0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Влияние смазки на работу двигателя

Влияние смазки на работу двигателя

  • О ДВС
  • История ДВС
  • Техническая информация
  • Двигатель года
  • Надежность
  • Долговечность
  • Сгорание
  • Контакты
  • Экономичность
  • Холодный пуск
  • Двигатели с турбонаддувом
  • Регулируемые системы газораспределения
  • Токсичность двигателей внутреннего сгорания
  • Динамика и конструирование
Влияние смазки, газовой среды и температуры на износ (часть 11)
Долговечность

В процессе эксплуатации для большинства районов страны пос­ле запуска и прогрева двигателя наступает относительная стабили­зация температурного режима систем охлаждения и смазки, кото­рая обусловливается как конструктивными (размеры масляных и водяных радиаторов и т. п.), так и эксплуатационными (система утеп­ления двигателя, движения автомобиля на более низких передачах с небольшой скоростью обдува радиатора и т. п.) факторами [71, 76].

Исследованиями [31, 32, 70, 71, 76, 289,349 и др.] установлено, что влияние температурного режима двигателя на его износ наи­более сказывается при максимальном перепаде температур в систе­мах смазки и охлаждения, т. е. в период прогрева, когда осуществля­ется запуск двигателя.; Этому вопросу на протяжении многих лет уде­ляется первостепенное значение. Придерживаясь хронологической последовательности выполненных исследований, необходимо отме­тить опубликованную в журнале SAEв 1935 г. работу Блеквуда, ис­следовавшего работу двигателя при низких температурах. Был сде­лан вывод, что один пуск и разогрев при температуре стенок ци­линдров — 18° С эквивалентен по износу пробегу автомобиля 210»км. Позднее К- С. Рамайя [263], базируясь на тех же данных, пришел к выводу, что от 60 до 70% износа двигателя связано с пусковым пе­риодом в зимнее время. Более поздние данные [6, 47, 57, 70, 73, 76, 195, 289] также указывают на значительное увеличение износа дви­гателя при пуске и разогреве по сравнению с нормальными эксплуа­тационными условиями.

Анализ литературных источников, посвященных изучению дина­мики пуска, показывает, что пуск двигателя необходимо рассмат­ривать как сложный нестационарный температурный процесс, харак­теризуемый неустановившимися нагрузочными и скоростными параметрами. Каждый пуск двигателя можно разделить на 4 перио­да [120] (рис. 3). Первый период (/) — трогание с места коленчато­го вала, поршней и других механизмов. При этом момент сопротив­ления двигателя прокручиванию возрастает до максимума и снижа­ется на протяжении 0,1—0,5 с.

Второй период (//) — прокручивание вала с установившейся скоростью. Момент сопротивления при этом снижается в 2—2,5 раза. От продолжительности протекания этого периода зави­сит скорость вращения коленчатого вала. Возникновение первых вспышек в цилиндрах двигателя зависит от испарения топлива и интенсивности теплообмена между смесью и стенками цилиндров при тактах впуска и сжатия. Если скорость вращения вала при пус­ке соответствует пусковой скорости, процесс будет прогрессивно развиваться и перейдет в третий период.

Система смазки двигателя

Детали кривошипно-шатунного и газораспределительного механизмов перемещаются относительно друг друга. Этому перемещению препятствует сила трения, величина которой зависит от относительной скорости перемещения, удельного давления деталей одной на другую и от точности обработки трущихся поверхностей. Для преодоления сил трения бесполезно затрачивается мощность двигателя. Помимо этого, трение деталей вызывает их нагрев. При чрезмерном нагреве зазоры между деталями уменьшатся настолько, что деталь перестанет перемещаться, т.е. заклинится.

Одним из наиболее эффективных способов уменьшения трения является ввод слоя смазки между трущимися поверхностями. Смазка, прилипая к поверхности, создает на ней прочную пленку, которая, разделяя детали, заменяет сухое трение между ними трением частиц смазки между собой. Так как в работающем двигателе масло беспрерывно циркулирует, оно одновременно охлаждает трущиеся детали и уносит твердые частицы, образовавшиеся в результате их износа. Помимо того, детали, смазываемые маслом, меньше подвержены действию коррозии, а зазоры между ними значительно уплотняются.

На современные системы смазки, кроме вышеперечисленных,
возлагаются еще и управляющие функции. Моторное масло работает в гидрокомпенсаторах тепловых зазоров клапанов, гидронатяжителях привода ГРМ, системах регулирования фаз газораспределения.

Подача масла к трущимся поверхностям должна быть бесперебойной. При недостаточной подаче масла теряется мощность двигателя, повышается износ деталей и в результате их нагрева возможно выплавление подшипников, заклинивание поршней и остановка двигателя. Избыточная подача масла приводит к проникновению его в камеру сгорания, что увеличивает отложение нагара и ухудшает условия работы свечей зажигания.

Так как отдельные детали двигателя работают в неодинаковых условиях, то смазка их также должна быть неодинакова. К наиболее нагруженным деталям масло подается под давлением, а к менее нагруженным – самотеком или разбрызгиванием. Системы, в которых смазка деталей производится разными способами, называются комбинированными.

При работе двигателя масляный насос обеспечивает непрерывную циркуляцию масла по системе. Под давлением оно поступает в масляный фильтр, а далее к коренным и шатунным подшипникам коленвала, поршневым пальцам, опорам и кулачкам распредвала, оси коромысел привода клапанов. В зависимости от конструкции мотора масло подается под давлением к валу турбокомпрессора, на внутреннюю поверхность поршней для их охлаждения, в гидротолкатели клапанов и исполнительные механизмы систем фазовращения.

На поверхности цилиндров масло попадает путем разбрызгивания через отверстия в нижней головке шатуна или форсунки в нижней части блока цилиндров. Попадая на стенки цилиндров, оно снижает трение при движении поршня и обеспечивает свободу перемещения компрессионных и маслосъемных колец.

Со смазанных под давлением деталей капли масла падают в поддон. Попадая на вращающиеся части кривошипно-шатунного механизма, они разбрызгиваются, создавая в картере так называемый масляный туман. Оседая на деталях двигателя, он обеспечивает их смазку. Осажденное масло затем стекает в поддон картера, и цикл повторяется вновь.

🔎 Устройство системы смазки

Система смазки двигателя включает в себя поддон картера с пробкой слива масла, масляный насос с редукционным клапаном, маслоприемник с сетчатым фильтром, масляный фильтр с предохранительным и перепускным клапанами, систему масляных каналов в блоке цилиндров, головке цилиндров, коленчатом и распределительном валах, датчик давления масла с контрольной лампой и маслозаливную горловину. В некоторых двигателях в систему смазки включен масляный радиатор.

Поддон картера представляет собой резервуар для хранения масла. Уровень масла в поддоне контролируется с помощью щупа, на котором нанесены метки максимально и минимально возможного уровня. Из поддона масло поступает через маслоприемник с сетчатым фильтром к масляному насосу. Маслоприемник может быть неподвижным или плавающего типа. Емкость системы смазки легкового автомобиля, в зависимости от объема и типа двигателя, может составлять от 3,5 до 7,5 литров. Причем указываемая в инструкции емкость имеет два значения — одно относится непосредственно к системе смазки двигателя, а второе указывает на необходимое количество масла с учетом емкости масляного фильтра.

В зависимости от конструкции двигателя давление масла в нем должно составлять от 2 до 15 бар. Масляный насос служит для создания необходимого давления в системе смазки и подачи масла к трущимся поверхностям. Масляный насос может иметь привод от коленчатого вала, распределительного вала или дополнительного приводного вала.

В автомобильных двигателях в основном применяются шестеренные насосы в силу своей простоты и дешевизны. Они бывают двух типов: с наружным и внутренним зацеплением. В первом шестерни насоса расположены рядом, а во втором – одна шестерня внутри другой. Поэтому насос с внутренним зацеплением более компактен. Ведущая шестерня устанавливается на приводном валике, а ведомая свободно вращается. Шестерни устанавливают в корпусе насоса с небольшими зазорами. Во время работы вращающиеся в разные стороны шестерни захватывают масло из поддона и переносят его во впадинах между зубьями в масляную магистраль. При повышении частоты вращения коленвала производительность насоса пропорционально возрастает, в то время как потребление масла самим двигателем меняется незначительно. Кроме того, шестеренные насосы не создают высокого давления, отнимают до 8% мощности мотора и не всегда способны обеспечить работу систем современного автомобиля (например, систем изменения фаз газораспределения). Поэтому были разработаны масляные насосы регулируемой производительности, которые способны создавать более высокие значения давления масла, отнимают меньше мощности у двигателя и обеспечивают постоянство давления в системе, независимо от оборотов коленвала. К таким конструкциям относятся, например, пластинчатый (шиберный) насос, героторный насос и насос с маятниковыми золотниками.

В некоторых двигателях устанавливают двухсекционные масляные насосы. Первая секция предназначена для подачи масла в систему смазки двигателя, вторая – для подачи масла в масляный радиатор.

Производительность масляного насоса рассчитывается с запасом так, чтобы даже при самых неблагоприятных условиях эксплуатации (высокие температуры, износ деталей и др.) давление в системе оставалось достаточным для подвода масла к трущимся поверхностям. Однако при этом в непрогретом двигателе давление масла может превысить допустимые значения. Для предотвращения разрушения масляных магистралей в системах смазки с нерегулируемым насосом служит редукционный клапан. Самая распространенная конструкция представляет собой плунжер и пружину установленные в корпусе с отверстиями. При избыточном давлении в системе плунжер, сжимая пружину, перемещается, и часть масла поступает обратно в поддон картера. Величина давления, при которой срабатывает клапан, зависит от жесткости пружины. Устанавливается редукционный клапан на выходе масляного насоса. В некоторых системах устанавливают редукционный клапан и в конце масляной магистрали – для предотвращения колебаний давления при изменении гидравлического сопротивления системы и расхода масла.

Качество масла в двигателе снижается с течением времени, так как оно засоряется мелкой металлической пылью, появляющейся в результате износа деталей, частицами нагара, образовывающегося в результате сгорания его на стенках цилиндров. При высокой температуре деталей масло коксуется, образуются смолы и лакообразные продукты. Все эти примеси являются вредными и оказывают существенное влияние на ускорение износа деталей автомобиля. Для очистки масла от вредных примесей в системе смазки устанавливается фильтр, который заменяется при каждой смене масла.

В жаркое время года и при эксплуатации автомобиля в тяжелых дорожных условиях температура масла настолько повышается, что оно становится очень жидким и давление в системе смазки падает. Для предотвращения разжижения масла в систему смазки могут включаться масляные радиаторы. Они бывают двух типов: с воздушным и с жидкостным охлаждением. Первые устанавливаются перед радиатором системы охлаждения и охлаждаются потоком воздуха. Вторые включаются в контур системы охлаждения, что обеспечивает постоянство температуры масла во время работы двигателя и быстрый подогрев его при пуске холодного двигателя. Масло проходит по трубкам радиатора, которые омываются охлаждающей жидкостью. В таких системах смазки устанавливается термостат. Термостат не допускает подачу масла в радиатор, пока оно не прогреется до рабочей температуры. Затем он открывается, и масло начинает поступать в радиатор, где происходит его охлаждение. В более простых конструкциях радиатор подключается вручную водителем с помощью краника.

Для контроля давления масла в системе смазки устанавливается датчик с контрольной лампой красного света на панели приборов. Ее мигание или свечение при работе двигателя сигнализирует о недопустимом снижении давления. В этом случае двигатель необходимо немедленно заглушить. В некоторых автомобилях датчик давления масла может быть связан с блоком управления, который при опасном снижении давления сам останавливает двигатель. Кроме контрольной лампы, в комбинацию приборов могут включаться указатель давления масла и указатель температуры масла. На некоторых современных автомобилях, кроме датчика давления, ставят и датчик контроля уровня масла вместе с контрольной лампой уровня.

В картере работающего двигателя через зазоры, имеющиеся между зеркалом цилиндра и кольцами, проникают пары топлива и отработавшие газы. Пары топлива конденсируются и разжижают смазку, а отработавшие газы, содержащие в себе пары воды и сернистые соединения, также отрицательно влияют на качество масла и уменьшают срок его службы. Помимо этого, отработавшие газы создают в картере избыточное давление, которое «выдавливает» масло из двигателя через уплотнения. Особенно характерна такая ситуация для изношенных моторов. Поэтому газы необходимо выводить. Но так как они токсичны, то их не просто выбрасывают в атмосферу, а смешав с воздухом, дожигают в цилиндрах.

Для этого служит система принудительной вентиляции картера. Основными ее частями являются клапан, маслоотделитель и воздушные шланги. Воздух из впускного тракта через шланг системы вентиляции поступает в картер, где смешивается с картерными газами, а затем через клапан снова направляется во впускной коллектор. Производительность системы зависит от нагрузки двигателя. При малых оборотах разряжение на впуске высокое, плунжер клапана системы вентиляции открыт немного, поэтому и количество пропускаемых картерных газов невелико. С ростом оборотов разряжение падает, и клапан открывается на большую величину – соответственно и увеличивается объем пропускаемых картерных газов. Маслоотделитель предотвращает попадание масляного тумана во впускной тракт и, соответственно, в цилиндры двигателя. В маслоотделителе скорость истечения картерных газов вначале замедляется, а затем они приводятся во вращательное движение. В результате капли масла осаждаются на стенках и стекают в поддон.

🔎 Основные неисправности системы смазки

Внешними признаками неисправности системы смазки являются пониженное или повышенное давление масла в системе и ухудшение качества масла вследствие загрязнения.

Понижение давления возможно в результате недостаточного уровня масла, разжижения его, подтекания через неплотности в соединениях, загрязнения сетчатого фильтра маслоприемника, износа деталей масляного насоса, заедания редукционного клапана в открытом положении и вследствие износа подшипников коленчатого и распределительного валов.

Проверять уровень масла следует на прогретом двигателе, но не сразу после его остановки, а через 3-5 минут с тем, чтобы масло успело стечь. Если уровень ниже нормы, необходимо долить масло в поддон картера, предварительно выявив и устранив причину. Внешним осмотром выявляются течи масла из-под крышки привода распределительного вала, крышки клапанного механизма, блока цилиндров, масляного фильтра, а также из пробки заливной горловины, через штуцер датчика давления масла, из-под крышки маслоотделителя системы вентиляции картера и через уплотнитель маслоизмерительного щупа. Уровень масла может падать вследствие износа сальников стержней клапанов, износа и закоксовывания поршневых колец или их поломки, износа поршней и их канавок, износа цилиндров двигателя, износа стержней клапанов и их направляющих втулок, а также закоксовывания прорезей маслосъемных колец или заполнение их масляными отложениями. Эти неисправности приводят к повышенному расходу масла и, соответственно, падению давления в системе.

Повышение давления в системе смазки возможно вследствие применения масла с повышенной вязкостью, заедания редукционного клапана в закрытом положении и засорения маслопроводов.

Так как коленвал совершает вращательное движение, то под действием центробежных сил на стенках его масляных каналов откладываются продукты износа двигателя. Со временем проходное сечение этих каналов уменьшается настолько, что шатунный подшипник начинает испытывать масляное голодание. Усиленному загрязнению каналов способствует применение некачественного или не соответствующего двигателю масла, регулярная эксплуатации мотора в интенсивных режимах и несвоевременная замена масла.

Каналы подвода масла к гидрокомпенсаторам со временем также могут закоксовываться, и тогда гидрокомпенсатор перестает работать. Если его заклинит при открытом клапане, это приведет к выбиванию клапана поршнем. При этом разрушается сам гидрокомпенсатор и возможны повреждения распредвала, поршней, шатунов и появление трещин в головке блока цилиндров. Вероятны масляные проблемы и с гидронатяжителями, обеспечивающими натяжку ремней и цепей привода распредвалов. Их каналы также забиваются, что может стать причиной поломки ГРМ и разрушения головки блока цилиндров. При наличии в ГРМ механизма изменения фаз газораспределения грязь может спровоцировать отказ или нарушение его работы.

При эксплуатации автомобиля возможны случаи, когда может быть неисправен указатель давления масла. Для проверки правильности действия указателя давления вместо датчика ввертывают штуцер контрольного манометра и, сравнивая показания с проверяемым прибором, судят о его работе.


Система смазки двигателя автомобиля

Главная > Реферат >Транспорт

1. Назначение, устройство и работа аппарата

2.Основные неисправности, диагностирование и техническое обслуживание агрегата

3. Порядок разборки и сборки агрегата с описание приспособлений инструмента обеспечивающих рациональные приемы работы

4. Дефектация деталей с описанием способов возможного восстановления годности для дальнейшей эксплуатации

5. Техника безопасности при техническом обслуживании и ремонте автомобиля

1. Назначение, устройство и работа аппарата

Смазочной называется система, обеспечивающая подачу масла к трущимся деталям двигателя.

Смазочная система служит для уменьшения трения и износа деталей двигателя, охлаждения от коррозии трущихся деталей, а также удаления с их поверхностей продуктов износа. При продолжительной работе двигателя масло постепенно загрязняется и разжижается, поэтому его необходимо своевременно заменять.

Для смазывания двигателей, как правило, применяются моторные масла минерального происхождения, получаемые путем переработки нефти после отгонки из нее жидких топлив. Полученные из нефти масла сортируют и очищают. В настоящее время все большее распространение начинают получать масла синтетического происхождения.

Основными наиболее важными свойствами масел, применяемых для двигателей, является удельный вес, вязкость, температура вспышки, температура застывания, коксовое число, анти-окислительная стабильность и содержание примесей.

Удельный вес – отношение веса масла к его объему, определяется ареометром.

Вязкость – наиболее важный параметр, определяющий густоту и текучесть масла, оценивается по времени истечения масла в определенных условиях. Единицей кинематической вязкости является сантистокс ( сСт ) – вязкость дистиллированной воды при 20,2 С.

Кроме сантистокса, в качестве измерителя условной вязкости используются градусы, представляющие собой отношение времени истечения масла ко времени истечения воды при 20.2 С. Чем больше вязкость, тем гуще масло. С увеличением температуры вязкости определяет способность масла смазывать трущиеся поверхности и проникает в отверстия малого сечения. Изменение вязкости в зависимости от температуры характеризует качество масла; чем стабильнее вязкость, тем лучше качество масла. Вязкость определяют с помощью капиллярного визкозиметра.

Температурой вспышки масла является температура воспламенения паров масла, выделяющихся с его поверхности, в смеси с окружающим воздухом под воздействием постоянного источника огня. Этот параметр косвенно характеризует фракционный состав масла и наличие в нем летучих элементов.

Температурой застывания называется такая температура, при которой масло, находящееся в стеклянном цилиндре (пробирке), остается неподвижным в течение 5 мин при наклоне 0,8 рад (45 ). По температуре застывания определяется масло тому или иному времени года.

Коксовое число характеризует склонность масла к нагарообразованию. Этот параметр определяется выпариванием порции масла с его последующим сжиганием до получения твердого остатка кокса, который взвешивается.

Антиокислительная стабильность масла характеризует наличие в нем нестойких элементов, окисляющихся под влиянием кислорода воздуха и высокой температуры. Продукты окисления, взаимодействуя с металлом и водой, образуют нерастворимые вещества в виде липких осадков ( лаковой пленки ). Оценочным параметром антиокислительной стабильности масла служит скорость превращения тонкого слоя масла в лаковую пленку.

Содержание примесей ( механических, вода, минеральные кислоты и щелочи ) в масле недопустимо. Механические примеси ( песок, грязь, металлические частицы ) засоряют маслопроводы и увеличивают износ трущихся поверхностей; их наличие в масле определяется фильтрованием. Вода и минеральные кислоты вызывают образование пены и эмульсии, ухудшающих условия смазывания и приводящих к коррозии металлических деталей. Наличие воды в масле особенно опасно при низких температурах, когда отслоившаяся вода опускается на дно картера и, замёрзнув, может вызвать поломку масляного насоса при пуске двигателя. Наличие примесей устанавливается исследованием проб. Качество масел улучшается небольшими добавками (присадками) неорганических соединений, к которым относятся вязкостные, понижающие температуру застывания, противоокислительные, противокоррозионные, антиосадочные (моющие), противопенные и комплексные.

В зависимости от времени года и климатических условий для смазывания двигателя следует применять масла различной вязкости. Зимой вязкость масла должна быть меньше, так как масло с большой вязкостью при низкой температуре густеет и в холодном двигателе плохо проникает в зазоры трущихся деталей, также затрудняются заливка масла и пуск холодного двигателя. Для зимней эксплуатации на карбюраторных двигателях в основном применяют масло М-4 3 /6, на дизелях – М-8-Г 2.

Летом вязкость масла должна быть больше, так как масло с малой вязкостью при повышенной температуре становится ещё более жидким, легко выдавливается из зазоров и стекает с деталей, не обеспечивая нормального смазывания двигателя. Для летней эксплуатации на двигателях применяют масло М-6 3 /12-Г 1, на дизелях – М-10_Г 2 .

Кроме летних и зимних масел выпускаются масла для всесезонного применения, с ограничением применения зимой до температуры -30 0 С. Для карбюраторных двигателей используют масло М-6 3 /10-В, для дизелей – М-6 3 /10-В.

Структура обозначений моторных масел включает в себя группу букв и цифр. Буква «М» указывает на принадлежность к моторным маслам. Следующие через дефис цифры характеризуют класс вязкости (при обозначении дробными цифрами в числителе указывается класс вязкости масла при -18 0 С, а в знаменателе – класс вязкости при +100 0 С). Прописные буквы после цифр – рекомендуемые области применения масел по ГОСТ 17479.1 – 85, при этом индекс «1» обозначает, что масло предназначено для карбюраторных двигателей, а «2» — для дизелей. В необходимых случаях применяют дополнительные индексы: «з» — масло загущенное.

В автомобильных двигателях наибольшее распространение получила комбинированная смазочная система, при которой основные наиболее нагруженные трущиеся детали двигателя смазываются маслом под давлением, а к остальным деталям масло подается разбрызгиванием и самотеком.

В двигателях автомобилей применяется комбинированная смазочная система различных типов.

Комбинированной называется смазочная система, осуществляющая смазывание двигателя под давлением и разбрызгиванием. Давление создается масленым насосом, а разбрызгивают масло коленчатый вал и другие быстровращающиеся детали двигателя.

Под давлением смазываются наиболее нагруженные трущиеся детали двигателя: коренные и шатунные подшипники коленчатого вала, опорные подшипники распределительного вала, подшипники вала привода масляного насоса и др.

Разбрызгиванием смазываются стенки цилиндров, поршни, поршневые кольца, поршневые пальцы, детали газораспределительного механизма, его цепного или шестеренного приводов и другие детали.

В двигателях со смазочной системой без масляного радиатора охлаждение масла, которое нагревается в процессе работы, происходит в основном в масляном поддоне. При наличии в смазочной системе масляного радиатора охлаждение масла осуществляется и в масляном поддоне, и в масляном радиаторе, который включается в работу при длительном движении автомобилей летом.

В смазочной системе с открытой вентиляцией картера двигателя картерные газы, состоящие из горючей смеси и продуктов сгорания, удаляются в окружающую среду. При закрытой вентиляцией картера двигателя картерные газы принудительно удаляются в цилиндры двигателя на догорание, что предотвращает попадание газов в салон кузова автомобиля и уменьшает выброс ядовитых веществ в окружающую среду.

Основными частями такой смазочной системы являются: поддон картера, масляный насос с редукционным клапаном и маслоприемником, два масленых фильтра ( фильтр центробежной грубой очистки масла и полнопоточный масленый фильтр тонкой очистки), главная масляная магистраль, масляные каналы в головке и блоке цилиндров и в коленчатом вале, масленый радиатор, маслопроводы и каналы, масло измерительный стержень ( щуп ) и масляный радиатор с краном, вентиляция картера двигателя, предохранительным клапаном и соединительными шлангами. Давление масла в смазочной системе контролируется датчиком указателя давления масла и датчиком сигнализатора ( лампы ) аварийного давления и заливная горловина.

Поддон картера является резервуаром для масла. Он закрывает двигатель снизу, и в нем масло охлаждается. Поддон картера — стальной, штампованный. Внутри поддона имеется специальная перегородка, уменьшающая колебания масла при движении автомобиля. Поддон крепится к нижнему торцу блока цилиндров ( к картеру ) через уплотнительную прокладку, изготовленную из пробкорезиновой смеси. Он имеет резьбовое отверстие с пробкой, предназначенное для слива масла.

Масляный насос подает масло под давлением к трущимся частям двигателя применяют односекционные или двухсекционные насосы шестеренного типа с редукционным клапаном, отрегулированным на давление 0,45 МПа и подлежащим регулированию в процессе эксплуатации. Односекционный насос состоит из следующих деталей: корпуса с крышкой; вала, установленного в корпусе; шестерни привода насоса, закрепленной на наружном конце вала; нагнетательных шестерен – ведущей, которая крепится на внутреннем конце вала, и ведомой, свободно вращающейся на оси в корпусе.

К корпусу присоединяется маслоприемник с сетчатым фильтром. Нагнетательные шестерни находятся в нижней камере корпуса и плотно подогнаны к его стенкам; снизу камера закрыта крышкой. Корпус отливают из чугуна или алюминиевого сплава. Нагнетательные шестерни изготовляют из стали. Ведомую шестерню часто делают металлокерамической. Насос приводится в действие от распределительного вала двигателя с помощью шестерен.

При вращении вала насоса нагнетательные шестерни в корпусе вращаются в противоположных направлениях. Масло, поступающее из картера двигателя во впускную полость насоса, попадает во впадины между зубьями и при вращении шестерен переноситься в нагнетательную помощь. При входе зубьев в зацепление масло выдавливается из впадин, скапливается в нагнетательной полости, и в ней создается давление, под действием которого масло поступает к трущимся деталям.

В двухсекционном насосе в общем корпусе установлены две пары нагнетательных шестерен, разделенных одна от другой пластиной и приводимых в движение от общего вала. Каждая секция насоса нагнетает масло к определенным узлам смазочной системы.

Насос может быть закреплен внутри картера двигателя или на нем. В последнем случае насос засасывает масло из поддона через маслоприемник, который состоит из стального штампованного корпуса ( колпака ) и закрепленного в нем сетчатого фильтра с каркасом. Этот фильтр предохраняет шестерни насоса от попадания в пространство между ними крупных механических частиц.

Маслоприемник крепится на определенном расстоянии от нормального уровня масла непосредственно на непосредственно на корпусе насоса или отдельно в картере и сообщается с насосом трубкой. Между корпусом и верхним краем фильтра маслоприемника обычно имеется узкая щель, обеспечивающая поступление масла к насосу при загрязнении сетки фильтра. Масленый насос установлен внутри поддона картера и прикреплен двумя болтами к блоку цилиндров.

Редукционный клапан давление масла в маслопроводах смазочной системы может повыситься при очень большой частоте вращения коленчатого вала или при чрезмерно густом масле, например в холодном двигателе. Редукционный клапан, расположенный в масляном насосе, служит для ограничения давления масла.

Влияние смазки на работу двигателя

  • Главная
  • Блог
  • Ремонт и обслуживание
  • Двигатель
  • Сколько масла в двигателе автомобиля?
  • Новинки мира авто
  • Новости автомобильного рынка
  • Популярное
  • Двигатель
  • Кузов
  • Салон
  • Система охлаждения
  • Трансмиссия
  • Фильтры
  • Шины и диски
  • Электрооборудование

Сколько масла в двигателе автомобиля?

Для бесперебойной работы ДВС важна качественная система смазки, основным элементом которой является моторное масло. Именно о том, сколько и когда его нужно заливать в двигатель, мы и поговорим в этой статье.

Как определить объем масла в двигателе?

Для определения уровня смазочного материала в ДВС существует специальный щуп. Чтобы с его помощью узнать уровень масла для начала нужно загнать авто на ровную площадку и дождаться пока остынет мотор. После чего извлечь щуп, убрать с него остатки смазочных материалов и вернуть на место. Достать щуп повторно. Уровень моторной жидкости должен быть между минимальной и максимальной отметкой.

Если смазки в ДВС меньше, чем должно быть, но срок ее замены еще не пришел, можно просто долить пару сотен грамм точно такого же масла, как вы заливали до этого в двигатель.

Отметки минимального и максимального уровня масла на щупе

Сколько масла нужно для замены в двигателе?

Слишком высокий или низкий уровень моторного масла является причиной многих неисправностей. Именно поэтому важно точно знать, сколько конкретно литров заливать в двигатель. Определить нужный объем смазочных материалов можно одним из нескольких способов:

  • Наиболее простой способ — это изучить инструкцию по эксплуатации, которая прилагается к вашему автомобилю. Если у вас нет данного документа, найти его можно на официальном портале производителя. Искомые цифры будут указаны в разделе «Система смазки». При этом для заливки нового смазочного материала с заменой фильтра и без него значения будут разные. Также в этом разделе будет указан тип рекомендуемого масла и его вязкость.
  • Если найти документ для вашего авто не удалось, нужную характеристику можно узнать на специализированных сайтах по подбору масла. Здесь в специальных графах нужно указать марку и модель авто, год выпуска и тип двигателя. Онлайн-сервис предложит вам не только разнообразие смазок от разных производителей, но и наиболее удобную фасовку (при которой у вас останется небольшой запас материала).

Важно учитывать, что объем смазки, указанный в технической литературе — полный. То есть, он является максимальным для абсолютно пустого ДВС. Без разборки ДВС в нем может оставаться до 500 мл «отработки», поэтому заливать нужно немного меньше масла, чем указано в документации.

Контролировать уровень смазки при заливке можно при помощи щупа или по показаниям электронных датчиков, установленных в агрегате.

Расположение контрольного щупа и отверстия для залива масла в двигателе Honda CR-V 2013

Как часто рекомендуется менять масло?

На большинстве автомобилей менять смазку нужно каждые 7 — 15 тыс. км пробега (в зависимости от марки авто). Но этот период может варьироваться в зависимости от нескольких факторов:

  • манеры вождения;
  • условий эксплуатации;
  • качества и типа топлива.

Не стоит забывать, что наиболее пагубно на характеристики смазочных материалов влияют сверхвысокие температуры, поэтому старайтесь избегать любых перегревов.

Проверять уровень масла желательно каждые 2-3 тыс. км и доливать его по мере необходимости.

Регламентированный интервал замены от автопроизводителей

Марка автомобиляИнтервал замены масла, км
Дизельный двигательБензиновый двигатель
BMW10 00012 000
Volvo7 500-10 00015 000
Mazda5 00010 000
Mercedes15 00015 000
Nissan10 00015 000
Opel7 50015 000
Peugeot, Citroen10 00015 000
Renault7 50010 000
Land Rover10 000-20 00010 000-20 000
Toyota10 00010 000
Fiat7 500-15 00015 000
Volkswagen, Audi, Seat, Skoda15 00015 000
Kia15 00015 000
LADA14 500-15 50014 500-15 500
Ford10 000-15 00010 000-15 000

Отдельно хочется сказать про автомобилистов, которые вынуждены ежедневно «толкаться» в пробках. Пробег у таких машин часто маленький, а вот суммарное рабочее время может быть достаточно большим. В этом случае период замены смазки следует считать несколько иначе.

К примеру, 15 000 км пробега при скорости 50 км/ч эквиваленты 300 ч. Примем эти 300 часов за интервал, через который следует менять масло. Если вы ежедневно тратите 4 часа на дорогу с работы и на работу на авто, при этом проезжаете от силы 70-100 км, для надежной работы мотора менять смазку предстоит каждые 2,5 месяца.

Почему масло нужно менять?

В двигателе внутреннего сгорания смазка выполняет сразу несколько функций:

  • снижает трение между подвижными и неподвижными элементами агрегата, а также создает тонкую пленку между ними, что препятствует их преждевременному износу;
  • отводит тепло, которое вырабатывается в процессе работы мотора (в некоторых моделях авто предусмотрены специальные маслоохладители);
  • за счет специальных присадок защищает детали силового агрегата от негативного воздействия температурных перепадов, а также предотвращает коррозию;
  • при замене масла позволяет удалить из двигателя (не разбирая его) металлическую пыль и другие продукты износа, трущихся друг о друга элементов.

Когда масло «стареет» (в нем накапливаются продукты сгорания, вырабатываются присадки и т.п.), оно начинает хуже справляться со своими «обязанностями». Это приводит к увеличению трения между элементами узла и ухудшению теплоотводящих качеств. Кроме того, накопившиеся загрязнения могут забить маслоканалы.

Менять масло нужно вместе с масляным фильтром, иначе грязь из фильтрующего элемента попадет в новую моторную жидкость.

Масляный нагар при несвоевременной замене смазки в моторе

Низкий и высокий уровень масла в двигателе

Недостаточное количество смазочного материала в силовом агрегате приводит к масляному «голоданию»:

  • увеличивается нагрев двигателя;
  • начинается «сухое» трение между подвижными и неподвижными элементами;
  • увеличивается износ деталей и узлов.

После этого в определенный момент ДВС заклинит или разрушится один из его элементов.

При резком снижении объема моторной жидкости, на приборной панели включится соответствующая лампочка. При незначительной утечке (150-250 мл) индикатор обычно не срабатывает.

Признаки низкого уровня смазки в двигателе внутреннего сгорания:

  • высокий уровень шума при работе мотора;
  • появление посторонних звуков;
  • увеличение рабочей температуры ДВС;
  • увеличение периодов срабатывания системы охлаждения.

Не менее неприятен для мотора и перелив смазочных материалов. В таких условиях двигателю становится труднее работать, повышаются нагрузки на маслонасос, коленвалу становится сложнее вращаться, ухудшается динамика разгона, работа педали газа становится менее четкой, увеличивается расход топлива, а сальники и прокладки могут давать течь.

Если нет возможности слить жидкость через сливную пробку на поддоне картера, можно попробовать извлечь лишнюю смазку через заливную горловину с помощью специального (или медицинского) шприца.

В завершении стоит отметить, что любой ДВС требует столько смазки, чтобы ее уровень (в холодном состоянии авто, стоящего на ровной поверхности) строго отображался между отметками “min” и “max” на щупе. Если объем моторной жидкости опускается ниже «золотой середины», рекомендуем его долить. Незначительное повышение среднего уровня допустимо, но заливать масло до максимальной отметки все же не желательно.

Читать еще:  Ваз 2112 какой двигатель какая коробка
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector