Явнополюсные синхронные двигатели что это такое - Авто журнал "Гараж"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Явнополюсные синхронные двигатели что это такое

Явнополюсные синхронные двигатели что это такое

Der Synchronmotor
http://freeweb.dnet.it/motor/Kap6.htm Библиотека Главная

6 Синхронный двигатель

6.1 История развития синхронной машины

С самого начала синхронный электродвигатель был построен в виде однофазного генератора, который с середины прошлого столетия использовался для снабжения осветительных установок. Первый трехфазный синхронный генератор разработали в 1887 году независимо друг от друга F. A. Haselwander и Bradley. Впоследствии создается явнополюсная синхронная машина и турбогенератор — дальнейшие формы синхронного генератора. Charles E. Brown считается изобретателем последующего типа двигателя с обмоткой возбуждения, заложенной в пазы.

Совершенствование синхронной машины находится в тесной связи с расширением электрического энергоснабжения и возрастающей единичной мощности генераторов. Синхронные двигатели использовались прежде всего там, где необходимо было постоянное число оборотов или необходимость использования фазовращателя, т.е. в индустрии и ремесленных мастерских.

6.2 Область применения

При появлении преобразователей частоты синхронный двигатель использовался в качестве привода. Поэтому в настоящее время применение его широко: от сервомоторов до двигателей большой мощности. В качестве примера можно назвать 30 МВт воздуходувку доменной печи (синхронный двигатель с преобразователем). Также используют синхронные двигатели в качестве приводов для цементных мельниц, подъёмно-транспортных машин (т.е. конвееров) и прокатных станов. В настоящее время часто применяется синхронный двигатель, прежде всего, как микродвигатель в часах, фотоаппаратах и в точном приборостроении.

6.3 Принцип работы синхронного двигателя

Принцип действия асинхронного двигателя основан на взаимодействии поля системы и индуцированного вращающегося поля ротора. Таким же образом можно представить себе работу синхронной машины. Но главное отличие состоит в том, что переменное поле не должно индуцироваться. Ротор устроен как магнит, производящий переменное поле. Магнит ротора похож на иглу компаса в магнитном поле Земли; направление произведенного магнитного поля определяется обмоткой ротора. Причем ротор приводится в движение. Переменное поле не должно индуцироваться, т.е. синхронный двигатель не нуждается в разнице числа оборотов между полем ротора и системы. Ротор вращается с числом оборотов равному числу оборотов системы. Это число оборотов называется синхронным числом оборотов. Поэтому машина называется синхронной.


Рис. 5.19 Синхронная машина со вспомагательным устройством

Наиболее распространенной синхронной машиной является явнополюсный синхронный двигатель (ЯСД). Его ротор звется также индуктором (см.рис. 5.3 b). Индуктор машин малой мощности представляет собой постоянный магнит. Для машин большой мощности ротор выполнен как электромагнит на постоянном токе. Из-за совпадения числа оборотов между полем ротора и статора синхронный двигатель нашел применение, прежде всего, в точной промышленности, например, в производстве часов. В легкой промышленности они встречаются реже. В тяжелой — опять же очень распространены. Они достигают больших мощностей и используются, прежде всего, в качестве приводов для компрессоров и насосов.

Синхронные двигатели не могут сами пускаться. Поэтому им необходимо вспомагательное оборудование — двигатели, которые выводят их на номинальное число оборотов. На рис. 5.19 можно увидеть в центре синхронную машину со вспомагательным устройством справа.

Явнополюсные синхронные двигатели что это такое

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ СИНХРОННЫХ МАШИН

Сердечник статора представляет собой полый цилиндр, набранный из отдельных листов электротехнической стали толщиной 0,5 мм. На внутренней поверхности этого цилинд­ра выштамповывают пазы для укладки обмотки якоря. Электротехническую сталь поставляют в виде листов или лент шириной не более 1 м. При внешнем диаметре сердечника менее 1 м его собирают из цельных кольцевых плас­тин, а при большем диаметре каждый кольцевой слой со­ставляют из отдельных пластин, называемых сегментами (рис. 3). Сердечник размещают в станине (корпусе) ста­тора.

Пазы, как правило, имеют прямоугольное сечение. В эти пазы укладывают двухслойные петлевые обмотки, а в более мощных машинах — одновитковые стержневые волновые обмотки. Толщина и структура изоляции пазов и проводников зависит от индуктируемой ЭДС. При большом сече­нии проводников обмоток фаз для уменьшения добавочных потерь от вихревых токов их разбивают на ряд элементар­ных проводников, которые по длине обмотки транспониру­ют между собой. Статор синхронной машины в собранном виде показан на рисунке.

По выполнению ротора машины подразделяются на явнополюсные и неявнополюсные.

Явнополюсный ротор синхронных машин имеет высту­пающие полюсы, сердечник которых в мощных машинах на­бирают из пластин конструкционной стали толщиной 1- 2 мм, а в машинах небольшой мощности — из электротех­нической стали толщиной 0,5-1 мм. На рис. 4 показаны различные способы крепления полюсов.

В машинах неболь­шой мощности полюсы крепят болтами к валу (рис. 4, г), а в тихоходных машинах большой мощности — к ободу ро­тора (рис. 4, в). В мощных и относительно быстроход­ных машинах полюсы крепят к ободу ротора с помощью хвостов, имеющих Т-образную форму или форму ласточки­на хвоста (рис. 4, а и б). Такое крепление хотя техноло­гически сложнее, но является более прочным, чем крепле­ние болтами.

Читать еще:  Skoda superb какой двигатель выбрать

Обмотку возбуждения в мощных машинах для лучшего охлаждения выполняют из неизолированных медных шин большого сечения, намотанных на ребро. Между соседними витками укладывают изоляционные прокладки, пропитан­ные в смоле. Катушку запекают и устанавливают на полю­се, на который по периметру предварительно наносят корпусную изоляцию. В машинах небольшой мощности катуш­ки обмотки возбуждения выполняют из изолированных проводников прямоугольного или круглого сечения.

На полюсах ротора часто укладывают демпферную об­мотку. Ее размещают в пазах полюсных наконечников. Медные стержни этой обмотки, уложенные в пазы, по тор­цам замыкают пластинами или кольцами так, что образу­ется клетка. Демпферные обмотки делятся на продоль­ные и продольно-поперечные.

Продольная обмотка получается путем замыкания с торцов стержней отдельно каждого полюса (рис. 5). В продольно-поперечной обмотке соединяются по торцам стержни всех полюсов (рис. 6). Демпферная обмотка об­разует контуры, оси которых совпадают в первом случае только с продольной осью (с осью полюсов), а во втором случае — как с продольной, так и с поперечной осью.

Демпферная обмотка выполняет ряд функций. В гене­раторах она ослабляет влияние несимметричной нагрузки и снижает амплитуду колебаний ротора, возникающих в не­которых случаях при параллельной работе. В двигателях она является пусковой обмоткой, а также снижает амплитуду колебаний ротора при пульса­ции нагрузки.

Явнополюсные роторы применяют в машинах большой мощности с относительно низкой частотой вращения, т. е. имеющих большое число полюсов. Синхронные машины с явнополюсным ротором и горизонтальным валом широко используют в качестве двигателей и генераторов. Общий вид ротора явнополюсной машины показан на рис. 7. Существует специальный класс синхронных явнополюсных генераторов с вертикальным валом, предназначенных для непосредственного соединения с гидравлическими турбинами. Такие генераторы называются гидрогенераторами (рис. 8).

В зависимости от мощности турбины и напора воды час­тота вращения гидрогенераторов колеблется от 50 до 600 об/мин. Для того чтобы при таких частотах вращения получить переменное напряжение частотой 50 Гц, гидрогенераторы должны иметь несколько десятков полюсов.Гидрогенераторы выполняют на большие мощности. В конструктивном отношении гидрогенераторы имеют ряд особенностей. Важным узлом у них является упорный подшипник или подпятник. Он удерживает массу вращающихся частей ротора и турбины и воспринимает давление воды на лопасти турбины. Подпятник представляет собой особый вид подшипника скольжения. Он состоит из вра­щающейся части — пяты, выполненной в виде диска, укрепленного на роторе, и неподвижной части, находящейся под пятой (собственно подпятник).

Для уменьшения потерь в пяте между ее трущимися поверхностями (пяты и собст­венно подпятника) создается слой смазки достаточной тол­щины.

Для восприятия радиальных усилий, действующих на ротор гидрогенератора, на его валу устанавливают один или два направляющих подшипника. Один подшипник устанавливают при жестком фланцевом соединении валов гидрогенератора и турбины. Вторым направляющим под­шипником в этом случае является направляющий подшип­ник турбины. Подпятник и направляющие подшипники размещаются на крестовинах, которые служат для восприятия и передачи вертикальных и радиальных усилий на фунда­мент или на корпус статора. Различают верхнюю и ниж­нюю крестовины.

В зависимости от расположения подпятника гидрогене­раторы подразделяются на подвесные и зонтичные. В под­весном гидрогенераторе (рис. 9, а) подпятник расположен над ротором на верхней крестовине и весь агрегат «подвешен» к этой крестовине и к подпятнику.

В зонтич­ном гидрогенераторе подпятник расположен на нижней крестовине (рис. 9, б) или на крышке турбины и генера­тор в виде зонта находится над подпятником. При зонтич­ном исполнении гидрогенератор имеет меньшие массу и вы­соту, чем при подвесном исполнении, за счет уменьшения размеров верхней крестовины, имеющей больший диаметр, чем нижняя.

Механическая прочность различных деталей гидрогене­раторов рассчитывается по так называемой угонной часто­те вращения, которая в 2-3 раза больше номинальной и может иметь место в результате разгона ротора при ава­рийном отключении генератора от сети.

Неявнополюсные роторы (рис. 10 и 11) применя­ют в синхронных машинах большой мощности, имеющих частоту вращения п = 1500÷3000 об/мин. Изготовление ма­шин большой мощности с такими частотами вращения при явнополюсной конструкции ротора невозможно по услови­ям механической прочности ротора и крепления полюсов и обмотки возбуждения.

Неявнополюсные роторы имеют главным образом син­хронные генераторы, предназначенные для непосредствен­ного соединения с паровыми турбинами. Такие машины на­зывают турбогенераторами. Турбогенераторы для тепловых электрических станций имеют частоту вращения 3000 об/мин и два полюса, а для атомных станций — 1500 об/мин и четыре по­люса.

Читать еще:  Subaru forester сколько ходит двигатель

Из-за больших центробежных сил, действующих на об­мотку возбуждения, ее крепление в пазах производят с по­мощью немагнитных металлических клиньев. Немагнитные клинья ослабляют магнитные потоки пазового рассеяния, которые могут вызывать насыщение зубцов и приводить к уменьшению полезного потока. Пазы большого зубца за­крывают магнитными клиньями. Лобовые части обмотки закрепляют роторными бандажами. Обмотка ротора имеет изоляцию класса В или F. Выводы от обмотки возбуждения подсоединяют к контактным кольцам на роторе.

Вдоль оси ротора по всей его длине просверливают цент­ральное отверстие, которое служит для исследования ма­териала центральной части поковки и для разгрузки по­ковки от опасных внутренних напряжений. На рис. 12 дан общий вид турбогенератора. В турбогенераторах функ­цию демпферной обмотки выполняют массивное тело рото­ра и клинья.

Кроме турбогенераторов с неявнополюсным ротором вы­пускают быстроходные синхронные двигатели большой мощности — турбодвигатели.

Большая Энциклопедия Нефти и Газа

Явнополюсный синхронный двигатель

Явнополюсные синхронные двигатели мощностью до нескольких сот киловатт, а иногда и больше, рассчитываются на прямой пуск от полного напряжения сети с учетом, что их пусковые токи при этом превышают номинальные в четыре-пять раз. [1]

Явнополюсные синхронные двигатели мощностью до 1000 кВт, как правило, допускают несинхронное включение. Для двигателей выше 1000 кВт допустимость несинхронного включения определяется [51] током или моментом при несинхронном включении. [2]

Явнополюсные синхронные двигатели выполняются в СССР на мощности от 40 до 7500 кет включительно на все стандартные напряжения и для скоростей вращения от 1000 до 125 об / мин. Однако в последнем случае двигатель должен иметь большую намагничивающую силу ротора, и его якорь должен быть рассчитан на больший ток. [3]

Явнополюсные синхронные двигатели и компенсаторы имеют в общем такую же конструкцию, как и Явнополюсные генераторы. На роторе двигателей и компенсаторов ( рис. 1 — 15), кроме обмотки возбуждения, устанавливается также пусковая обмотка, отличающаяся от успокоительных обмоток генераторов только тем, что стержни выполняются из сплавов с повышенным удельным сопротивлением. [4]

Явнополюсные синхронные двигатели выполняются в СССР на мощности от 40 до 7500 кет включительно на все стандартные напряжения и для скоростей вращения от 1000 до 125 об / мин. Однако в последнем случае двигатель должен иметь большую намагничивающую силу ротора, и его якорь должен быть рассчитан на больший ток. [5]

Реактивными называются явнополюсные синхронные двигатели без обмотки возбуждения на роторе. [7]

Более широкое распространение имеют явнополюсные синхронные двигатели с диапазоном частот вращения от 1500 до 100 об / мин мощностью от нескольких сотен до нескольких десятков тысяч киловатт. [8]

Анализ выражения (13.1) электромагнитного момента явнополюсного синхронного двигателя показывает, что при отсутствии магнитного потока возбуждения полюсов ротора ( Е0 0) первое слагаемое, представляющее основной электромагнитный момент, равно нулю. [9]

Рассмотрим работу и векторную диаграмму напряжений обыкновенного явнополюсного синхронного двигателя в режиме недовозбуждения. [10]

На рис. 19 — 9 представлены фотографии ротора и статора явнополюсного синхронного двигателя . [11]

На рис. 27 6 слева от оси ординат представлена кривая результирующей электромагнитной мощности явнополюсного синхронного двигателя по уравнению (27.2) при углах б 0 ( кривая /), которая располагается ниже оси абсцисс. [13]

В несимметричных машинах процесс пуска зависит от положения ротора относительно статора. При пуске явнополюсных синхронных двигателей переходной процесс определяется положением ротора и моментом включения. Хотя явнополюсная синхронная машина в установившемся режиме — симметричная машина, при пуске в асинхронном режиме это машина несимметричная. [14]

В несимметричных машинах процесс пуска зависит от положения ротора относительно статора. При пуске явнополюсных синхронных двигателей переходный процесс определяется положением ротора и моментом включения. Хотя явнополюсная синхронная машина в установившемся режиме — симметричная машина, при пуске в асинхронном режиме это машина несимметричная. [15]

Синхронные машины — двигатели, генераторы и компенсаторы

Синхронная машина может работать генератором или двигателем. Синхронная машина может работать в качестве двигателя, если подвести к обмотке ее статора трехфазный ток из сети. В этом случае в результате взаимодействия магнитных полей статора и ротора поле статора увлекает за собой ротор. При этом ротор вращается в ту же сторону и с такой же скоростью, как и поле статора.

Наибольшее распространение получил генераторный режим работы синхронных машин, и почти вся электроэнергия вырабатывается синхронными генераторами. Синхронные двигатели применяются при мощности более 600 кВт и до 1 кВт как микродвигатели. Синхронные генераторы на напряжение до 1000 В применяются в агрегатах для автономных систем электроснабжения.

Читать еще:  Что такое максимальный крутящий момент двигателя камаз

Агрегаты с этими генераторами могут быть стационарными и передвижными. Большинство агрегатов применяются с дизельными двигателями, но приводом их могут быть газовые турбины, электродвигатели и бензиновые двигатели.

Синхронный двигатель отличается от синхронного генератора лишь пусковой успокоительной обмоткой, которая должна обеспечивать хорошие пусковые свойства двигателя.

Схема шестиполюсного синхронного генератора. Показаны сечения обмоток одной фазы (три обмотки, соединенные последовательно). В показанные на рисунке свободные пазы укладываются обмотки двух других фаз. Фазы соединяются в звезду или треугольник.

Режим генератора: двигатель (турбина) вращает ротор, на обмотку которого подается постоянное напряжение ? возникает ток, который создает постоянное магнитное поле. Магнитное поле вращается вместе с ротором, пересекает статорные обмотки и наводит в них одинаковые по модулю и частоте ЭДС, но сдвинутые на 1200 (симметричная трехфазная система).

Режим двигателя: обмотку статора подключают к трёхфазной сети, а обмотку ротора к источнику постоянного тока. В результате взаимодействия вращающегося магнитного поля машины с постоянным током обмотки возбуждения, возникает вращающий момент Мвр, который приводит ротор во вращение со скоростью магнитного поля.

Механическая характеристика синхронного двигателя – зависимость n(M)– представляет собой горизонтальный отрезок прямой.

Применение синхронных двигателей

Синхронные двигатели имеют по сравнению с асинхронными большое преимущество, заключающееся в том, что благодаря возбуждению постоянным током они могут работать с cosфи = 1 и не потребляют при этом реактивной мощности из сети, а при работе, с перевозбуждением даже отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшаются падение напряжения и потери в ней, а также повышается коэффициент мощности генераторов, работающих на электростанциях.

Максимальный момент синхронного двигателя пропорционален U, а у асинхронного двигателя U 2 .

Поэтому при понижении напряжения синхронный двигатель сохраняет большую нагрузочную способность. Кроме того, использование возможности увеличения тока возбуждения синхронных двигателей позволяет увеличивать их надежность работы при аварийных понижениях напряжения в сети и улучшать в этих случаях условия работы энергосистемы в целом. Вследствие большей величины воздушного зазора добавочные потери в стали и в клетке ротора синхронных двигателей меньше, чем у асинхронных, благодаря чему к. п. д. синхронных двигателей обычно выше.

С другой стороны, конструкция синхронных двигателей сложнее, чем короткозамкнутых асинхронных двигателей, и, кроме того, синхронные двигатели должны иметь возбудитель или иное устройство для питания обмотки возбуждения постоянным током. Вследствие этого синхронные двигатели в большинстве случаев дороже асинхронных двигателей с короткозамкнутым ротором.

При эксплуатации синхронных двигателей возникли существенные трудности с их пуском. В настоящее время эти трудности преодолены.

Пуск и регулирование скорости вращения синхронных двигателей также сложнее. Тем не менее, преимущество синхронных двигателей настолько велико, что при больших мощностях их целесообразно применять всюду, где не требуется частых пусков и остановок и регулирования скорости вращения (двигатель-генераторы, мощные насосы, вентиляторы, компрессоры, мельницы, дробилки и пр.).

Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным являемся перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность.

В связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют также генераторами реактивной мощности. Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения.

Для этого каждый синхронный компенсатор снабжается автоматическим регулятором возбуждения или напряжения, который регулирует величину его тока возбуждения так, что напряжение на зажимах компенсатора остается постоянным.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты