93 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплоемкость при постоянном давлении

Теплоемкость при постоянном объеме и теплоемкость при постоянном давлении

Пусть нагревание происходит в условиях, когда объем остается постоянным
(V = const). Соответствующая молярная теплоемкость называется теплоемкостью при постоянном объеме, или изохорической теплоемкостью, и обозначается CV:

(82)

Так как теплота при этом тратится только на изменение внутренней энергии dU, то δQ = dU и

(83)

Отсюда dU = CV dT. Уравнение закона сохранения энергии (80) можно теперь переписать в виде

Следовательно, подводимое к телу тепло расходуется на изменение температуры dT (изменение внутренней энергии) и изменение объема dV (с этим связана внешняя механическая работа).

Если при нагревании постоянным остается давление, то теплоемкость называется теплоемкостью при постоянном давлении Ср (ее можно также называть изобарической теплоемкостью):

.

Пользуясь результатами кинетической теории газов, легко вычислить молярные теплоемкости идеального газа.

Для идеального одноатомного газа, как мы видели, внутренняя энергия моля равна U = RT; значит,

. (85)

Если разделить это значение молярной теплоемкости на число молекул в грамм-молекуле, т. е на число Авогадро, то получим тот средний вклад, который каждая молекула вносит в теплоемкость газа:

.

Следовательно, при повышении температуры на 1 К энергия каждой молекулы в среднем возрастает на джоулей.

Теплоемкость Cp идеального газа при постоянном давлении больше теплоемкости CV при постоянном объеме на величину работы, которую совершает моль газа, расширяясь при нагревании на 1К. Работа эта равна . Таким образом,

. (86)

Но для моля идеального газа pV = RT, поэтому и

. (87)

Из формул (85) и (87) видно, что теплоемкость при постоянном давлении превосходит теплоемкость при постоянном объеме на величину R:

Уравнение (88) называетсяуравнением Роберта Майера. Из него вытекает физический смысл газовой постоянной:

188.64.169.166 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Теплоемкость идеального газа при постоянном объеме и давлении. Уравнение Майера

Характеристикой теплообмена является теплоемкость, определяемая как количество теплоты, которое необходимо подвести к телу в данном процессе, чтобы его температура возросла на один кельвин:

Во многих важных случаях приращение температуры тела прямо пропорционально сообщенному ему количеству теплоты и теплоемкость тела является константой. В общем случае теплоемкость тела может зависеть от параметров состояния этого тела, например его температуры или объема. Очевидно, что чем больше масса тела, тем больше требуется усилий для его нагревания, и теплоемкость тела пропорциональна количеству содержащегося в нем вещества. Количество вещества может характеризоваться массой или количеством молей. Поэтому удобно пользоваться понятиями удельной теплоемкости (теплоемкости единицы массы тела):

и молярной теплоемкости (теплоемкости одного моля тела):

где v = М/р — количество вещества в теле; М — масса тела; р — молярная масса. Удельная и молярная теплоемкости связаны очевидным соотношением с = С/р. Из формул (12.11) и (12.13) следует, что dQ = vCdT, откуда в случае постоянной теплоемкости количество теплоты Q линейно связано с изменением температуры тела АТ:

Найдем теплоемкость идеального газа в изохорном процессе, при котором его объем остается неизменным. При этом работа равна нулю, так как нет изменения объема газа. Поэтому первое начало термодинамики имеет вид dQ = dU. Отсюда с учетом формулы (12.10) молярная теплоемкость при постоянном объеме равна

Отсюда интегрированием можно получить связь внутренней энергии идеального газа с теплоемкостью:

Соответственно удельная теплоемкость при постоянном объеме равна

Таким образом, при нормальной температуре молярная теплоемкость равна для одноатомного газа

для газа с линейными молекулами из двух и более атомов

для газа с нелинейными молекулами из трех и более атомов

Необходимо учитывать, что эти выражения являются приближенными, так как эффективное количество степеней свободы зависит от температуры и от вида молекулы. Например, для самых легких молекул водорода уже при температуре 50 К вращательные степени свободы вымерзают и его мо-

лярная теплоемкость Cv близка к -R. А при температуре 300 К вращательные степени свободы начинают подчиняться закону о равномерном распределении энергии по степеням свободы и его теплоемкость Су приближается 5

K-R.B свою очередь, при более высоких температурах включается колеба-

тельная степень свободы и теплоемкость Cv стремится к —R.

Рассмотрим теперь изобарный процесс, для которого первое начало термодинамики для одного моля газа объемом Рмоля имеет вид

Тогда по аналогии с формулой (12.15) для молярной теплоемкости при постоянном давлении имеем

Здесь использована связь dVuom и с1Т при постоянном давлении, полученная при взятии дифференциала от уравнения Клапейрона — Менделеева: pdVmntt = RdT. Соответственно удельная теплоемкость при постоянном давлении равна

Выражение (12.21) с учетом равенства (12.15) можно переписать в виде уравнения Майера

Теплоемкость при постоянном давлении больше теплоемкости при постоянном объеме, потому что при изобарном процессе дополнительно совершается работа, на которую идет часть подведенной теплоты. Таким образом, молярная теплоемкость идеального газа зависит от вида процесса, в котором он участвует. Так, для изотермического процесса в соответствии с определением теплоемкости (12.11) dT= 0 и теплоемкость равна бесконечности.

§ 5.6. Теплоемкости газа при постоянном объеме и постоянном давлении

При введении понятия теплоемкости мы не обращали внимание на одно существенное обстоятельство: теплоемкости зависят не только от свойств вещества, но и от процесса, при котором осуществляется теплопередача.

Если нагревать тело при постоянном давлении, то оно будет расширяться и совершать работу. Для нагревания тела на 1 К при постоянном давлении ему нужно передать большее количество теплоты, чем при таком же нагревании при постоянном объеме.

Жидкие и твердые тела расширяются при нагревании незначительно, и их теплоемкости при постоянном объеме и постоянном давлении мало различаются. Но для газов это различие существенно. С помощью первого закона термодинамики можно найти связь между теплоемкостями газа при постоянном объеме и постоянном давлении.

Теплоемкость газа при постоянном объеме Найдем молярную теплоемкость газа при постоянном объеме. Согласно определению теплоемкости

где ΔT — изменение температуры. Если процесс происходит при постоянном объеме, то эту теплоемкость обозначим через Cv. Тогда

(5.6.1)

При постоянном объеме работа не совершается. Поэтому первый закон термодинамики запишется так:

(5.6.2)

Изменение энергии одного моля достаточно разреженного (идеального) одноатомного газа равно: (см. § 4.8).

Следовательно, молярная теплоемкость при постоянном объеме одноатомного газа равна:

(5.6.3)

Теплоемкость газа при постоянном давлении

Согласно определению теплоемкости при постоянном давлении Ср

Читать еще:  Почему глохнет газель на холостом ходу

(5.6.4)

Работа, которую совершит 1 моль идеального газа, расширяющегося при постоянном давлении, равна:

(5.6.5)

* Из формулы (5.6.5) видно, что универсальная газовая постоянная численно равна работе, которую совершает 1 моль идеального газа при постоянном давлении, если температура его увеличивается на 1К.

Это следует из выражения для работы газа при постоянном давлении А’ = pΔV и уравнения состояния (для одного моля) идеального газа pV = RT.

Внутренняя энергия идеального газа от объема не зависит. Поэтому и при постоянном давлении изменение внутренней энергии ΔU = CVΔT, как и при постоянном объеме. Применяя первый закон термодинамики, получим:

(5.6.6)

Следовательно, молярные теплоемкости идеального газа связаны соотношением

(5.6.7)

Впервые эта формула была получена Р. Майером и носит его имя.

В случае идеального одноатомного газа

(5.6.8)

Теплоемкость идеального газа при изотермическом процессе

Можно формально ввести понятие теплоемкости и при изотермическом процессе. Так как при этом процессе внутренняя энергия идеального газа не меняется, какое бы количество теплоты ему ни было передано, то теплоемкость бесконечна.

Молярная теплоемкость идеального газа при постоянном давлении больше теплоемкости при постоянном объеме на величину универсальной газовой постоянной R.

§ 5.7. Адиабатный процесс

Мы рассмотрели изотермический, изобарный и изохорный процессы. После ознакомления с первым законом термодинамики появляется возможность изучить еще один процесс,это процесс, протекающий в системе при отсутствии теплообмена с окружающими телами. (Но работу над окружающими телами система может совершать.)

Процесс в теплоизолированной системе называют адиабатным.

При адиабатном процессе Q = 0 и согласно закону (5.5.3) изменение внутренней энергии происходит только за счет совершения работы:

(5.7.1)

Конечно, нельзя окружить систему оболочкой, абсолютно исключающей теплообмен. Но в ряде случаев реальные процессы очень близки к адиабатным. Существуют оболочки, обладающие малой теплопроводностью, например двойные стенки с вакуумом между ними. Так изготовляются термосы.

Процесс можно считать адиабатным даже без теплоизолирующей оболочки, если он происходит достаточно быстро, т. е. так, чтобы за время процесса не происходило заметного теплообмена между системой и окружающими телами.

Учебники

Журнал «Квант»

Общие

«Эй-Ви-Джей Компьютерс Групп» проведет ремонт компьютеров в Одинцово

Теплоемкости при постоянном давлении и постоянном объеме

При сообщении телу некоторого количества теплоты изменяется его температура (за исключением агрегатных превращений и вообще изотермических процессов). Характеристиками такого изменения являются различные теплоемкости: теплоемкость тела CT, удельная теплоемкость вещества c, молярная теплоемкость C.

Понятия теплоемкости тела и удельной теплоемкости рассмотрены тут.

Молярная теплоемкость C — величина, равная количеству теплоты, необходимому для нагревания 1 моль вещества на 1 К:

Единицей молярной теплоемкости в СИ является джоуль на моль-Кельвин (Дж/моль·К).

Удельная теплоемкость связана с молярной соотношением

В отличие от такой, например, характеристики вещества, как его молекулярная масса Mr удельная теплоемкость вещества не является неизменным параметром. Удельная теплоемкость может резко изменяться при переходе вещества из одного агрегатного состояния в другое. Так, вода в газообразном состоянии имеет удельную теплоемкость 2,2·10 3 Дж/кг·К а в жидком 4,19·10 3 Дж/кг·К .

Теплоемкость зависит и от условий, при которых происходит передача теплоты телу. Последнее особенно относится к газам. Например, при изотермическом расширении газа ему передается некоторое количество теплоты Q > 0, а ΔΤ = 0. Следовательно, удельная теплоемкость газа при изотермическом процессе

При адиабатном сжатии (расширении) газ не получает теплоты и не передает ее окружающим телам (Q = 0), а температура газа изменяется (ΔΤ ≠ 0). Следовательно, удельная теплоемкость газа при адиабатном процессе

Наибольший интерес представляет теплоемкость для случаев, когда нагревание происходит при постоянном объеме или при постоянном давлении. В первом случае теплоемкость называется теплоемкостью при постоянном объеме или изохорной теплоемкостью (cV, CV), во втором — теплоемкостью при постоянном давлении или изобарной теплоемкостью (cp, Cp).

Если объем не изменяется (ΔV = 0), то работа, совершенная газом, так же равна нулю (А = 0). Согласно первому закону термодинамики

Delta U = C_ cdot Delta T = c_V m Delta T . qquad (2))

Следовательно, теплоемкость при постоянном объеме равна изменению внутренней энергии газа при изменении температуры на 1 К.

Если газ идеальный, то в формуле (2)

Delta U = frac i2 frac mM R Delta T .)

Тогда молярная теплоемкость при постоянном объеме (

Delta U_M = frac i2 R Delta T) — изменение внутренней энергии 1 моль газа. Из этих равенств теплоемкость газа при постоянном объеме — (

C_ = frac i2 frac mM R); молярная теплоемкость газа при постоянном объеме — (

Если газ нагревается при постоянном давлении, то согласно первому закону термодинамики

A = p Delta V = frac mM R Delta T).

Тогда теплоемкость газа при постоянном давлении

C_ = frac = frac + frac mM R = C_ + frac mM R = frac frac mM R .)

Молярная теплоемкость при постоянном давлении:

C_p = C_V + R) — уравнение Майера; (

C_p = frac i2 R + R = frac R .)

Таким образом, теплоемкость при постоянном давлении всегда больше теплоемкости при постоянном объеме. Их отношение равно

где γ — показатель адиабаты (коэффициент Пуассона).

Из-за малости величины коэффициента объемного расширения твердых и жидких тел работой, совершаемой ими при нагревании при постоянном давлении, можно пренебречь и считать, что теплоемкости при постоянном объеме и постоянном давлении практически совпадают. Поэтому теплоемкость твердых и жидких тел при заданной температуре может считаться вполне определенной величиной.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 159-161.

Теплоемкость при постоянном давлении

3.10. Теплоёмкость идеального газа

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q , необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c .

Во многих случаях удобно использовать молярную теплоемкость C :

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: C V – молярная теплоемкость в изохорном процессе ( V = const ) и C p – молярная теплоемкость в изобарном процессе ( p = const ).

Читать еще:  Как проверить фреон в кондиционере автомобиля

В процессе при постоянном объеме газ работы не совершает: A = 0 . Из первого закона термодинамики для 1 моля газа следует

Изменение Δ U внутренней энергии газа прямо пропорционально изменению Δ T его температуры.

Для процесса при постоянном давлении первый закон термодинамики дает:

Отношение Δ V / Δ T может быть найдено из уравнения состояния идеального газа, записанного для 1 моля:

или

Таким образом, соотношение, выражающее связь между молярными теплоемкостями C p и C V , имеет вид ( формула Майера ):

Молярная теплоемкость C p газа в процессе с постоянным давлением всегда больше молярной теплоемкости C V в процессе с постоянным объемом (рис. 3.10.1).

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом играет важную роль в термодинамике. Оно обозначается греческой буквой γ .

В частности, это отношение входит в формулу для адиабатического процесса (см. §3.9).

Между двумя изотермами с температурами T 1 и T 2 на диаграмме ( p , V ) возможны различные пути перехода. Поскольку для всех таких переходов изменение температуры Δ T = T 2 – T 1 одинаково, следовательно, одинаково изменение Δ U внутренней энергии. Однако, совершенные при этом работы A и полученные в результате теплообмена количества теплоты Q окажутся различными для разных путей перехода. Отсюда следует, что у газа имеется бесчисленное количество теплоемкостей. C p и C V – это лишь частные (и очень важные для теории газов) значения теплоемкостей.

Термодинамические процессы, в которых теплоемкость газа остается неизменной, называются политропическими . Все изопроцессы являются политропическими. В случае изотермического процесса Δ T = 0 , поэтому C T = ∞ . В адиабатическом процессе Δ Q = 0 , следовательно, C ад = 0 .

Следует отметить, что «теплоемкость», как и «количество теплоты» – крайне неудачные термины. Они достались современной науке в наследство от теории теплорода , господствовавшей в XVIII веке. Эта теория рассматривала теплоту как особое невесомое вещество, содержащееся в телах. Считалось, что оно не может быть ни создано, ни уничтожено. Нагревание тел объяснялось увеличением, а охлаждение – уменьшением содержащегося внутри них теплорода. Теория теплорода несостоятельна. Она не может объяснить, почему одно и то же изменение внутренней энергии тела можно получить, передавая ему разное количество теплоты в зависимости от работы, которую совершает тело. Поэтому лишено физического смысла утверждение, что «в данном теле содержится такой-то запас теплоты».

В молекулярно-кинетической теории устанавливается следующее соотношение между средней кинетической энергией поступательного движения молекул и абсолютной температурой T :

Внутренняя энергия 1 моля идеального газа равна произведению на число Авогадро N А :

При изменении температуры на Δ T внутренняя энергия изменяется на величину

Коэффициент пропорциональности между Δ U и Δ T равен теплоемкости C V при постоянном давлении:

Это соотношение хорошо подтверждается в экспериментах с газами, состоящими из одноатомных молекул (гелий, неон, аргон). Однако, для двухатомных (водород, азот) и многоатомных (углекислый газ) газов это соотношение не согласуется с экспериментальными данными. Причина такого расхождения состоит в том, что для двух- и многоатомных молекул средняя кинетическая энергия должна включать энергию не только поступательного, но и вращательного движения молекул.

На рис. 3.10.2 изображена модель двухатомной молекулы. Молекула может совершать пять независимых движений: три поступательных движения вдоль осей X , Y , Z и два вращения относительно осей X и Y . Опыт показывает, что вращение относительно оси Z , на которой лежат центры обоих атомов, может быть возбуждено только при очень высоких температурах. При обычных температурах вращение около оси Z не происходит, так же как не вращается одноатомная молекула. Каждое независимое движение называется степенью свободы . Таким образом, одноатомная молекула имеет 3 поступательные степени свободы, «жесткая» двухатомная молекула имеет 5 степеней (3 поступательные и 2 вращательные), а многоатомная молекула – 6 степеней свободы (3 поступательные и 3 вращательные).

В классической статистической физике доказывается так называемая теорема о равномерном распределении энергии по степеням свободы :

Если система молекул находится в тепловом равновесии при температуре T , то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы молекулы она равна

Из этой теоремы следует, что молярные теплоемкости газа C p и C V и их отношение γ могут быть записаны в виде

Теплоёмкость идеального газа

В случае, если результатом теплообмена становится передача телу некоего количества теплоты Q , то его температура и внутренняя энергия претерпевают изменения.

Необходимое для нагревания 1 к г вещества на 1 К количество теплоты Q носит название удельной теплоемкости вещества c , а ее формула выглядит следующим образом:

В большом количестве ситуаций удобной для использования является молярная теплоемкость C :

C = M · c , где M представляет собой молярную массу вещества.

Теплоемкость, полученная таким способом, не является однозначной характеристикой вещества. Исходя из первого закона термодинамики, можно сказать, что изменение внутренней энергии тела зависимо не только от количества полученной теплоты, но и от величины совершенной телом работы. В разных условиях осуществления процесса теплопередачи тело может совершать различную работу. Таким образом, переданное телу одинаковое количество теплоты способно провоцировать изменения его внутренней энергии и, соответственно, температуры.

Подобной неоднозначностью при определении теплоемкости характеризуются только газообразные вещества. Объем в процессе нагрева практически не меняет своей величины, что сводит работу расширения к нулю. По этой причине вся полученная телом теплота уходит на изменение его внутренней энергии. Газ в процессе теплопередачи может значительно менять свой объем и совершать работу, чем отличается от твердых тел и жидкостей. Таким образом, теплоемкость газообразного вещества имеет зависимость от характера термодинамического процесса.

Изопроцессы в газах

Чаще всего рассматриваются два значения теплоемкости газов:

  • C V являющаяся молярной теплоемкостью в изохорном процессе ( V = c o n s t ) ;
  • C p представляющая собой молярную теплоемкость в изобарном процессе ( p = c o n s t ) .

При условии постоянного объема газ не совершает работы: A = 0 . Исходя из первого закона термодинамики для 1 м о л я газа, можно сказать, что справедливым является следующее выражение:

Q V = C V ∆ T = ∆ U .

Изменение величины Δ U внутренней энергии газа прямо пропорционально изменению значения Δ T его температуры.

В условиях процесса при постоянном давлении первый закон термодинамики дает такую формулу:

Q p = ∆ U + p ( V 2 — V 1 ) = C V ∆ T + p V .

В котором Δ V является изменением объема 1 м о л я идеального газа при изменении его температуры на Δ T . Таким образом, можно заявить, что:

C p = Q p ∆ T = C V + p ∆ V ∆ T .

Из уравнения состояния идеального газа, записанного для 1 м о л я , может выражаться отношение Δ V Δ T :

Читать еще:  Образец акта дефектовки

В котором R представляет собой универсальную газовую постоянную. При условии постоянства давления p = c o n s t , можно записать следующее: p ∆ V = R ∆ T или ∆ V ∆ T = R p .

Из этого следует, что выражающее связь между молярными теплоемкостями C p и C V соотношение имеет вид (формула Майера):

В процессе с неизменным давлением молярная теплоемкость C p газа всегда превышает молярную теплоемкость C V в процессе с не подверженным изменениям объемом, что демонстрируется на рисунке 3 . 10 . 1 .

Рисунок 3 . 10 . 1 . Два возможных процесса нагревания газа на Δ T = T 2 – T 1 . При p = c o n s t газ совершает работу A = p 1 ( V 2 – V 1 ) . Поэтому C p > C V .

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом занимает важное место в термодинамике и обозначается в виде греческой буквы γ .

Данное отношение включено в формулу для адиабатического процесса.

Между двумя изотермами, обладающими температурами T 1 и T 2 на диаграмме ( p , V ) реальны различные варианты перехода. Так как для всех подобных переходов изменение величины температуры Δ T = T 2 – T 1 является одним и тем же, выходит, что изменение значения
Δ U внутренней энергии тоже одинаково. С другой стороны, совершенные при этом работы A и количества теплоты Q , полученные в результате теплообмена, выйдут разными для различных путей перехода. Из этого следует, что газа имеет относительно приближенное к бесконечности число теплоемкостей. C p и C V представляют собой частные, однако, очень важные для теории газов, значения теплоемкостей.

Рисунок 3 . 10 . 2 . Модель теплоемкости идеального газа.

Термодинамические процессы, в которых теплоемкость газа не подвергается изменениям, носят название политропических.

Каждый изопроцесс являются политропическим. В изотермическом процессе Δ T = 0 , из-за чего C T = ∞ . В адиабатическом процессе Δ Q = 0 , выходит, что C а д = 0 .

Стоит обратить внимание на то, что «теплоемкость» и «количество теплоты» являются крайне неудачными терминами, доставшимися современной науке в качестве наследства теории теплорода, которая господствовала в XVIII веке.

Данная теория представляла теплоту в виде содержащегося в телах особого невесомого вещества. Считалось, что оно не подвержено уничтожению и не может быть созданным. Явление нагрева объясняли повышением, а охлаждение – понижением содержания в телах теплорода. Однако теория теплорода оказалась несостоятельной, так как не смогла дать ответа на вопрос, почему одинаковое изменение внутренней энергии тела возможно получить, приводя ему разное количество теплоты в зависимости от совершаемой им работы. По этой причине утверждение, что в данном теле содержится некоторый запас теплорода лишено смысла.

Молекулярно-кинетическая теория

В молекулярно-кинетической теории устанавливается следующее соотношение между средней кинетической энергией E → поступательного движения молекул и абсолютной температурой T :

Внутренняя энергия 1 м о л я идеального газа эквивалентна произведению E → на число Авогадро N А :

U = 3 2 k N A T = 3 2 R T .

При условии изменения температуры на величину Δ T внутренняя энергия изменяется на величину:

U = 3 2 R ∆ T = C V ∆ T .

Коэффициент пропорциональности между Δ U и Δ T эквивалентен теплоемкости C V в условиях постоянного давления:

C V = 3 2 R = 12 , 47 Д Ж / м о л ь · К.

Данное выражение подтверждается экспериментами с газами, которые состоят из одноатомных молекул вроде гелия, неона или аргона. При этом для двухатомных (водород, азот) и многоатомных (углекислый газ) газов такое соотношение не согласуется с полученными в результате опытов данными. Причина этого расхождения заключается в том, что для двух- и многоатомных молекул средняя кинетическая энергия должна включать энергию как поступательного, так и вращательного их движения.

Рисунок 3 . 10 . 3 . Модель двухатомной молекулы. Точка O совпадает с центром масс молекулы.

Рисунок 3 . 10 . 3 иллюстрирует модель двухатомной молекулы. Молекула имеет возможность производить пять независимых типов движений: три поступательных движения вдоль осей X , Y , Z и два вращения относительно осей X и Y .

Опытным путем выяснено, что вращение относительно оси Z , на которой лежат центры обоих атомов, может быть возбуждено только при очень высоких значениях температуры. В условиях обычных температур вращение вокруг оси Z не происходит.

Каждое независимое движение в молекуле носит название степени свободы.

Выходит, что одноатомная молекула обладает 3 поступательными степенями свободы, «жесткая» двухатомная молекула 5 степенями, то есть 3 поступательными и 2 вращательными, а многоатомная молекула 6 степенями свободы, из которых 3 приходятся на поступательные и 3 на вращательные.

В классической статистической физике доказывается теорема о равномерном распределении энергии по степеням свободы:

Если система молекул находится в тепловом равновесии при температуре T , то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы молекулы она равна 1 2 k T .

Из данной теоремы следует, что для молярных теплоемкостей газа C p и C V и их отношения
γ справедлива запись в следующем виде:

C V = i 2 R , C p = C v + R = i + 2 2 R , γ = C p C V = i + 2 i ,

где i представляет собой количество степеней свободы газа.

Для газа, состоящего из одноатомных молекул ( i = 3 )

C V = 3 2 R , C p = C v + R = 5 2 R , γ = C p C V = 5 3 = 1 , 66 .

Для газа, состоящего из двухатомных молекул ( i = 5 )

C V = 5 2 R , C p = C v + R = 7 2 R , γ = C p C V = 7 5 = 1 , 4 .

Для газа, состоящего из многоатомных молекул ( i = 6 )

C V = 3 R , C p = C v + R = 4 R , γ = C p C V = 4 3 = 1 , 33 .

В обычных условиях экспериментально измеренные теплоемкости многих газов неплохо согласуются с приведенными выражениями, но в целом классическая теория теплоемкости газов вполне удовлетворительной не является. Существует колоссальное число примеров со значительной разницей между результатами эксперимента и теорией. Данный факт объясняется тем, что классическая теория не может полностью учесть, связанную с внутренними движениями в молекуле энергию.

Теорема о равномерном распределении энергии по степеням свободы может быть применена и по отношению к тепловому движению частиц в твердом теле. Входящие в состав кристаллической решетки атомы колеблются около положений равновесия. Энергия данных колебаний представляет собой внутреннюю энергию твердого тела. Каждый конкретный атом может колебаться в кристаллической решетке в трех взаимно перпендикулярных направлениях. Выходит, что каждый атом имеет 3 колебательные степени свободы. При условии гармонических колебаний средняя кинетическая энергия эквивалентна средней потенциальной энергии. По этой причине в соответствии с теоремой о равномерном распределении на каждую колебательную степень свободы приходится средняя энергия k T , а на один атом – 3 k T .

Внутренняя энергия 1 м о л я твердого вещества равна следующему выражению:

U = 3 R N A k t = 3 R t .

Следовательно, молярная теплоемкость вещества в твердом состоянии равняется:

С = 3 R = 25 , 12 Д ж / м о л ь · К .

Данное выражение носит название закона Дюлонга–Пти. Для твердых тел почти нет различия между C p и C V по причине пренебрежительно малой работы при сжатии или расширении.

Опыт показывает, что молярная теплоемкость у многих твердых тел (химических элементов) при обычных температурах на самом деле близка к 3 R . При этом, в условиях низких температур заметны довольно сильные расхождения между теорией и экспериментом. Таким образом, гипотеза о равномерном распределении энергии по степеням свободы может считаться лишь приближением. Заметная в опыте зависимость теплоемкости от температуры объясняется только при условии использования квантовых представлений.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector