погрешность пренебрежительно мала).

Теперь про дозаправку. Если у бензинового транспорта и даже автомобилей на водороде проблем заправкой нет, и её длительность составляет несколько минут, у электромобиля скорость зарядки аккумуляторов исчисляется часами! При этом, чем выше скорость передвижения, тем быстрее я посажу батареи. При перемещении со скоростью 100 км/ч на каждые следующие 100 – 120 км, мне необходимо будет целый час подзаряжать аккумуляторы (и это если я найду розетку!).

Аккумуляторы Илона Маска – одни из лучших в мире на сегодняшний день, но что бы он нам не обещал на тему «революций» в аккумуляторостроении, термодинамику ему не победить и по плотности энергии, аккумуляторы всегда будут гораздо хуже химического топлива.

Разумеется, у химического топлива есть один недостаток – при его сгорании образуется углекислый газ, который вносит серьёзное влияние в процесс глобального потепления климата. Разумеется, у электромобилей, как у городского транспорта есть будущее, и есть своя ниша, однако посмотрите на эту картинку и подумайте вот о чём – так ли уж чиста эта «чистая» энергия:

Вот прогноз динамики развития мировой энергетики до 2040 года (источник) . Разумеется, я тоже очень рад, что доля возобновляемых источников энергии растёт, однако, не стоит думать, что их доля в ближайшие годы превысит долю, приходящуюся на выработку электроэнергии из ископаемого топлива:

Подумайте, автомобиль на водороде будет тратить энергию не только на перевозку вас, но ещё и на перемещение тяжёлых топливных баллонов, к тому же водород – не самое безопасное топливо в мире. Но это ещё не всё, на то, чтобы сжать водород до 150 – 200 атмосфер тоже будет потрачена энергия (на заправке).

То же самое касается электромобилей – подумайте, сколько лишнего веса в виде аккумуляторах ездит вместе с вами, подумайте, что почти половина энергии данных аккумуляторов тратится лишь на перемещение их собственного веса.

Автомобильный бензин или дизельное топливо, если упростить, при сжигании производят воду и углекислый газ. Больше того, если потратить определённую энергию, то эти два компонента можно заново скомбинировать в углеводородное топливо и кислород. Да, на производство топлива таким способом потратится больше энергии, чем потом может получиться при его сжигании, но раз мы всё равно хотим тратить энергию на перевозку «мёртвой массы» аккумуляторов или газовых баллонов, не лучше ли сосредоточить усилия в этом направлении?

Ссылка на основную публикацию
Adblock
detector