4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Влияние качества электроэнергии на работу асинхронного двигателя

Научная электронная библиотека

Кузнецов Н. М., Бебихов Ю. В., Самсонов А. В., Егоров А. Н., Семенов А. С.,

1.1. Показатели качества электроэнергии и влияние отклонений напряжения и частоты на работу электрооборудования

Электрическая энергия как товар используется во всех сферах жизнедеятельности человека, обладает совокупностью специфических свойств и непосредственно участвует при создании других видов продукции, влияя на их качество.

Понятие качество электроэнергии (КЭ) отличается от понятия качества других видов продукции. Каждый электроприемник (ЭП) предназначен для работы при определенных параметрах электрической энергии: номинальных частоте, напряжении, токе и т.п., поэтому для нормальной его работы должно быть обеспечено требуемое КЭ. Таким образом, качество электрической энергии определяется совокупностью ее характеристик, при которых ЭП могут нормально работать и выполнять заложенные в них функции. Так в табл. 1.1 приведены свойства электрической энергии, показатели качества и наиболее вероятные виновники ухудшения.

Прежде всего, необходимо определить, с чем именно связана эта проблема. Возможно, что она уже давно существует или возникла после установки нового оборудования или после внесения изменений в саму систему. Поэтому измерения имеют огромное значение в оценке качества электроэнергии. Они являются основным способом выявления возникающих проблем или изменений самой системы. При проведении измерений, с другой стороны, необходимо регистрировать изменения качества электроэнергии, таким образом, проблемы связаны с возможными причинами.

К проблемам качества электроэнергии относится множество различных явлений. Каждое из этих явлений может иметь самые разные причины и разные решения, которые могут способствовать улучшению качества электроэнергии и характеристик оборудования. Тем не менее, полезно рассмотреть основные этапы изучения многих вопросов.

При оценке электромагнитной обстановки и способов решения проблем связанных с электромагнитной совместимостью можно воспользоваться методом виртуального моделирования, что позволит довольно быстро определить рациональные варианты решения проблем.

Свойства электрической энергии, показатели и наиболее вероятные виновники ухудшения КЭ

Свойства электрической энергии

Наиболее вероятные виновники
ухудшения

Установившееся отклонение напряжения dUу

Размах изменения напряжения Доза фликера Рt

Потребитель с переменной нагрузкой

Коэффициент искажения синусоидальности кривой напряжения Кu

Коэффициент n-й гармонической составляющей напряжения Кu(n)

Потребитель с нелинейной нагрузкой

Несимметрия трехфазной системы напряжений

Коэффициент несимметрии напряжений по обратной последовательности К2u

Коэффициент несимметрии напряжений по нулевой последовательности К0u

Потребитель с несимметричной нагрузкой

Отклонение частоты ?f

Длительность провала напряжения ?fп

Импульсное напряжение Uимп

Временное пе-
ренапряжение

Коэффициент временного перенапряжения КперU

Отклонение напряжения – отличие фактического напряжения в установившемся режиме работы системы электроснабжения от его номинального значения.

Отклонение напряжения в той или иной точке сети происходит под воздействием медленного изменения нагрузки в соответствии с её графиком.

Вращающий момент асинхронного двигателя пропорционален квадрату напряжения на его выводах. При снижении напряжения уменьшается вращающий момент и частота вращения ротора двигателя, так как увеличивается его скольжение. Для двигателей, работающих с полной нагрузкой, понижение напряжения приводит к уменьшению частоты вращения. Если производительность механизмов зависит от частоты вращения двигателя, то на выводах таких двигателей рекомендуется поддерживать напряжение не ниже номинального. При значительном снижении напряжения на выводах двигателей, работающих с полной нагрузкой, момент сопротивления механизма может превысить вращающий момент, что приведет к «опрокидыванию» двигателя, т.е. к его остановке. Снижение напряжения ухудшает условия пуска двигателя, так как при этом уменьшается его пусковой момент. В случае снижения напряжения на зажимах двигателя реактивная мощность намагничивания уменьшается (на 2–3 % при снижении напряжения на 1 %), при той же потребляемой мощности увеличивается ток двигателя (можно считать, что при U = –10 %, ток двигателя возрастет на 10 % от номинального значения), что вызывает перегрев изоляции. Если двигатель длительно работает при пониженном напряжении, то из-за ускоренного износа изоляции срок службы двигателя уменьшается. Снижение напряжения приводит также к заметному росту реактивной мощности, теряемой в реактивных сопротивлениях рассеяния линий, трансформаторов и асинхронных двигателей (АД).

Повышение напряжения на выводах двигателя приводит к увеличению потребляемой им реактивной мощности. При этом удельное потребление реактивной мощности растет с уменьшением коэффициента загрузки двигателя. В среднем на каждый процент повышения напряжения потребляемая реактивная мощность увеличивается на 3 % и более, что, в свою очередь, приводит к увеличению потерь активной мощности в элементах электрической сети.

Влияние изменения напряжения на синхронные двигатели (СД) во многом аналогично описанному выше для АД. Основные отличия состоят в том, что частота вращения не зависит от напряжения. Ток возбуждения для машинного возбудителя не зависит от напряжения сети, а при возбуждении от выпрямительной установки – пропорционален напряжению.

С изменением напряжения сети изменяется реактивная мощность СД, что имеет важное значение, если СД используется для компенсации реактивной мощности в системе электроснабжения (СЭ). Характер изменения реактивной мощности, зависящей от режима тепловой нагрузки СД, при отклонении напряжения сети определяется рядом конструктивных параметров и показателей режима работы СД.

Машины постоянного тока. Изменение амплитудных значений напряжения оказывает заметное влияние на работу электрических машин постоянного тока. При этом существенное значение имеют система возбуждения машины и степень насыщения магнитных цепей. Частота вращения для двигателей постоянного тока с независимым возбуждением меняется прямо пропорционально изменению напряжения сети. Напряжение между пластинами коллектора, а следовательно, и его износ также зависит от напряжения сети.

Лампы накаливания характеризуются номинальными параметрами: потребляемой мощностью, световым потоком световой отдачей и средним номинальным сроком службы. Эти показатели в значительной мере зависят от напряжения на выводах ламп накаливания. При снижении напряжения наиболее заметно падает световой поток. При повышении напряжения сверх номинального увеличивается световой поток, мощность лампы и световая отдача, но резко снижается срок службы ламп и в результате они быстро перегорают. При этом имеет место и перерасход электроэнергии.

Люминесцентные лампы менее чувствительны к отклонениям напряжения. При повышении напряжения потребляемая мощность и световой поток увеличиваются, а при снижении – уменьшаются, но не в такой степени как у ламп накаливания. При пониженном напряжении условия зажигания люминесцентных ламп ухудшаются, поэтому срок их службы, определяемый распылением оксидного покрытия электродов, сокращается как при отрицательных, так и при положительных отклонениях напряжения.

При отклонениях напряжения на ±10 % срок службы люминесцентных ламп в среднем снижается на 20–25 %. Существенным недостатком люминесцентных ламп является потребление ими реактивной мощности, которая растет с увеличением подводимого к ним напряжения.

Читать еще:  Что такое двигатель шпинделя в dvd плеерах

Отклонения напряжения отрицательно влияют на качество работы и срок службы бытовой электронной техники (радиоприемники, телевизоры, телефонно-телеграфная связь, компьютерная техника).

Вентильные преобразователи обычно имеют систему автоматического регулирования постоянного тока путем фазового управления. При повышении напряжения в сети угол регулирования автоматически увеличивается, а при понижении напряжения уменьшается. Повышение напряжения на 1 % приводит к увеличению потребления реактивной мощности преобразователем примерно на 1–1,4 %, что приводит к ухудшению коэффициента мощности. В то же время другие показатели вентильных преобразователей с повышением напряжения улучшаются, и поэтому выгодно повышать напряжение на их выводах в пределах допустимых значений.

Отклонения напряжения отрицательно влияют на работу электросварочных машин: например, для машин точечной сварки при отклонениях на ±15 % получается 100 % брак продукции.

Чрезмерно высокие отклонения напряжения могут представлять опасность с точки зрения электрического пробоя главной изоляции аппаратов напряжением выше 1 кВ. При этом, чем выше класс номинального напряжения аппарата, тем больше опасность потенциального пробоя изоляции. Чрезмерное повышение напряжения в сети приводит к росту токов нагрузок и мощности короткого замыкания (КЗ), что вызывает ускоренный износ коммутационных аппаратов и может сказаться на их коммутационной способности. Для аппаратов с электрическими схемами включения реальную опасность представляет перегрев и преждевременный выход из строя элементов схемы управления, находящихся во включенном состоянии достаточно длительное время. Понижение напряжения ниже номинального может сказаться только на качестве выполняемых коммутационных операций.

Таким образом, колебания напряжения приводят к значительному ущербу, поэтому, ГОСТ 13109-97 устанавливает нормально и предельно допустимые значения установившегося отклонения напряжения на зажимах электроприёмников в пределах соответственно ?Uyнор = ± 5 % и ?Uyпред = ±10 % номинального напряжения сети.

Обеспечить эти требования можно двумя способами: снижением потерь напряжения и регулированием напряжения.

Снижение потерь напряжения достигается:

– оптимальным выбором сечения проводников линий электропередач по условиям потерь напряжения;

– применением продольной емкостной компенсации реактивного сопротивления линии;

– компенсацией реактивной мощности для снижения ее передачи по электросетям, с помощью конденсаторных установок и синхронных электродвигателей, работающих в режиме перевозбуждения.

– в центре питания регулирование напряжения осуществляется с помощью трансформаторов, оснащённых устройством автоматического регулирования коэффициента трансформации в зависимости от величины нагрузки;

– напряжение может регулироваться на промежуточных трансформаторных подстанциях с помощью трансформаторов, оснащённых устройством переключения отпаек на обмотках с различными коэффициентами трансформации.

Под отклонением частоты тока понимают изменение опорной частоты электрической системы от его определенной номинальной величины.

Частота электрической системы прямо зависит от частоты вращения генераторов, питающих данную систему. И из-за колебаний динамического баланса между нагрузками и выработкой энергии происходит слабые отклонения частоты. Величина и продолжительность сдвига частоты зависит от характеристик нагрузки и от быстродействия системы контроля генераторов к изменениям нагрузки.

Изменения частоты, которые превышают лимиты, принятые для нормального режима работы энергосистемы, могут быть вызваны ошибками в системе передачи энергии: разъединение больших нагрузок или выключение мощного источника выработки энергии.

В современных взаимосвязанных энергосистемах значительные изменения частоты случаются редко. Существенные изменения частоты более свойственны нагрузкам, которые получают энергию от одного изолированного генератора. В таких случаях внутри маленького круга потребителей решение управляющего резко сократить нагрузки может не совпасть с возможностями оборудования, чувствительного к изменениям частоты.

Колебания частоты характеризуются разностью между наибольшим и наименьшим значениями основной частоты за определенный промежуток времени. Размах колебаний частоты не должен превышать ее указанных допустимых отклонений. Причина глубоких длительных снижений частоты – дефицитность баланса мощности или энергоресурсов в энергосистеме.

Жесткие требования стандарта к отклонениям частоты питающего напряжения обусловлены значительным влиянием частоты на режимы работы электрооборудования и ход технологических процессов производства.

Анализ работы предприятий с непрерывным циклом производства показал, что большинство основных технологических линий оборудовано механизмами с постоянным и вентиляторным моментами сопротивлений, а их приводами служат асинхронные двигатели. Частота вращения роторов двигателей пропорциональна изменению частоты сети, а производительность технологических линий зависит от частоты вращения двигателя.

Наиболее чувствительны к понижению частоты двигатели собственных нужд электростанций. Снижение частоты приводит к уменьшению их производительности, что сопровождается снижением располагаемой мощности генераторов и дальнейшим дефицитом активной мощности и снижением частоты (имеет место лавина частоты).

Такие ЭП, как лампы накаливания, печи сопротивления, дуговые электрические печи на изменение частоты практически не реагируют.

Кроме этого, пониженная частота в электрической сети влияет на срок службы оборудования, содержащего элементы со сталью (электродвигатели, трансформаторы, реакторы со стальным магнитопроводом), за счет увеличения тока намагничивания в таких аппаратах и дополнительного нагрева стальных сердечников.

Влияние качества электроэнергии на работу электроприемников и электрических аппаратов

Качество электроэнергии характеризуется определенными показателями. Основными являются частота переменного тока (f) и напряжение (U). Качество электроэнергии влияет на работу электроприемников и на работу электрических аппаратов, присоединенных к электрическим сетям. Все электрические приемники и аппараты характеризуются определенными номинальными параметрами (fHOM, UHOM, IHOM и т.д.). Изменение частоты и напряжения вызывают изменение технических и экономических показателей работы электрических приемников и аппаратов.

Различают электромагнитное и технологическое влияние отклонения частоты на работу электроприемников. Электромагнитная составляющая обусловливается увеличением потерь активной мощности и ростом потребления активной и реактивной мощностей. Можно считать, что снижение частоты на 1% увеличивает потери в сетях на 2%. Технологическая составляющая вызвана в основном недовыпуском промышленными предприятиями продукции. Согласно экспертным оценкам, значение технологического ущерба на порядок выше электромагнитного.

Технологическая составляющая связана с существенным влиянием (f) частоты на число оборотов электродвигателей, а, следовательно, и на производительность механизмов. Большинство технологических линий оборудовано механизмами, где в качестве приводов служат асинхронные двигатели. Частота вращения этих двигателей пропорциональна изменению частоты сети, а производительность технологических линий зависит от частоты вращения двигателя. При значительном повышении частоты в энергосистеме, что может быть, например, в случае уменьшения (сброса) нагрузки, возможно повреждение оборудования.

Кроме того, пониженная частота в электрической сети влияет на срок службы оборудования, содержащего элементы со сталью (электродвигатели, трансформаторы), за счет увеличения тока намагничивания в таких аппаратах и дополнительного нагрева стальных элементов.

При проектировании в расчетах электросетей влияние изменения (f)частоты не рассматривается. Предполагается, что электрическая система обеспечивает поддержание стандартной частоты f=50 Гц.

Изменение U оказывает неблагоприятное влияние на работу осветительных ламп и асинхронных двигателей, которые составляют значительную часть всех электроприемников в энергосистеме. Нежелательно как повышение U, так и его понижение на зажимах электроприемников. Снижение U вызывает резкое уменьшение () светового потока ламп накаливания и их к.п.д. При снижении U на 5% световой поток уменьшается на 18%, а снижение U на 10% приводит к уменьшению потока уже более чем на 30%. Это приводит к значительному уменьшению освещенности рабочих мест на производстве и к снижению производительности труда и ухудшению его качества, может увеличиться число несчастных случаев.

Читать еще:  Большой расход после капиталки двигателя

При увеличении U световой поток заметно повышается, но значительно уменьшается срок службы ламп. Так при повышении U на 10% световой поток ламп увеличивается приблизительно на 30%, а срок службы ламп сокращается почти в 3 раза.

Снижение U в сети энергосистемы может явиться причиной массового останова асинхронных двигателей и может привести к возникновению тяжелой системной аварии. При снижении крутящего момента асинхронных двигателей, пропорционального квадрату напряжения на зажимах двигателей, может произойти остановка или невозможность запуска двигателей. При пониженном напряжении у двигателей ухудшается к.п.д. и происходит процесс более интенсивного старения изоляции из-за увеличения тока, проходящего по обмоткам. Одновременно увеличивается скольжение и уменьшается число оборотов двигателя. При этом может снизиться производительность соединенных с двигателем механизмов.

Увеличение U на зажимах асинхронных двигателей неблагоприятно сказывается на условиях их работы. Существенно увеличивается их ток, что вызывает перегрузку обмотки статора. Может заметно возрасти потребление реактивной мощности двигателями.

Изменение напряжений на зажимах электроприемников технологических установок промышленных предприятий также является неблагоприятным фактором, который приводит к снижению технико-экономических показателей работы этих установок, т.е. при снижении U уменьшается производительность установок, удорожается выпускаемая продукция, увеличивается расход электроэнергии на единицу продукции.

Анализируя влияние изменения U у потребителей в качестве потребителей должны рассматриваться и трансформаторы (автотрансформаторы), устанавливаемые на подстанции. Снижение U у трансформаторов при неизменной мощности приводит к увеличению тока в обмотках. Во многих случаях это не представляет опасности для трансформаторов, т.к. их SНОМ часто превышает нагрузку, и конструкция трансформаторов позволяет допускать некоторую перегрузку. Однако при оценке возможности перегрузки необходимо правильно определять ожидаемый максимальный ток, на величину которого может оказать влияние снижение напряжения на зажимах трансформатора.

Более опасным для трансформатора может оказаться повышение подводимого к нему напряжения. Связано это с существенным увеличением намагничивающего тока, которое у трансформаторов более заметно вследствие резкого увеличения реактивного сопротивления намагничивания. Это характерно при превышении номинального напряжения регулировочного ответвления обмотки. Значительный рост тока намагничивания (I) при увеличении напряжения на ответвлении объясняется работой трансформаторов в области нелинейной характеристики намагничивания, а это приводит к искажению кривой тока намагничивания (I) и появлению высших гармоник, которые обуславливают увеличение потерь активной мощности (Р) в магнитопроводе и его дополнительный нагрев.

Существенное изменение характеристик нагрузки при отклонениях напряжения от номинального на ее зажимах приводит к необходимости ограничивать эти отклонения предельно допустимыми значениями. Опыт показывает, что допустимые отклонения от номинального напряжения должны быть относительно малыми. Поэтому электросеть должна быть построена таким образом, чтобы напряжения в ее отдельных пунктах (узлах) существенно не отличались друг от друга и от напряжения источника питания. При этом часто приходится применять специальные устройства для регулирования напряжения.

Влияние качества электроэнергии на работу электроприемников

Качество электрической энергии характеризуется нормированными параметрами, главными из которых являются напряжение и частота. Качество электроэнергии оказывает большое влияние на эффективность работы электроприемников, что выражается в изменении экономических и технических показателей их работы.

Разновидности влияния на электроприемники

В зависимости от характера воздействия параметров электрической энергии на электроприемники, различают:

  • технологическое влияние;
  • электромагнитное влияние.

Технологическая составляющая связана с недовыпуском продукции предприятиями, что несет для них прямые убытки. Электромагнитная составляющая характеризуется ростом потребления реактивной мощности и значительными потерями активной мощности. По расчетам экспертов, убытки от технологического воздействия на несколько порядков выше от электромагнитной составляющей потерь.

Изменение частоты

При детальном рассмотрении влияния качества электроэнергии на технологические потери можно заметить, что основной фактор снижения производительности – снижение частоты в электрической сети. Это провоцирует снижение скорости вращения электрических двигателей и соответственно снижает производительность технологического оборудования. При этом увеличение частоты в сети также провоцирует аварийные ситуации. Это связано с выходом из строя технологического оборудования вследствие повышения скорости вращения электропривода.

Изменение напряжения

Колебание величины напряжения питающей электрической сети негативно влияет на работу осветительных устройств и асинхронных электродвигателей. При понижении напряжения снижается яркость и мощность светового потока от ламп накаливания, а дроссельные светильники могут вообще не работать. Это значительно снижает производительность и может стать причиной травматизма на рабочем месте. Пониженное напряжение также служит причиной остановки электрических двигателей и возникновению системной аварии на предприятии.

В случае увеличения напряжения, яркость освещения увеличится, но и срок службы лампы значительно сократится. Установлено, что при увеличении напряжения на 10% сверх нормативного, рабочий ресурс лампы сокращается в три раза. При росте напряжения на зажимах электропривода, существенно возрастает потребление реактивной мощности и соответственно нагрев. Это может стать причиной перегрузки электрического мотора и выхода его из строя. Кроме этого существует высокая вероятность пробоя изоляции на корпус и поражение людей электрическим током.

Как предупредить аварию?

Для предупреждения возникновения аварий при низком качестве поставляемой электрической энергии, следует использовать установку силовых трансформаторов и автотрансформаторов с устройством регулирования напряжения. Для предупреждения негативного влияния изменения частоты питающей сети используют частотную разгрузку на распределительных подстанциях. Для предупреждения травматизма, вследствие поставок электроэнергии низкого качества, следует регулярно проводить измерение сопротивления изоляции и замер контура заземления. Это поможет выявить слабые места в изоляции и отсутствие заземления.

Влияние качества электроэнергии на работу электродвигателей

7 марта 2013 в 10:00

Одним из главных условий обеспечения нормальной работы электродвигателей является питание их электроэнергией, параметры которой соответствуют определенным требованиям к ее качеству.

Основные показатели качества электроэнергии (ПКЭ) связаны с такими параметрами, как отклонения частоты и напряжения, колебание напряжения, несинусоидальность и несимметрия напряжения. Во избежание длительного нарушения нормальной работы электродвигателей основные ПКЭ не должны выходить за пределы своих нормальных значений, а в послеаварийных режимах — за пределы определенных максимальных значений. Рассмотрим как показатели качества электроэнергии влияют на работу электродвигателей.

На надежность и долговечность работы электродвигателей в значительной степени влияет их тепловой режим. Так, для асинхронных и синхронных двигателей влияние отклонения напряжения на их тепловой режим зависит и от загрузки двигателей. Работа электродвигателей при пониженном напряжении приводит к перегреву изоляции и может явиться причиной выхода их из строя. Дело в том, что при снижении напряжения в пределах нормы (+ 10 %) токи ротора и статора увеличиваются в среднем соответственно на 14 и 10 %.

Читать еще:  Характеристика элементов системы электронного управления двигателем

При значительной загрузке асинхронных двигателей отклонения напряжения приводят к существенному уменьшению его срока службы. При увеличении тока двигателя происходит более интенсивное старение изоляции. При отрицательных отклонениях напряжения на зажимах двигателя в 10 % и номинальной загрузке асинхронного двигателя срок его службы сокращается вдвое.

При отклонениях напряжения сети изменяется реактивная мощность синхронных двигателей, что имеет важное значение при использовании синхронных двигателей для компенсации реактивной мощности. Это относится в полной мере и к конденсаторным установкам. При недостаточной реактивной мощности, генерируемой в сеть синхронными двигателями, приходится дополнительно использовать батареи конденсаторов, что снижает надежность системы электроснабжения за счет увеличения числа элементов системы.

Колебания напряжения также, как и отклонения напряжения, оказывают отрицательное влияние на работу электродвигателей. Весьма чувствителен к отклонениям напряжения питающей сети вентильный электропривод, так как изменение выпрямленного напряжения приводит к изменению частоты вращения двигателей.

На предприятиях, имеющих собственные ТЭЦ, колебания амплитуды и фазы напряжения, возникающие при колебаниях напряжения, приводят к колебаниям электромагнитного момента, активной и реактивной мощностей генераторов, что отрицательно сказывается на устойчивости работы станции в целом, а, следовательно, на ее функциональной надежности.

Несинусоидальные режимы оказывают ощутимое влияние на надежность работы электродвигателей. Это объясняется тем, что при наличии высших гармоник в кривой напряжения более интенсивно протекает процесс старения изоляции, чем в случае работы электрооборудования при синусоидальном напряжении. Так, например, при коэффициенте несинусоидальности 5 %, через два года эксплуатации тангенс угла диэлектрических потерь конденсаторов увеличивается в 2 раза.

Несимметрия напряжения неблагоприятно сказывается на работе и сроке службы асинхронных двигателей. Так, несимметрия напряжения в 1 % вызывает значительную несимметрию токов в обмотках (до 9 %). Токи обратной последовательности накладываются на токи прямой последовательности и вызывают дополнительный нагрев статора и ротора, что приводит к ускоренному старению изоляции и уменьшению располагаемой мощности двигателя. Известно, что при несимметрии напряжения в 4 % срок службы асинхронного двигателя, работающего с номинальной нагрузкой, сокращается примерно в 2 раза; при несимметрии напряжения в 5 % располагаемая мощность асинхронного двигателя уменьшается на 5 — 10 %.

Магнитное поле токов обратной последовательности статора синхронных машин индуцирует в массивных металлических частях ротора значительные вихревые токи, вызывающие повышенный нагрев ротора и вибрацию вращающейся части машины. При значительной несимметрии вибрация может оказаться опасной для конструкции машины.

Нагрев обмотки возбуждения синхронного двигателя за счет дополнительных потерь от несимметрии напряжения приводит к необходимости снижать ток возбуждения, при этом уменьшается реактивная мощность, выдаваемая синхронным двигателем в сеть.

Влияние качества электроэнергии на работу электроприемников и электрических аппаратов

Влияние качества электроэнергии на работу электроприемников и электрических аппаратов.

Все электроприемники (ЭП) проектируются и изготовляются в расчете на определенные номинальные электрические параметры частоту, напряжение, ток и т. д. При этом предпола­гается. что подведенное напряжение переменного тока синусо­идально и для трехфазных систем симметрично. В основе проектирования ЭП лежит требование обеспечения их наиболее экономич­ной работы именно при номинальных параметрах.

Качество электроэнергии (КЭ), подводимой к потребителям, будем характеризовать степенью близости напряжения и тока к перечисленным выше номинальным параметрам.

Качество электроэнергии на выходе с электростанций достаточ­но высокое, но в процессе ее передачи по сети и потребления оно ухудшается. Во-первых, вследствие потерь напряжения в сети зна­чение его у потребители уменьшается; во-вторых, в результате влияния ряда специфических электроприемников и преобразовате­лей электроэнергии возникают несимметрия и несинусоидальностъ напряжения. Это вызывает ухудшение технико-экономичских показателей работы других ЭП.

Например, отрицательно сказывается на работе асинхронных двигателей и осветительных ламп, составляющих значи­тельную часть всех электроприемников, как понижение, так и по­вышение напряжения. При снижении напряжения, подводимого к асиихронным двигателям, резко уменьшается их вращающий мо­мент и возрастают потери электроэнергии вследствие роста рабоче­го тока. Известно, что асинхронные двигатели обладают эффектом са­морегулирования по мощности, т. е. их активная мощность остается практически неизменной ири изменении на­пряжения, это значит, что относительно на столько же увеличи­вается (уменьшается) ток, на сколько уменьшается (увеличивает­ся) напряжение.

Рост напряжения ведет к дополнительному нагреву стали асин­хронного двигателя и резкому возрастанию потребления реактивной мощности в соответствии со статической характеристикой.

Изменение напряжения на зажимах ЭП различных технологи­ческих установок промышленных предприятий (электропечи, электролиз) также приводит к неблагоприятным последствиям. Напри­мер, снижение напряжения на 5-7% от номинального иногда уменьшает производительность печей на 10—12%.

Несимметрия и несинусоидальность напряжения влияют на ра­боту ЭП следующим образом.

Рабочий процесс трехфазных асинхронных и синхронных дви­гателей определяется вращающимся магнитным потоком, создаваемым трехфазными токами обмоток статора. Известно, что при несимметрии этих токов магнитное поле можно рассматривать как сумму двух вращающихся полей, одно из которых вращается в направлении, обратном направлению вращения двигателя, тормозя его. Это ведет также к дополнительному нагреву обмоток и стали машины, возникновению в ряде случаев вибрации.

При несимметрии напряжений температура обмоток трансфор­маторов может превысить допустимое значение; возможно также снижение мощности, передаваемой потребителю. Несинусоидальность кривой напряжения вызывает дополнительные отклонения: перегрузку силовых конденсаторов токами высших гармоник, снижение экономичности работы электросетей

Следует остановиться еще на одном явлении, также ухудшаю­щем качество электроэнергии — на колебании напряжения. При включении короткозамкнутых асинхронных двигателей или других ЭП значительной мощности и резкопеременной нагрузке (прокат­ные станы на металлургических заводах) в сети возникают быстро протекающие, кратковременные изменения напряжении вследствие соответствующих им потерь в сети. Эти изменения обычно называ­ют колебаниями напряжения. Последние отрицательно влияют на зрение при электрическом освещении. Раздражение глаз при этом зависит как от амплитуды колебаний, так и от частоты их возник­новения.

Несимметрия напряжений вызывается обычно мощными одно­фазными нагрузками, например тяговыми, несинусоидальность — нелинейными нагрузками, главным образом установками с вен­тильными преобразователями большой мощности для питания электропривода постоянного тока, в частности тягового.

Рост электропотребления промышленностью и электрифициро­ванным транспортом обусловливает увеличение доли злектроприемников с толчковыми, несимметричными нагрузками, нагрузками с нелинейными характеристиками. Поэтому повышение качества электроэнергии имеет очень большое значение. Влияние качества электроэнергии на работу электроприемников — очень важный показатель который необходимо учитывать при проектировании электроэнергетических обьектов.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector