Влияние вакуума на работу двигателя - Авто журнал "Гараж"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Влияние вакуума на работу двигателя

Эффект Казимира

Эффе́кт Ка́зимира (эффект Казимира — Полдера) — эффект, заключающийся во взаимном притяжении проводящих незаряженных тел под действием квантовых флуктуаций в вакууме. Чаще всего речь идёт о двух параллельных незаряженных зеркальных поверхностях, размещённых на близком расстоянии, однако эффект Казимира существует и при более сложных геометриях.

Для оптически анизотропных тел также возможно возникновение крутящего момента Казимира, зависящего от взаимной ориентации главных оптических осей этих тел [1] .

Причиной эффекта Казимира являются энергетические колебания физического вакуума из-за постоянного рождения и исчезновения в нём виртуальных частиц. Эффект был предсказан голландским физиком Хендриком Казимиром (Hendrik Casimir, 1909—2000) в 1948 году [2] , а позднее в 1957 году [3] [4] был подтверждён экспериментально.

Содержание

  • 1 Суть эффекта
    • 1.1 Аналогия
  • 2 Величина силы Казимира
    • 2.1 Графен
  • 3 История открытия
  • 4 Экспериментальное обнаружение
  • 5 Современные исследования эффекта Казимира
  • 6 Применение
  • 7 В культуре
  • 8 Примечания
  • 9 Литература
  • 10 Ссылки

Суть эффекта [ править | править код ]

Согласно квантовой теории поля, физический вакуум представляет собой не абсолютную пустоту. В нём постоянно рождаются и исчезают па́ры виртуальных частиц и античастиц — происходят постоянные колебания (флуктуации) связанных с этими частицами полей. В частности, происходят колебания связанного с фотонами электромагнитного поля. В вакууме рождаются и исчезают виртуальные фотоны, соответствующие всем длинам волн электромагнитного спектра.

Для внесения в вакуум макроскопических тел, даже не имеющих заряда, необходимо выполнить определённую работу, которая требуется для изменения граничных условий для поля вакуумных флуктуаций. Модуль этой работы равен разнице в энергиях нулевых колебаний вакуума в отсутствие и в присутствие тел [5] .

Например, в пространстве между близко расположенными зеркальными поверхностями граничные условия для поля флуктуаций по сравнению с вакуумом без тел меняются следующим образом. На определённых резонансных длинах (целое или полуцелое число раз укладывающихся между поверхностями) электромагнитные волны усиливаются. На всех остальных длинах, которых больше, напротив, эти волны подавляются (то есть подавляется рождение соответствующих виртуальных фотонов). Происходит это вследствие того, что в пространстве между пластинами могут существовать только стоячие волны, амплитуда которых на пластинах равна нулю. В результате давление виртуальных фотонов изнутри на две поверхности оказывается меньше, чем давление на них извне, где рождение фотонов ничем не ограничено. Чем ближе друг к другу поверхности, тем меньше длин волн между ними оказывается в резонансе и больше — оказывается подавленными. Такое состояние вакуума в литературе иногда называется вакуумом Казимира. Как следствие, растёт сила притяжения между поверхностями.

Явление можно образно описать как «отрицательное давление», когда вакуум лишён не только обычных, но и части виртуальных частиц, то есть «откачали всё и ещё чуть-чуть». С этим явлением связан также эффект Шарнхорста.

Аналогия [ править | править код ]

Явление, схожее с эффектом Казимира, наблюдалось ещё в XVIII веке французскими моряками. Когда два корабля, раскачивающиеся из стороны в сторону в условиях сильного волнения, но слабого ветра, оказывались на расстоянии примерно 40 метров и менее, то в результате интерференции волн в пространстве между кораблями прекращалось волнение. Спокойное море между кораблями создавало меньшее давление, чем волнующееся с внешних бортов кораблей. В результате возникала сила, стремящаяся столкнуть корабли бортами. В качестве контрмеры руководство по мореплаванию начала 1800-х годов рекомендовало обоим кораблям послать по шлюпке с 10—20 моряками, чтобы растолкать корабли. За счёт такого эффекта (в числе прочих) сегодня в океане образуются мусорные острова.

Также эффект напоминает кинетическую теорию гравитации Лесажа, заключающуюся в сталкивании тел друг с другом под давлением неких гипотетических частиц.

Величина силы Казимира [ править | править код ]

Сила притяжения, действующая на единицу площади F c / A /A> для двух параллельных идеальных зеркальных поверхностей, находящихся в абсолютном вакууме, составляет [6]

F c A = ℏ c π 2 240 d 4 , >>=><240d^<4>>>,>

— приведённая постоянная Планка, c — скорость света в вакууме, d — расстояние между поверхностями.

Отсюда видно, что сила Казимира крайне мала. Расстояние, на котором она начинает быть сколько-нибудь заметной, составляет порядка нескольких микрометров. Однако, будучи обратно пропорциональной 4-й степени расстояния, она очень быстро растёт с уменьшением последнего. На расстояниях порядка 10 нм — сотни размеров типичного атома — давление, создаваемое эффектом Казимира, оказывается сравнимым с атмосферным.

В случае более сложной геометрии (например, взаимодействия сферы и плоскости или взаимодействия более сложных объектов) численное значение и знак коэффициента меняется [7] , таким образом сила Казимира может быть как силой притяжения, так и силой отталкивания.

Несмотря на то, что в формуле для силы Казимира отсутствует постоянная тонкой структуры α — основная характеристика электромагнитного взаимодействия, — этот эффект, тем не менее, имеет электромагнитное происхождение. Как показано в заметке [8] , при учёте конечной проводимости пластин появляется зависимость от α , а стандартное выражение для силы появляется в предельном случае α ≫ m c / 4 π ℏ n d 4 > , где n — плотность электронов в пластинке.

Графен [ править | править код ]

Эффект Казимира определяет взаимодействие любых электрически нейтральных объектов на малых расстояниях (порядка микрометра и меньше). В случае реалистичных материалов величина взаимодействия обусловливается объёмными свойствами материала (диэлектрическая проницаемость в случае диэлектриков, проводимость для металлов). Однако расчёты показывают, что и для моноатомных слоёв графена сила Казимира может быть сравнительно велика, а наблюдение эффекта может быть доступно экспериментально [9] [10] .

История открытия [ править | править код ]

Хендрик Казимир работал в Philips Research Laboratories в Нидерландах, занимаясь изучением коллоидных растворов — вязких веществ, имеющих в своём составе частички микрометровых размеров. Один из его коллег, Тео Овербек ( Theo Overbeek ), обнаружил, что поведение коллоидных растворов не вполне согласуется с существующей теорией, и попросил Казимира исследовать эту проблему. Вскоре Казимир пришёл к выводу, что отклонения от предсказываемого теорией поведения может быть объяснено, если учитывать влияние флуктуаций вакуума на межмолекулярные взаимодействия. Это и натолкнуло его на вопрос, какое воздействие могут оказать флуктуации вакуума на две параллельные зеркальные поверхности, и привело к знаменитому предсказанию о существовании между последними притягивающей силы.

Экспериментальное обнаружение [ править | править код ]

Когда в 1948 году Казимир сделал своё предсказание, несовершенство существовавших технологий и крайняя слабость самого́ эффекта делали его экспериментальную проверку чрезвычайно трудной задачей. Один из первых экспериментов провёл в 1958 году Маркус Спаарней (Marcus Spaarnay) из центра Philips в Эйндховене. Спаарней пришёл к выводу, что его результаты «не противоречат теоретическим предсказаниям Казимира». В 1997 году началась серия гораздо более точных экспериментов, в которых было установлено согласие между наблюдаемыми результатами и теорией с точностью более 99 %.

В 2011 году группа учёных из технологического университета Чалмерса подтвердила динамический эффект Казимира. В эксперименте благодаря модификации СКВИДа учёные получили подобие зеркала, которое под воздействием магнитного поля колебалось со скоростью около 5 % от световой. Этого оказалось достаточно для того, чтобы наблюдать динамический эффект Казимира: СКВИД испускал поток микроволновых фотонов, причём их частота была равна половине частоты колебаний «зеркала». Именно такой эффект предсказывала квантовая теория [11] [12] .

В 2012 году группа исследователей из Флоридского университета сконструировала первую микросхему для измерения силы Казимира между электродом и кремниевой пластиной толщиной 1,42 нм при комнатной температуре. Устройство работает в автоматическом режиме и снабжено приводом, который регулирует расстояние между пластинами от 1,92 нм до 260 нм, соблюдая параллельность. Результаты измерений довольно точно совпадают с теоретически рассчитанными значениями. Данный эксперимент показывает, что на данных расстояниях сила Казимира может быть основной силой взаимодействия между пластинами [13] [14] .

Читать еще:  Возможно ли заливать в двигатель

В 2015 году удалось экспериментально обнаружить и измерить крутящий момент Казимира [15] .

Современные исследования эффекта Казимира [ править | править код ]

  • эффект Казимира для диэлектриков
  • эффект Казимира при ненулевой температуре
  • связь эффекта Казимира и иных эффектов или разделов физики (связь с геометрической оптикой, декогеренцией, полимерной физикой)
  • динамический эффект Казимира
  • учёт эффекта Казимира при разработке высокочувствительных МЭМС-устройств.

Применение [ править | править код ]

К 2018 году российско-германской группой физиков (В. М. Мостепаненко, Г. Л. Климчицкая, В. М. Петров и руководимая Тео Чуди группа из Дармштадта) разработана теоретическая и экспериментальная схема миниатюрного квантового оптического прерывателя [en] для лазерных лучей на основе эффекта Казимира, в котором сила Казимира уравновешивается давлением света [16] [17] .

В культуре [ править | править код ]

Довольно подробно эффект Казимира описывается в научно-фантастической книге Артура Кларка «Свет иных дней», где он используется для создания двух парных червоточин в пространстве-времени и передачи через них информации.

Двигатель заглох при торможении, ищем причины

Причина перебоев в работе двигателя при нажатии на педаль тормоза чаще всего связана с нарушением пропорций топливовоздушной смеси (ТПВС). Давайте рассмотрим, как определить, почему двигатель глохнет при торможении, переключении на нейтраль или при резком сбросе газа. Сосредоточимся на поиске подсоса воздуха, проверке вакуумного усилителя и системы питания.

Почему возможен подсос воздуха через вакуумный усилитель?

Неисправность вакуумного усилителя тормозов – самая распространенная причина, из-за которой машина глохнет при торможении. Внутри корпуса усилителя установлена гибкая диафрагма, которая через шток соединена с педалью тормоза. Диафрагма разделяет корпус на две части:

  1. вакуумная камера (всегда сообщена с источником разряжения – впускным коллектором двигателя);
  2. атмосферная камера.

В исходном положении обе камеры через клапан соединены с источником разряжения. При нажатии педали тормоза клапан перекрывает сообщение между камерами и открывает доступ атмосферной части усилителя к атмосфере. Возникающая разница давлений преодолевает усилие возвратной пружины и воздействует на диафрагму, заставляя ее втянуться в направлении главного тормозного цилиндра.

Если машина глохнет при торможении на газу, а на бензине подобные симптомы не возникают, проблема в настройке газового оборудования, поэтому не следует тратить время на проверку подсоса воздуха.

Места утечки вакуума

При торможении мотор теряет свои обороты и глохнет, если через магистраль или сам усилитель тормозов во впускной коллектор попадает неучтенный воздух. Самые распространенные места потери вакуума:

  • порванная диафрагма усилителя тормозов. Из-за постоянных перепадов температуры и циклов срабатывания резина теряет свою эластичность и трескается. Часто в исходном состоянии подсос воздуха будет незначительным и на работу автомобиля не влияет, но при торможении двигатель глохнет, так как из-за втягивания диафрагмы расширяется место надрыва;
  • трещина корпуса обратного клапана. Клапан пропускает воздух только в одну сторону, что препятствует быстрой потере разряжения после остановки двигателя;
  • негерметичность стыка диафрагмы и корпуса вакуумного усилителя;
  • трещина трубок, шлангов, идущих от впускного коллектора к усилителю и прочим элементам вакуумной системы.

Нередко подсос воздуха начинается после ремонтных работ в подкапотном пространстве. Мастера незаметно для самих себя могут стянуть вакуумный шланг со штуцера или просто забывают его одеть при сборке.

Как проверить вакуумный усилитель?

В случае неисправного вакуумника педаль тормоза «дубеет», а для остановки автомобиля нужно прилагать больше усилий. Нередко при плавном нажатии на газ можно услышать характерное шипение со стороны усилителя, свидетельствующее о подсосе воздуха в вакуумную камеру.

Проще всего убедится в том, что автомобиль глохнет при резком нажатии на педаль тормоза из-за вакуумного усилителя, действуя методом исключения. Отсоедините патрубок, идущий от коллектора к вакуумнику, заглушив при этом входное отверстие. Если автомобиль перестал глохнуть или троить при сбросе газа и на торможении, направление выбрано правильно и остается лишь локализировать причину. Для этого подключите обратно вакуумную магистраль к коллектору, но отсоедините шланг от усилителя, после чего заглушите его подходящей затычкой. Если проблема с оборотами не ушла, причина в подсосе воздуха по пути следования вакуумной магистрали. В случае исчезновения симптомов причина глохнущего мотора в неисправном усилителе.

На заглушенном двигателе 3-4 раза нажмите на педаль тормоза, чтобы уровнять давление в камерах. Удерживая педаль в выжатом состоянии, запустите двигатель. Если мембрана вакуумника цела, педаль провалится на несколько сантиметров и станет заметно мягче.

Вакуумный усилитель тормозов не ремонтируется и в случае выхода из строя должен быть заменен на новый.

Влияние неучтенного воздуха

Для нормальной работы двигателя состав топливовоздушной смеси (ТПВС) не должен быть намного больше или меньше стехиометрического состава – 14,7 порций воздуха к 1 порции топлива. Для регулировки времени открытого состояния форсунки блоку управления двигателем (Engine Control Module) важно знать количество кислорода, попадающее в цилиндры на такте впуска. Методы расчета отличаются типом датчиков, на основании показаний которых подсчитывается вес воздушного заряда.

  1. Датчик абсолютного давления (ДАД) в паре с датчиком температуры воздуха (ДТВ). В топливных картах ECU заложено пропускное сечение впускной системы двигателя. Ориентируясь на показатель разряжения во впускном коллекторе и температуру воздуха, блок управления двигателем может адекватно рассчитать массу свежего воздушного заряда.
  2. Датчик массового расхода воздуха (ДМРВ). В основе датчика лежит нагреватель, установленный во впускном тракте после воздушного фильтра. Температура нагревателя поддерживается на заданном уровне. Чем сильнее воздушный поток, тем больший ток требуется для поддержания температуры нагревательного элемента. Измеряя силу тока, ECU рассчитывает количество воздуха, поступившее во впускной тракт.

Если фактическое количества воздуха, поступившее в цилиндры, будет больше расчетного значения, высчитанного ECU на основании показаний ДМРВ, нарушится состав ТПВС. Поэтому двигатель глохнет при нажатии педали тормоза, если в системе обеспечения вакуума есть утечка.

Двигатель глохнет на переходных режимах

Стоит отличать проблемы с вакуумным усилителем от перебоев в работе на переходных режимах, когда вы резко бросаете газ. В такие моменты двигатель из режима частичной/полной нагрузки должен перейти на холостой ход. После отпускания педали акселератора ECU отключает подачу топлива в цилиндры. Обороты опускаются до отметки, которая на 50-100 об./мин выше заданных холостых оборотов, после чего подача топлива возобновляется и происходит окончательный переход в режим холостого хода. Также подача топлива будет возобновлена при нажатии водителем педали газа.

Чтобы описанная выше последовательность действий прошла успешно, датчик разряжения во впускном коллекторе, дроссельный узел и регулятор холостого хода должны работать корректно. В случае неисправности при попытке возобновления работы двигателя после отключения топлива могут начаться перебои в работе, дергание.

Причины перебоев в работе

  1. Недостаточное давление топлива. Потеря производительности бензонасоса, неисправность перепускного клапана, забитые фильтры грубой и тонкой очистки приводят к снижению давления топлива и появлению инертности топливоподачи. Поэтому от момента включения бензонасоса и открытия форсунок может пройти достаточно времени для того, чтобы обороты упали ниже пороговых значений. В некоторых случаях из-за недостатка топлива машина глохнет или дергается.
  2. Загрязнение или неисправность инжекторов. Из-за отложений и нагара нарушается распыл топлива и, как следствие, полнота сгорания ТПВС. Но куда серьезней проблема подвисающей форсунки, которая не закрывается полностью и пропускает через себя бензин в цилиндры. В таком случае автомобиль глохнет на переходных режимах из-за переобогащения смеси.
  3. Изношенный или загрязненный регулятор холостого хода. РХХ крайне важен для стабилизации холостого хода и регулирования количества воздуха, поступающего во впуск при закрытой дроссельной заслонке. Если электродвигатель регулятора изношен, либо движение штока затруднено из-за нагара, двигатель может заглохнуть при резком сбросе газа, включении мощных электрических потребителей.
  4. Загрязненная дроссельная заслонка. Масляные отложения и нагар не только уменьшают сечение заложенного инженерами компенсационного зазора, но и приводят к подклиниванию дроссельной заслонки.
Читать еще:  Starline a94 не показывает температуру двигателя
Видео: Машина глохнет при торможении? 5 самых частых причин!

Нехарактерные случаи

Если вакуумный усилитель и система питания проверены, а причина так и не найдена, рассмотрите нетривиальные ситуации, встречающиеся в практике автоэлектриков-диагностов.

Если на автомобиле сильно изношены подушки двигателя, то резкое торможение спровоцирует его смещение относительно кузова. При должном стечении обстоятельств такое смещение может провоцировать нарушение контакта в подключениях датчиковой аппаратуры, исполнительных механизмов. Провода с перетертой изоляцией могут замыкать на массу или коротить между собой, что и станет причиной остановки двигателя.

Заключение

Рассмотренный выше алгоритм поиска неисправностей будет неполным без упоминания компьютерной диагностики. Электронные системы управления двигателем оборудуются развитой системой самодиагностики. Поэтому чтение кодов неисправности может сразу указать вам направление для поиска причины неисправности. К примеру, ошибка бедной смеси возникает при нарушении состава ТПВС и указывает на необходимость замера давления в топливной рампе и проверке впускного тракта на утечки.

Если же двигатель глохнет, а в памяти ECU сохраняется код недостоверного сигнала/обрыва цепи датчика коленчатого вала, сосредоточьтесь на проверке датчика и проводов до блока управления.

Вакуумный насос признаки неисправности и устранение

Что такое вакуумный насос и для чего он нужен

При работе бензиновых двигателей создается разрежение, которого может быть недостаточно для функционирования вспомогательных систем автомобиля. Дизельные двигатели не создают вакуум в процессе работы. В обоих случаях применяются вакуумные насосы. Разрежение, которое образуется с их помощью, необходимо различным системам – тормозам, ОВК (комплекс отопления, вентиляции и кондиционирования) и т. д.

Электрический воздушный насос находится за двигателем возле противопожарного экрана, главного цилиндра и усилителя тормозов. Его легко найти благодаря двум насадкам на верхней части, а также специфической форме корпуса. Насос поддерживает постоянный объем вакуума в резервуаре, расположенном за передним бампером.

Неисправности вакуумного насоса и их устранение

Если в работе насоса происходит сбой, в нем возникает утечка, то из области двигателя начинает раздаваться шипящий звук, управление обогревателем может не срабатывать при включении, а для нажатия на тормозную педаль требуется большое усилие.

Утечки в вакуумной линии могут проявляться так же, как и отказ насоса.

На необходимость замены вакуумного насоса указывает следующее:

• не работает управление обогревателем;
• слышен звук шипящего воздуха;
• к тормозной педали приходится прикладывать большие усилия.

Общее техническое состояние (в том числе вакуумного насоса) автомобиля можно проверить с помощью персонального диагностического сканера. Из представленных на рынке советуем обратить внимание на Scan Tool Pro Black Edition.

Данное устройство совместимо с большинством старых и новых автомобилей, при наличии ODB2 разъёма. Основным преимуществом данного сканера является диагностика не только двигателя автомобиля, но и сопутствующих систем. Подключение происходит по средствам bluetooth (для android) и wi-fi (для IOS). Вся информация о состоянии автомобиля и описание имеющихся неисправностей выводится на экран телефона/планшета на русском языке.

Что нужно сделать если вакуумный насос вышел из строя

1) определить, где располагается вышедший из строя насос;
2) снять его;
3) установить новый вакуумный насос;
4) проверить тормоза, чтобы убедиться в нормальной работе системы вакуума;
5) проверить работу тормозов и системы вакуума в движении.

Рекомендации к вакуумному насосу

Срок службы вакуумного насоса не ограничен и отдельное техобслуживание этого агрегата не предусмотрено. Его осмотр проводят, когда он выходит из строя. Если вы заподозрили, что он неисправен, обратитесь к специалисту.

Насколько важен вакуумный насос?

Если в работе вакуумного насоса возникнут сбои, тормоза не будут нормально функционировать и езда на автомобиле станет опасной. Неисправный насос необходимо немедленно заменить.

Проверка вакуумного усилителя тормозов: 4 простых теста

Вопросы, рассмотренные в материале:

  • Каков принцип работы вакуумного усилителя тормозов
  • Как проверить работу вакуумного усилителя тормозов
  • Как выполняется регулировка и ремонт ВУТ

Одной из важнейших деталей в тормозной системе автомобиля является вакуумный усилитель. Его работа позволяет снизить усилия, прилагаемые водителем при нажатии на педаль тормоза. Эффективность работы тормозной системы при этом остается неизменной. Как и любая другая деталь машины, вакуумный усилитель тормозов (ВУТ) подвержен износу, а значит, может выйти из строя при длительной эксплуатации. Поэтому необходимо периодически проводить проверку ВУТ. Как провести проверку вакуумного усилителя тормозов, расскажем далее.

Принцип работы вакуумного усилителя тормозов

Раньше легковые машины не были оснащены «вакуумниками». Водителю требовалось жать на педаль тормоза, прилагая значительные физические усилия (около 80 кг) для того, чтобы замедлить автомобиль при экстренном торможении. Сегодня вакуумные усилители тормозов установлены на все машины, и водителю требуется лишь слегка нажать на педаль, чтобы остановить транспортное средство.

Для правильной и своевременной проверки ВУТ необходимо представлять его конструкцию и понимать принцип действия. Вакуумный усилитель – это металлический корпус цилиндрической формы, состоящий из следующих элементов:

  • диафрагма, которую толкает возвратная пружина;
  • воздушный клапан, имеющий два канала – вакуумный и атмосферный;
  • шток, располагаемый в центре корпуса ВУТ. С одного конца он соединен с педалью тормоза, с другого – с главным тормозным цилиндром (ГТЦ);
  • патрубок, который подключен к обратному клапану. По нему подводится разрежение от впускного коллектора двигателя.

Цилиндрический корпус состоит из двух камер: вакуумной и атмосферной. Между собой они разделены мембраной. Обе камеры соединены каналами воздушного клапана, которые поочередно открываются при нажатии и отпускании педали тормоза.

Рассмотрим алгоритм работы классического вакуумного усилителя тормозов:

  1. Если тормозная система не активирована водителем, то давление в камерах одинаково, следовательно, и толкатель, и шток остаются в неподвижном состоянии.
  2. Когда водитель нажимает педаль тормоза, шток двигается вперед. В этот момент нарушается связь двух камер через вакуумный канал. Проход, который соединяет атмосферную камеру и наружный воздух, открывается с помощью клапана.
  3. Разница давлений приводит к изгибу диафрагмы в сторону разрежения, помогая нажимать на толкатель и поршень основного гидроцилиндра.
  4. В тот момент, когда водитель прекращает жать на педаль тормоза, клапаном перекрывается атмосферный канал и открывается вакуумный. Вследствие этого происходит выравнивание давления в камерах, и пружина отбрасывает мембрану в изначальное положение.

Справка. В некоторых моделях машин для создания разрежения используется отдельный вакуумный насос тормозной системы. Данная схема эффективна при низком атмосферном давлении (например, в высокогорье).

Рекомендуем

Причины проверки работоспособности вакуумного усилителя тормозов

Тормозная система машины полностью не откажет, даже если сломается усилитель, однако водителю придется приложить намного больше усилий для того, чтобы замедлить движение автомобиля. Явный признак выхода из строя ВУТ – педаль становится «жесткой», а эффективность торможения резко падает. Это приводит к созданию опасной ситуации на дороге.

Читать еще:  Газы в картере дизельного двигателя причина

Кроме того, проявляются и другие признаки:

  • свободный ход увеличивается до половины;
  • работа силового агрегата становится нестабильной, особенно это заметно на холостом ходу;
  • тормоза «заклинивает», то есть автомобиль продолжает замедляться даже тогда, когда педаль тормоза уже отпущена.

Важно. Проверку ВУТ необходимо проводить исключительно тогда, когда двигатель автомобиля заведен, поскольку правильно работать усилитель может только при подаче разрежения от мотора.

Рассмотри причины, по которым могут возникнуть указанные выше повреждения вакуумного усилителя:

  • соединение шланга отбора вакуума неплотное, или происходит подсос воздуха через повреждение в шланге;
  • потеря герметичности из-за износа диафрагмы;
  • поломка воздушного клапана;
  • разгерметизация корпуса;
  • снижение упругости пружины.

Уплотнить соединение и заменить патрубок можно самостоятельно, только не забудьте проверить «вакуумник» на работоспособность. Однако если проверка показала, что сломался усилитель, то наверняка придется менять весь механизм.

Рекомендуем

4 простых теста для проверки вакуумного усилителя тормозов

Проверка вакуумного усилителя тормозов – процедура несложная, любой начинающий автолюбитель с ней легко справится. Снимать деталь с машины для проверки на неисправность нет необходимости. Для этого достаточно провести четыре простых теста, указывающих на наличие проблемы.

Тест № 1

Выполнить проверку несложно:

  1. Запустите мотор автомобиля. Прогрейте его в течение нескольких минут.
  2. Двигатель машины должен работать на холостых оборотах. С помощью инструмента (например, пассатижей) передавите патрубок отбора разрежения, ведущий от коллектора, либо отключите его от штуцера и заглушите последний деревянным клином.
  3. Если нет перебоя в работе мотора – система герметична.
  4. Повышение или стабилизация оборотов силового агрегата указывает на подсос воздуха через вакуумный усилитель тормозов или подающий шланг.

После того как вы провели проверку и определили неисправность усилителя, необходимо проверить шланг передачи вакуума. Для этого патрубок надо отсоединить и осмотреть на наличие повреждений. Далее изучите состояние хомутов. Если есть необходимость, замените их на новые.

Тест № 2

Заведите автомобиль, пусть он поработает некоторое время на холостых оборотах. Может понадобиться около семи минут. Затем заглушите двигатель и полностью выжмите педаль тормоза. Это создаст вакуум в усилителе тормозов. Далее педаль следует отпустить и тут же снова выжать.

Если при втором нажатии педали ее ход стал меньше, значит, вакуум не создается и есть проблемы в работе вакуумного усилителя тормозов. В случае, когда второе нажатие не отличается от первого, можно сделать вывод, что система исправна. Если результаты теста оказались недостаточно определенными, перейдите к следующему шагу.

Тест № 3

Нажмите на педаль тормоза около восьми раз. Сделайте это при заглушенном двигателе автомобиля. После этого еще раз выжмите педаль до упора и запустите двигатель машины. В случае, если нет проблем в работе вакуумного усилителя тормозов, в системе возникнет вакуум. Мембрана надавит на шток, тот оттянет за собой толкатель, соединенный с педалью. И в этот момент вы почувствуете, как педаль опустится еще ниже.

Если же педаль осталась на месте, это означает только одно – вакуум в системе не возник. Следовательно, существует неисправность, которая этому препятствует. В этом случае вам надо выполнить четвертую проверку.

Тест № 4

Этот способ проверки вакуумного усилителя тормозов позволит вам уточнить есть, ли утечки воздуха. Для этого заведите двигатель автомобиля, выжмите педаль тормоза до упора и заглушите двигатель.

Если в течение тридцати секунд вы не наблюдаете отклонения педали от максимально выжатого состояния, значит, проблем с вакуумным усилителем тормозов нет.

При возвращении педали в исходное положение под действием возвратной пружины мы делаем вывод, что давление внутри рабочей камеры возрастает, следовательно, есть неисправность механизма.

Рекомендуем

Проверка клапана вакуумного усилителя тормозов

Вакуумный усилитель тормозов может плохо работать из-за неисправности обратного клапана. Чтобы провести проверку его работоспособности, снимите шланг, достаньте клапан из корпуса вакуумного усилителя тормозов и наденьте на него резиновую грушу. Ее необходимо подсоединить с наружной стороны (с той, с которой соединяется шланг). Далее грушу следует сжать и отпустить. Сжатая груша свидетельствует об исправности обратного клапана.

В противном случае вам придется его заменить. Также данный метод вы можете использовать для проверки на герметичность впускного шланга, в том случае, когда под рукой не оказалось компрессора.

Рекомендуем

Регулировка и ремонт узла после проверки вакуумного усилителя тормозов

В целом регулировка ВУТ сводится к настройке свободного хода тормозной педали. Чтобы правильно его выставить, необходимо настроить длину штока. С помощью регулировочного болта контролируется зазор/выступ. Правильная настройка положения самого болта позволит установить идеальный момент срабатывания клапанов.

Когда будет закончена проверка на герметичность, не забудьте отрегулировать свободный ход педали тормоза. Настройка длины штока приводит к возникновению зазора, который определяет степень давления на тормозной цилиндр. Поэтому очень важно правильно выставить длину штока и поставить подходящий зазор.

Свободный ход педали при неработающем моторе должен составлять от пяти до четырнадцати миллиметров. Этот зазор контролируется болтом, находящимся над плоскостью вакуумного усилителя тормозов. Маленький зазор приводит к заеданию рабочего цилиндра, вследствие чего происходит быстрый износ колодок и повышается потребление топлива автомобилем. Кроме того, машина начинает произвольно притормаживать, как будто вы едете на ручном тормозе. Большой же зазор, напротив, приводит к увеличению хода педали, что свидетельствует о нарушении герметичности в узле.

Выше мы рассказали, как провести проверку работы тормозного вакуумного устройства и отрегулировать его работу в случае необходимости. Теперь скажем несколько слов о его ремонте.

Чтобы обеспечить собственную безопасность при поломке усилителя, безотлагательно примите меры по его ремонту или замене. И если вакуумные шланги в бензиновых автомобилях или насосы в дизельных вы можете заменить самостоятельно, не прибегая к услугам автосервиса, то более серьезные работы рекомендуется доверить профессионалам.

Конечно, это стоит определенных денег, но когда на кону собственная безопасность, лучше не экономить. Обратитесь к специалистам. Они не только грамотно проведут проверку, но и качественно, с гарантией выполнят все необходимые работы. Следует отметить, что после ремонта важно синхронизировать колеса при торможении и провести проверку системы ABS/ESP. Для этого необходим диагностический стенд и специализированное оборудование.

Бывают случаи, когда отремонтировать «вакуумник» выходит дороже, чем приобретение усилителя, бывшего в употреблении, но находящегося в исправном состоянии. Поэтому рекомендуется при необходимости поискать устройство на разборках.

Если вы чувствуете уверенность в собственных силах и решили после проверки самостоятельно отремонтировать неисправный вакуумный усилитель, то действуйте следующим образом.

Для начала в моторном отсеке демонтируйте всю обивку и снимите накладку ветрового стекла. Не снимайте трубки, ведущие к ГТЦ. Это может привести к попаданию в систему воздуха. Далее открутите цилиндр от вакуумного усилителя и осторожно наклоните вперед, чтобы предотвратить деформацию тормозных трубок. Шланг передачи вакуума перед этим необходимо снять со штуцера усилителя.

Внимательно изучите рекомендации, которые дает производитель и приступайте к демонтажу усилителя. Открутите крепежные болты и отсоедините клемму провода, идущего к стоп-сигналу.

Только после этого снимите педаль, используя специальный инструмент. Если вы хорошо разбираетесь в конструкции автомобиля, то справитесь с проверкой и ремонтом ВУТ. Однако лучше предварительно зайти в Интернет и найти инструкцию со схемой усилителя. Это заметно ускорит реализацию поставленной задачи и повысит ваши шансы на успех.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты