Влияние степени сжатия на работу двигателя - Авто журнал "Гараж"
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Влияние степени сжатия на работу двигателя

Российские инженеры безнадежно улучшили двигатель внутреннего сгорания

Последние 20 лет в автомобилестроении идет перманентная революция. Она распространяется на все детали — от колес до омывателя стекол. Но главное движение мысли инженеров направлено на двигатель внутреннего сгорания (ДВС).

Речь пойдет о ДВС с переменной степенью сжатия. Сейчас существует один серийный автомобиль с подобной технологией — Infiniti QX50. Но и в России существует разработка, способная потягаться с японской. Российский ДВС с переменной степенью сжатия создали инженеры Научно-исследовательского автомобильного и автомоторного института, или, говоря бюрократическим языком, ГНЦ РФ ФГУП НАМИ. (Кстати, именно эта организация делает автомобили марки Aurus.) ДВС с переменной степенью сжатия НАМИ представил на конференции в Германии зимой 2019 года.

Степенью сжатия называется отношение поршня, находящегося в нижней точке, к поршню, находящемуся в верхней точке. Почти во всех автомобилях этот показатель — фиксированный и определяется таким образом, чтобы не допустить взрыва топливной смеси. Возможность динамически изменять степень сжатия позволяет значительно поднять КПД автомобиля. То есть при малых нагрузках степень сжатия может быть выше, а при больших, когда в камеру сгорания попадает много воздушно-бензиновой смеси и возможна опасная детонация, степень сжатия уменьшается. Вроде все просто.

Одними из первых, кто попытался воплотить технологию в жизнь, стали инженеры фирмы SAAB. В 2000 году на автосалоне в Женеве они представили инновационный двигатель с изменяемой степенью сжатия. Суть разработки заключалась в том, что цилиндры двигателя и головка блока выполнены как моноблок (у обычных двигателей они существуют раздельно). Таким же образом были объединены блок-картер и шатунно-поршневая группа. (Блок-картер — это не что иное, как корпус, который объединяет и скрепляет все детали двигателя.) Так вот, изменение степени сжатия происходило за счет наклона моноблока относительно блок-картера с помощью гидропривода при неизменном ходе поршня. За всеми этими сложными словами скрывается простая задумка: когда нужно уменьшить степень сжатия, моноблок отклоняется от вертикали, что приводит к увеличению объема камеры сгорания и, соответственно, к нужному результату. Для увеличения степени сжатия угол наклона моноблока нужно уменьшить, уменьшив тем самым объем камеры сгорания. Руководит процессом электронный блок управления, который рассчитывает оптимальный угол отклонения в зависимости от множества факторов, начиная от нагрузки и заканчивая типом топлива.

Шведский двигатель объемом 1,6 л выдавал мощность 225 л. с. Прекрасный результат! Но еще и расход топлива уменьшился на 30%. Более того, удалось добиться существенного снижения выброса вредных веществ, что крайне важно для Швеции, где к экологии относятся исключительно внимательно.

Примерно в то же время, когда на Женевском автосалоне был представлен инновационный двигатель, компания SAAB перешла в полную собственность General Motors. Постепенно проекты вроде этого стали сворачиваться, а в 2010 году GM избавилась от шведской марки. Теперь ее вовсе не существует — осталась втуне и перспективная разработка.

Похожую задумку пробовали воплотить и инженеры немецкой компании FEV Motorentechnik. Их двигатель с переменной степенью сжатия был представлен в том же 2000 году. Немцы тоже пытались добиться результата за счет изменения объема камеры сгорания, но только не за счет блока цилиндров, как сделала SAAB, а за счет управления высотой подъема коленвала. Опорные шейки коленвала размещались в эксцентричных муфтах (эксцентриком называется механизм, который преобразует вращательное движение в поступательное), а они приводились в действие электромотором через шестерни. Поворот эксцентриков заставлял подниматься или опускаться коленвал, что и меняло объем камеры сгорания. Разработка была использована в турбированном четырехцилиндровом двигателе Volkswagen объемом 1,8 л. Мотор развивал мощность до 218 л. с., но в серию не пошел (по неведомым причинам).

Возможно, идея ДВС с переменной степенью сжатия так и осталась бы идеей, если бы в 2017 году Infiniti не выпустила свой VC-Turbo.

Японцы пошли отличным от коллег путем и применили траверсный механизм: шатун соединен системой рычагов с приводом электромотора, который, в свою очередь, регулирует через систему рычагов свободу движения поршня, изменяя степень сжатия. Главный успех Infiniti — в том, что пока это единственный производитель, которому удалось довести разработку до серийного производства. VC-Turbo используется в автомобиле Infiniti QX50, японцам удалось вместить в двухлитровый турбированный агрегат 270 лошадиных сил, увеличив экономичность на 27% по сравнению с аналогичными двигателями.

Алексей Теренченко, кандидат технических наук, доцент, директор центра «Энергоустановки» НАМИ, объясняет, что основной целью российских конструкторов было добиться идеального сочетания механизмов для получения максимального диапазона степени сжатия при минимальных затратах энергии на управление. Руководствуясь этой целью, конструкторы пришли к выводу, что добиться такого сочетания проще всего благодаря траверсному механизму. В этом смысле решение схоже с Infiniti, но есть и различия.

«Рядные двигатели, как правило, изначально имеют непропорциональную форму – они высокие и узкие. А все конструкторы пытаются сделать так, чтобы двигатель в моторном отсеке занимал пропорциональные — в отношении высоты, ширины и длины — размеры. Для этого все вспомогательные агрегаты вешаются по бокам. В нашей конструкции траверс примыкает к цилиндрам и находится сбоку. Infiniti же поместила механизм снизу. С точки зрения габаритов решение не самое удачное,— рассказывает господин Теренченко.— Нашим конструкторам удалось добиться диапазона хода поршня от 7 до 14, это очень хороший результат».

Читать еще:  Шевроле лачетти дергается двигатель на холодную

Основная проблема, продолжает Алексей Теренченко,— в стоимости двигателя. ДВС с такой технологией под капотом машины неизбежно переводит ее в премиальный класс. Для Infiniti — премиальной марки — нормально. Российский же автопром к такому пока не готов. Условной Lada Vesta не нужен такой двигатель, да и покупатель не готов переплачивать за навороченную разработку. Так что технология лежит на полке и ждет своего часа из-за банальной неготовности рынка ее принять. То есть не технология не дотягивает до серийного производства, а наоборот.

Более того, как говорит господин Теренченко, проблема еще и в том, что у России нет таких жестких норм чистоты автомобильного выхлопа, как в Европе или в США, а такие нормы становятся дополнительным стимулом для внедрения технологии ДВС с переменной степенью сжатия. Патовая ситуация.

Влияние степени сжатия на работу двигателя

  • О ДВС
  • История ДВС
  • Техническая информация
  • Двигатель года
  • Надежность
  • Долговечность
  • Сгорание
  • Контакты
  • Экономичность
  • Холодный пуск
  • Двигатели с турбонаддувом
  • Регулируемые системы газораспределения
  • Токсичность двигателей внутреннего сгорания
  • Динамика и конструирование
Влияние степени сжатия на экономические и мощностные показатели двигателя и на его токсичность (часть 1)
Экономичность

Топливная экономичность бензиновых двигателей в зна­чительной мере определяется величиной степени сжатия. Степень сжатия двигателя необходимо выбирать так, чтобы обеспечива­лось следующее: работа двигателя без детонации на заданном товарном бензине; отсутствие калильного зажигания и других аномальных процессов сгорания; выполнение норм по токсично­сти отработавших газов (в частности, норм на выброс окислов азота); надежная работа двигателя с учетом повышенной нагруз­ки на детали кривошипно-шатунного механизма и более высокого теплового режима двигателя при увеличении степени сжатия; на­дежная работа двигателя в случае применения наддува.

Выпускаемые в настоящее время в СССР двигатели по требо­ваниям к бензину можно разделить на две основные группы: со степенью сжатия 6,5—7 для эксплуатации на бензине А-76 и со степенью сжатия 8,2—9,5 для эксплуатации на бензине АИ-93. При этом ряд двигателей выпускается в двух модификациях с разными степенями сжатия (412, МеМЗ-968, ЗМЗ-24) для работы на одном из указанных выше сортов топлива.

Форсирование двигателей производится установкой турбоком­прессора при одновременном снижении степени сжатия (до 7,5— 9) или применением новой впускной .системы и повышением сте­пени сжатия.

Большинство современных зарубежных двигателей имеют степень сжа­тия 8—9 для работы на бензине «regular» и 9—9,5 на бензине «premium». Раз­ница между ценами этих сортов бензина (до .10 %) достаточно высока, и пе­реход на бензин «premium» не дает экономического эффекта, так как расход топлива при этом снижается обычно только на 5—8 %. Этот бензин в основном применяется для форсированных модификаций двигателей, устанав­ливаемых на автомобили с улучшенными динамическими качествами.

Стремление снизить эксплуатационный расход топлива вызва­ло интерес к двигателям с высокой степенью сжатия. За рубежом в 60-х годах выпускались автомобили, оборудованные двигателя­ми с высокой степенью сжатия (10,5—И), однако вследствие по­вышенной склонности их к возникновению аномальных процессов сгорания и увеличению выброса окислов азота с отработавшими газами пришлось перейти на двигатели с более низкой степенью сжатия (8,5—9,5).

К числу наиболее опасных аномальных процессов сгорания относится преждевременное (доискровое) воспламенение рабочей смеси, которое возникает обычно от раскаленных поверхностей деталей в камере сгорания (выпускные клапаны, острые кромки поршня или головки цилиндров, прокладка головки цилиндров и др.), но чаще всего от центрального электрода свечи зажига­ния.

Влияние детонации на работу двигателя и её устранение

Нормальный процесс сгорания топливного заряда в цилиндре происходит следующим образом. Поршень приближается к верхней мертвой точке, рабочая смесь (пары бензина, воздух и какое-то количество остаточных продуктов горения) сжата. В нужный момент между электродами свечи проскакивает искра, и здесь образуется первичный очаг воспламенения объемом несколько кубических миллиметров, энергия которого складывается из энергии искры и энергии сгоревшего в этой зоне топлива. Скорость нормального горения рабочей смеси в цилиндре двигателя имеет определенную скорость — 30-40 м/с. Скорость ударных волн во время детонации может достигать 1500 м/с.

Детонация происходит, когда топливно-воздушная смесь в цилиндре вместо прогрессивного управляемого горения самопроизвольно взрывается. Это вызывает резкое увеличение давления и температуры в цилиндре, которое может повредить поршни, кольца и даже головку. Детонацию иногда можно услышать как посторонний металлический стук, исходящий от двигателя. Иногда детонация не выдаёт себя посторонними звуками, но проявляется в уменьшении мощности двигателя.

На рисунках представлены поврежденные под действием детонации поршень и головка.

Некоторое влияние на возникновение детонации оказывает нагар в камере сгорания. Дело в том, что отложения на стенках, во-первых, ухудшают теплообмен, а во-вторых — увеличивают фактическую степень сжатия. Иными словами, они создают условия для срыва нормального процесса горения. Более того, нагар может оказывать известное каталитическое действие и вызывать самовоспламенение рабочей смеси. И еще. При переходных режимах работы двигателя нагар иногда начинает разрыхляться и расслаиваться; тогда частицы, потерявшие плотный контакт со стенкой, легко перегреваются и могут провоцировать калильное зажигание. Бывает и так, что чешуйки нагара отрываются, но какое-то время не выносятся из камеры сгорания, а остаются в ней. Они легко нагреваются и поджигают рабочую смесь в самый неопределенный момент даже на впуске. Так порождаются; «дикие» стуки, не поддающиеся никакой логике и классификации.

Энергия, выделяющаяся при детонации, препятствует движению поршня в верхнюю мертвую точку, выполняя тем самым ОТРИЦАТЕЛЬНУЮ РАБОТУ. В момент долгожданной искры от настоящей свечи компрессии в цилиндре уже нет: часть топлива, не воспламенившись, ушла в выхлоп через неплотности посадки клапанов в седлах, основная часть топлива УЖЕ сгорела, воспламенившись от окалины. Достигнув верхней точки поршень получает слабый импульс и движется вниз, вращая, коленвал (полезная работа) и преодолевая сопротивление других поршней, тормозящихся «калильным зажиганием» («сизифов труд»). Таким образом, только 40% топлива выполняют в двигателе полезную работу. Безрадостная картинка, не правда ли?

Процесс сгорания с детонацией.

Влияние конструкции мотора на детонацию

Можно выделить следующие основныеконструкционные факторы:

  • форма камеры сгорания и ее охлаждение;
  • размеры цилиндра;
  • число и расположение свечей;
  • конструкция выпускного клапана;
  • степень сжатия.

Влияние степени сжатия и давления наддува на датонациюСтепень сжатия является основныф фактором, влияющим на детонацию. Характерная зависимость порога появления детонации от степени сжатия и давления наддува показана на картинке.

Форма камеры сгорания и ее охлаждение

Чем больше время, в течении которого фронт пламени от свечи может достигнуть до наиболее отдаленных точек камеры сгорания и чем хуже охлаждаются эти точки, тем вероятнее возникновение детонации. Отсюда следует, что наиболее рацональной формой камеры сгорания является полисферическая и шатровая.

Здесь же можно отметить, что определенные дивиденды может принести механическая обработка камеры сгорания. Как то — скругление различных очагов детонации в виде кромок и углов, полировка.

Размеры цилиндра

При увеличении размеров цилиндра возрастает длина пути, проходимого фронтом пламени и, следовательно, вероятность возникновения детонации.

Влияние диаметра цилиндра на детонациюНа рисунке приведены значения наивысшей полезной степени сжатия в зависимости от диаметра цилиндра, полученные Рикардо. Верхняя кривая получена на двигателе с золотниковым распределением и свечей, расположенной в центре головки, а нижняя на двигателе с нормальным клапанным распределением. Меньшие значения степени сжатия во втором случае объясняются влиянием на детонацию горячего выхлопного клапана.

Число и расположение свечей

Увеличение числа свечей сокращает расстояние, проходимое фронтом пламени и тем самым уменьшает вероятность возникновения детонации. При существующих размерах цилиндров увеличение числа свечей свыше двух нерационально. Свечи располагают обычно так, чтобы обеспечить возможно малое расстояние до наиболее удаленной от них точки камеры сгорания.

На рисунке представлено влияние числа свечей на детонацию. Опыты производились при регулировке состава смеси на максимальную мощность (сплошные линии) и максимальную экономичность (пунктир). Нижние кривые в обоих случаях соответствуют работе на одной свече, расположенной со стороны выхлопа, а верхние — на двух диаметрально противоположных свечах. Двигатель доводился наддувом до начала детонации. Как видно, в обоих случаях среднее индикаторное давление, соответствующее началу детонации, получалось при двух свечах, примерно, на 15% выше. Сами свечи, точнее, их электроды, часто служат источником возникновения детонации и преждевременного воспламенения. Поэтому при конструировании свечей для сильно форсированных двигателей обращают особое внимание на возможность надежного их охлаждения.

Выпускной клапан

Наиболее горячей деталью в головке блока цилиндров является выпускной клапан, температура которого может достигать 750-800 градусов. Влияние выпускного клапана на образование перекисей, а следовательно, и детонацию, весьма значительно.

Большой эффект в смысле снижения температуры клапана и возможности соответствующего повышения степени сжатия или наддува дало применение выпускных клапанов, охлаждаемых изнутри металлическим натрием.

Влияние режима работы двигателя на детонацию

Из величин, определяющих режим работы двигателя, влияют на детонацию главным образом следующие:

  • температура смеси и стенок цилиндра;
  • давление наддува;
  • угол опережения зажигания;
  • обороты двигателя;
  • атмосферные условия и состав смеси.
Состав смеси

Изменение состава смеси влияет на скорость распространения пламени и величину максимальных давлений и температур в цилиндре. Изменение этих величин, а также соотношения между кислородом и топливом в смеси сказывается и на образовании перекисей. Опытом установлено, что при условии отсутствия перегрева двигателя максимальная детонация получается при составе смеси, лежащем в пределах между составами, соответствующими регулировке на максимальную мощность и максимальную экономичность.

Влияние состава смеси на детонациюНа рисунке представлена зависимость среднего индикаторного давления (эквивалентно мощности), соответствующего началу детонации, от коэффициента избытка воздуха. Опыты проводились на двигателе воздушного охлаждения. Как видно, обогащение смеси от а = 0,9 до a = 0,65 (AFR 13.3 — 9.6) позволило повысить среднее индикаторное давление (наддувом) от 10,5 до

17 кг/см2. Обогащение смеси до значений а =0,65 — 0,70 (AFR 9,6 — 10,4) является в настоящее время общепринятым методом устранения детонации при форсировании двигателей.Изменение состава смеси влияет на скорость распространения пламени и величину максимальных давлений и температур в цилиндре.

Температура смеси и стенок цилиндра

Увеличение температуры стенок цилиндра или смеси точно так же способствует образованию перекисей и, следовательно, детонации смеси.

Влияние температуры на детонациюНа рисунке представлены опыты, проведенные на одноцилиндровом двигателе Вокеша с переменной степенью сжатия. Опыты были проведены на четырех различных топливах при двух температурах охлаждающей жидкости — 100 и 145°, так что линейная зависимость степени сжатия от температуры является условной. Как видно, увеличение температуры охлаждающей жидкости на 45° снижает степень сжатия, соответствующую определенной интенсивности детонации, приблизительно на 12-16%.

Влияние температуры поступающего воздуха на детонацию представлено на фиг. 10. При повышении температуры от 310 до 410°К (37-137°С) среднее индикаторное давление, соответствующее началу детонации, понизилось от 15,3 до 9,5 кг/см2 при а =0,9(AFR =13,3) и от 13,5 до 11,5 кг/см» при а = 0,67(AFR =9,9 ). Следует отметить сильное отличие в характере падения среднего давления при различных значениях коэффициента избытка воздуха. Опыты были проведены на двигателе авиационного типа воздушного охлаждения.

Угол опережения зажигания

Изменение момента зажигания смещает сгорание рабочей смеси по отношению к положению поршня в цилиндре двигателя, вследствие чего изменяются давления и температуры процесса. Опыт показывает, что уменьшение опережения зажигания уменьшает детонацию рабочей смеси. Максимальная интенсивность детонации получается обычно при опережении зажигания несколько большем, чем соответствующее регулировке на максимальную мощность двигателя.

На рисунке приведены опыты автора(А. А. Добрынина) по влиянию угла опережения зажигания на максимальную мощность двигателя при работе на данном топливе. Опыт был проведен на авиадвигателе воздушного охлаждения. При постоянном составе смеси и различных углах опережения зажигания, определяли мощность двигателя, соответствующую началу детонации.

Водная инжекция может препятствовать появлению детонации и работает в трех направлениях. Во-первых, когда вода впрыснута в систему впускного коллектора до крышки цилиндра, небольшие капельки поглощают тепло из воздуха. Охлаждённый воздух имеет большую плотность, тем самым увеличивая количество кислорода, которое попадает в цилиндр. Вода имеет ту высокую теплоёмкость (может поглотить много энергии при незначительном повышении температуры). Затем, небольшие капли испаряются в цилиндре и охлаждают его, при этом, полученный пар увеличивает давление в цилиндре. Это действует как анти-детонант и также очищает полости камеры сгорания от нагара, таким образом устраняются нежелательные «горячие» точки.

Автомобили с комбинированными энергетическими установками

Влияние степени сжатия на процесс сгорания

Одним из наиболее эффективных способов улучшения энергоэкономических показателей поршневых двигателей является повышение степени сжатия е = VJVV. При повышении степени сжатия обычно уменьшают объем камеры сгорания Vc, вследствие чего уменьшается относительное количество остаточных газов (уменьшается коэффициент остаточных газов г = Mr/M4ltlil).

Одновременно с повышением степени сжатия возрастают давление и температура свежего заряда к моменту подачи искры на электроды свечи. Нагрев свежего заряда до более высоких температур приводит к развитию во всей массе смеси экзотермических предпла-менных реакций с появлением большого количества химически активных частиц. Такое развитие предиламенных процессов и низкая концентрация инертных молекул остаточных газов благоприятно влияет на условия формирования первонача!ьного очага воспламенения от электрической искры, сокращая длительность ф, начальной фазы процесса сгорания.

Возросшая химическая активность свежего заряда способствует также повышению скорости распространения фронта пламени по основной массе свежего заряда, несколько сокращая тем самым длительность Гц основной фазы быстрого сгорания (рис. 2.15).

Анализ кривых показывает, что повышение степени сжатия при прочих равных условиях приводит к повышению максимального давления сгорания Р. и приближению максимума давления к ВМТ, но одновременно возрастает противодавление в конце такта сжатия и в начале сгорания. Для получения максимально возможной мощности в этих условиях угол опережения зажигания обычно уменьшают, сдвигая воспламенение и сгорание основной массы свежего заряда ближе к ВМТ.

Сокращение длительности процесса сгорания в минимальном объеме цилиндра приводит к сокращению потерь теплоты в систему охлаждения и с отработавшими газами, что повышает экономичность двигателя.

О наличии положительного влияния предпламенных химических реакций на скорости процесса сгорания при повышении степени сжатия свидетельствует тот факт, что наивысшая мощность и экономичность двигателя достигаются при использовании топлива с предельно допустимым для данной степени сжатия октановым числом из условия бездетонационной работы двигателя на пороге детонации.

Если октановое число применяемого топлива достаточно высоко для данного двшателя с относительно низкой степенью сжатия, то из-за пониженных температур и отсутствия предпламенных реакций процесс сгорания в цилиндре по времени затягивается, переносится на такт расширения, что приводит к увеличению теплоотдачи в систему охлаждения и с отработавшими газами. Это приводит к перегреву двигателя и возможному обгоранию выпускных клапанов.

Увеличение степени сжатия е из-за уменьшения объема камеры сгорания приводит к возрастанию относительного количества свежего заряда, заключенного в щелевых зазорах между днищем поршня и поверхностью головки цилиндра, в пристеночных слоях при наличии вытеснителей, что приводит к уменьшению доли активного тепловыделения к моменту достижения максимальных значений давления Р. и температуры Т:. Это обстоятельство приводит к увеличению доли тепловыделения в 4-й фазе процесса сгорания — фазе догорания на такте расширения.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector