Винтовой забойный двигатель конструкция технические характеристики
Реферат на тему: » Бурение скважин с винтовыми забойными двигателями»
Российский государственный университет имени И.М. Губкина
Реферат на тему:
“ Бурение скважин с винтовыми забойными двигателями” .
Выполнил студент: Пудовиков А.В
Группа АС-04-5, факультет АИВТ
Общие сведения. 2
Конструкция винтового (объемного) забойного двигателя (ВЗД). 2
Области применения и эффективности винтовых забойных двигателей. 5
Особенности бурения винтовыми забойными двигателями. 6
Автоматизированные системы управления режимом бурения скважин забойными двигателями. 7
Общие сведения.
Назначение винтового (объемного) забойного двигателя — бурение скважин в различных геологических условиях. В 1962 г. американской фирмой «Смит Тул» был создан винтовой двигатель «Дайна-Дрилл», представляющий собой обращенный одновинтовой насос, изобретенный французским инженером P.Муано в 1930 г. Характеристики двигателя «Дайна-Дрилл» незначительно отличаются от характеристик современных турбобуров. Его эксплуатационные данные оказались более подходящими для наклонного бурения, что и определило его широкое распространение за рубежом в этой области бурения.
На выбор режимов бурения в течение последних лет решающее значение оказали успехи в развитии конструкций шарошечных долот с маслонаполненными опорами и вооружением из твердосплавных зубьев. Эти долота установили жесткие ограничения в частоте вращения долота (до 200 об/мин). Для работы на таких режимах в 1966 г. (М. Т. Гусманом, С. С. Никомаровым, Ю. В. Захаровым, В.Н.Меньшениным и Н.Д.Деркачем) был предложен новый тип винтового двигателя, в котором многозаходные винтовые рабочие органы выполняют функцию планетарного редуктора. Это позволило получить тихоходную (100. 200 об/мин) машину с вы соким вращающим моментом.
В последующие годы во ВНИИБТ и его Пермском филиале Д.Ф.Бадденко, Ю.В.Вадецким, М.Т.Гусманом, Ю.В.Захаровым, А.М.Кочневым, С. С. Никомаровым и другими были созданы основы теории рабочего процесса, конструирования и технологии изготовления, разработана технология бурения винтовыми (объемными) двигателями.
Конструкция винтового (объемного) забойного двигателя (ВЗД).
Конструкция винтового забойного двигателя на примере двигателя Д1-195. Двигатель предназначен для бурения нефтяных и газовых скважин долотами диаметром 215,9. 244,5 мм при температуре на забое не выше 120°С.
Винтовой забойный двигатель Д1-195 относится к машинам объемного (гидростатического) действия. По сравнению с другими типами забойных гидравлических двигателей винтовой двигатель имеет ряд преимуществ:
низкая частота вращения при высоком крутящем моменте на валу двигателя позволяет получить увеличение проходки за рейс долота (в сравнении с турбинным бурением);
существует возможность контроля за работой двигателя по изменению давления на стояке насосов;
перепад давления на двигателе создает возможность применения высокопроизводительных гидромониторных долот.
По принципу действия ВЗД представляет собой планетарно-роторную гидравлическую машину объемного типа с внутренним косозубым зацеплением (рис. 7.10).
Двигатель содержит ротор и статор. Стальной статор внутри имеет Привулканизированную резиновую обкладку с винтовыми зубья-Ми левого направления. На стальном роторе нарезаны наружные винтовые зубья также левого направления. Число зубьев ротора на единицу меньше числа зубьев статора, в результате чего для осуществления зацепления ось ротора смещена относительно оси статора на величину эксцентриситета, равную половине высоты зуба. Шаги винтовых линий ротора и статора прямо пропорциональны числу зубьев. Специальный профиль зубьев ротора и статора обеспечивает их непрерывный контакт между собой, образуя на длине шага статора единичные рабочие камеры.
Буровой раствор, поступающий в двигатель от насосов буровой установки, может пройти к долоту только в том случае, если ротор поворачивается относительно статора, обкатываясь под действием неуравновешенных гидравлических сил. Ротор, совершая планетарное движение, поворачивается по часовой стрелке (абсолютное движение), в то время как геометрическая ось ротора перемещается относительно оси статора против часовой стрелки (переносное движение). За счет разности в числах зубьев ротора и статора переносное движение редуцируется в абсолютное с передаточным числом, равным числу зубьев ротора, что обеспечивает пониженную частоту вращения и высокий крутящий момент на выходе.
Винтовой (объемный) забойный двигатель Д1-195 (рис. 7.11) содержит следующие основные узлы: секцию двигателя 2, секцию шпиндельную 4, переливной клапан 7 и карданный вал 3. Через переливной клапан осуществляется слив бурового раствора из бурильных труб при подъеме колонны с эксцентрично (планетарно) вращающегося ротора на вал шпиндельной секции. Шпиндельная секция служит для передачи осевого усилия с бурильных труб на долото.
В настоящее время промышленностью выпускаются следующие винтовые забойные двигатели: Д1-88; Д1-127; ДЗ-172; Д4-17! Д1-195; Д2-195; ДЗ-195 (табл. 7.3). Конструкция этих двигателей усовершенствована за счет применения облегченного пустотелого ротора, в полости которого размещается торсион. Уменьшение массы ротора и замена карданного вала торсионом позволили повысить КПД и надежность двигателя.
Винтовые двигатели следует доставлять на буровую в собранном виде, с ввинченными предохранительными пробками, что предотвращает попадание посторонних предметов в рабочие органы и повреждения резьб. Не допускается перетаскивание двигателей волоком и сбрасывание их при разгрузке.
Доставленный на буровую двигатель перед пуском в работу подвергают наружному осмотру. Особое внимание следует обращать на отсутствие трещин и вмятин на статоре и корпусе шпинделя, состояние присоединительных резьб к бурильным трубам и долоту (забоины, промывы и задиры резьб), а также на плотность свинчивания промежуточных резьб, соединяющих корпусные детали двигателя. Двигатели с дефектами корпусных деталей и резьб к работе не допускаются; в случае неполного свинчивания резьбовые соединения докрепляют машинными ключами. Во избежание отвинчивания статора от шпинделя рекомендуется на буровой до-креплять нижнюю резьбу статора в соединении с соединительным переводником. Перед спуском в скважину каждый двигатель следует опробовать над устьем в целях проверки легкости запуска и герметичности резьбовых соединений. Двигатель должен запускаться плавно, при давлении на выкиде буровых насосов не более 2,5 МПа. На холостом ходу вращение вала двигателя должно происходить без рывков и заеданий, а остановка при выключении насосов не должна быть резкой.
Одновременно с запуском двигателя проверяют работоспособность переливного клапана. При подаче промывочной жидкости в двигатель клапан должен плотно закрываться без утечек жидкости в боковые отверстия корпуса клапана; при выключении циркуляции клапан должен открыться. Клапан следует опробовать, опустив его ниже уровня ротора, в противном случае перед закрытием клапана и после его открытия возможно разбрызгивание промывочной жидкости на площадке буровой.
В зимнее время запуску двигателя должен предшествовать его отогрев паром или горячей водой в течение 30. 40 мин. Винтовые двигатели могут работать на промывочных жидкостях различной плотности и вязкости: на воде (пресной, морской и пластовой), глинистых растворах плотностью до 2,2 г/см3, аэрированных жидкостях. Однако длительная и безотказная работа двигателя зависит прежде всего от качества очистки промывочной жидкости, содержание песка в которой не должно превышать 0,5. 1 %. Повышенное содержание песка в промывочной жидкости приводит к интенсивному износу рабочих органов.
Области применения и эффективности винтовых забойных двигателей.
За десятки лет существования отечественные винтовые забойные двигатели прошли эволюционный путь развития, превратившись в эффективное техническое средство для бурения и ремонта нефтяных и газовых скважин, обеспечивающее получение высоких показателей.
Постоянный рост удельного веса бурения ВЗД объясняется как объективными благоприятными факторами (появление на буровом рынке нового поколения низкооборотных шарошечных долот и развитием новых технологий буровых работ), так и важными эксплуатационными преимуществами самих двигателей, среди которых в первую очередь следует отметить:
оптимальные энергетические характеристики – высокие крутящие моменты при низких частотах вращения, обеспечивающие эффективную отработку долот различного типа;
относительно небольшой перепад давления в двигателе, позволяющий использовать гидромониторные долота;
возможность использования буровых растворов любой плотности (от аэрированных до утяжеленных плотностью 2000 кг/м 3 и более);
минимальные по сравнению с турбобурами осевые габариты осевые габариты и высокие удельные вращающие моменты, позволяющие использовать двигатели при бурении наклонно направленных и горизонтальных скважин по различным радиусам искривления.
Большая потребность в ВЗД для бурения вертикальных и наклонно направленных скважин отмечалась с первых лет внедрения, поскольку в каждом нефтяном регионе в определенных интервалах бурения двигатели обеспечивали кратное повышение проходки за долбление по сравнению с турбобурами при незначительном снижении механической скорости. В результате существенно повышалась рейсовая скорость бурения и снижалась стоимость 1м проходки.
В середине 1980-х гг. началось массовое бурение винтовыми двигателями в Западной Сибири. Результаты промышленных испытаний в ряде объединений Главтюменнефтегаз показали, что эффективная работа винтовых двигателей обеспечивается при бурении интервала ниже 1700…1800м.
В настоящее время винтовые забойные двигатели получили широкое применение при бурении вертикальных и наклонно направленных скважин в ведущих нефтяных компаниях России.
В капитальном ремонте скважин в настоящее время малогабаритные винтовые двигатели практически во всех районах страны заменили применявшиеся турбобуры. Многообразие технологических задач потребовало создания большого числа типоразмеров винтовых двигателей диаметром от 127 до 42 мм, которые повсеместно используются при разбуривании песчаных и цементных пробок, при райбировании и фрезеловании эксплуатационной колонны и других ремонтных работах. Опыт применения этих машин подтвердил, что с их помощью значительно эффективнее (проще и дешевле) решается задача ремонта скважин самых различных категорий. Резко поднялась производительность труда бригад, расширились технические возможности капитального ремонта, что позволило в ряде случаев ввести в число действующих длительно простаивавшие аварийные скважины.
В последние годы малогабаритные винтовые двигатели получили шарокое применение при бурении боковых стволов для восстановления бездействующих скважин, в том числе боковых стволов с горизонтальным окончанием. Это новый метод, позволяющий повысить нефтеотдачу пластов и сократить объем бурения дополнительных скважин.
Специальные конструкции ВЗД диаметром 172, 155, 127, 106, 95, и 75 мм, оснащенные технологическими элементами и механизмами искривления, сыграли важнейшую роль в становлении и развитии горизонтального бурения в стране.
Особенности бурения винтовыми забойными двигателями.
При спуске двигателя в скважину за 10. 15 м от забоя следует включить буровой насос и промыть призабойную зону скважины при работающем двигателе. Незапуск двигателя фиксируется по резкому подъему давления на выкиде насосов. В этом случае следует запускать двигатель с вращением бурильной колонны ротором при одновременном прокачивании жидкости. Запуск двигателя ударами о забой не допускается. Во избежание левого вращения инструмента под действием реактивного момента двигателя ведущую трубу фиксируют от проворачивания в роторе с помощью клиньев.
По своим энергетическим характеристикам винтовые двигатели позволяют создавать на долоте высокие осевые нагрузки (двигатель типа Д-195 — до 250. 300 кН, двигатель Д-88 — до 30 кН), однако приработку нового долота в течение 10. 15 мин необходимо проводить при пониженных осевых нагрузках.
При выборе типа долота предпочтение следует отдавать низкооборотным долотам с малонаполненной опорой, а также гидромониторным долотам, так как сниженный по сравнению с турбобурами перепад давления в винтовом двигателе создает резерв мощности на выкиде насосов. Тип вооружения долота выбирают в соответствии с твердостью и абразивностью проходимых пород.
При выборе рациональных параметров режима бурения винтовым забойным двигателем необходимо учитывать особенности его характеристик: пропорциональность частоты вращения расходу бурового раствора; сравнительно «жесткую» скоростную характеристику под нагрузкой (в зоне устойчивой работы двигателя от режима холостого хода до режима максимальной мощности частота вращения уменьшается на 15. 20 %); линейную зависимость перепада давления на двигателе от момента на долоте.
При бурении винтовым забойным двигателем буровой инструмент необходимо подавать плавно, без рывков. Периодически инструмент следует проворачивать. Расход промывочной жидкости при этом выбирают исходя из условий необходимой очистки забоя. По мере износа рабочей пары двигателя для сохранения его рабочей характеристики целесообразно увеличить расход промывочной жидкости на 20. 25 % от начальной величины.
Для предотвращения зашламления двигателя перед наращиванием инструмента или подъемом его для замены долота необходимо промыть скважину в призабойной зоне, затем приподнять инструмент над забоем на 10. 12 м и только после этого остановить насосы и открыть пусковую задвижку.
В процессе эксплуатации винтовых двигателей необходимо периодически проверять их пригодность к работе. Двигатель отправляют на ремонт: при значительном снижении его приемистости к осевым нагрузкам; увеличении сверх допустимого осевого люфта шпинделя; затрудненном запуске или незапуске над устьем скважины или зашламовании двигателя.
Таблица 7.3 Технические характеристики винтовых забойных двигателей
Винтовой забойный двигатель конструкция технические характеристики
Изобретение относится к области буровой техники (инструмента), в частности к винтовым забойным двигателям для бурения нефтяных и газовых скважин.
Известен винтовой забойный двигатель (ВЗД), содержащий секцию рабочих органов, включающую статор и эксцентрично расположенный внутри него ротор, шпиндельную секцию и внутренний соединительный узел, выполненный в виде карданного вала зубчатого или пальцевого типа или шарнирного устройства (Балденко Д.Ф. и др. Винтовые забойные двигатели: Справочное пособие. М.: Недра, 1999, с.68-71).
Недостатками известного винтового забойного двигателя с перечисленными соединительными узлами являются многодетальность, сложность изготовления и сборки, что, в свою очередь, отражается на недостаточно высоких ресурсе и надежности двигателя.
Известен ВЗД, включающий секцию рабочих органов, шпиндельную секцию и внутренний соединительный узел, выполненный в виде торсиона, соединенного с сопряженными деталями шлицевым, или резьбовым, или конусным соединениями (Балденко Д.Ф. и др. Винтовые забойные двигатели: Справочное пособие. М.: Недра, 1999).
Применение в известном винтовом забойном двигателе торсиона (гибкого вала) с шлицевым, или резьбовым, или конусным соединениями значительно упростило конструкцию винтового забойного двигателя, улучшило условия передачи крутящего момента, способствовало небольшому увеличению долговечности.
Однако, исходя из конструктивных особенностей и принципа работы винтового забойного двигателя, остро стоит проблема уменьшения влияния действующего на ротор перекашивающего момента, создаваемого гидравлическими силами, из-за которого происходит искажение геометрии зацепления рабочих органов, а значит, увеличение объемных утечек и механических потерь.
Указанный недостаток частично устраняет винтовой забойный двигатель (а.с. СССР №784397), содержащий секцию рабочих органов, шпиндельную секцию и торсион, соединенный с ротором выше рабочей зоны ротора и статора в отличие от обычной схемы установки торсиона ниже ротора.
Но и такое конструктивное решение, как в а.с. №784397, не решает основные проблемы нагрузочной способности двигателя от возникающих при его работе сил в комплексе: осевой силы, крутящего момента и отрицательных сил (перекашивающего момента, перерезывающей силы). Анализ математических расчетов на прочность, устойчивость и экспериментальных исследований показывает, что данная проблема зависит от правильного выбора геометрических размеров рабочей длины L и диаметра d торсиона.
Известен ВЗД (а.с. СССР №926208), который является наиболее близким по технической сущности к заявляемому изобретению и выбран в качестве прототипа. ВЗД содержит секцию рабочих органов, включающую статор и расположенный внутри него ротор, шпиндельную секцию и торсион, причем рабочая длина L и диаметр d торсиона связаны соотношением L/d=10-60.
Недостатки прототипа заключаются в том, что указанное соотношение L/d=10-60 имеет очень широкий диапазон при определении диаметра d и длины L торсиона и не учитывает энергетические показатели назначения для конкретного ВЗД и величины действующих в нем сил, что приводит к снижению прочности, устойчивости, повышению отрицательных нагрузок, действующих со стороны торсиона на сопряженные детали, и в связи с этим к снижению надежности и ресурса двигателя.
Технической задачей предлагаемого изобретения является повышение ресурса и надежности двигателя, стабилизации рабочих технических характеристик ВЗД за счет оптимизации геометрических размеров торсиона.
Технический результат предлагаемого изобретения достигается тем, что в винтовом забойном двигателе, содержащем секцию рабочих органов, включающую статор и эксцентрично расположенный внутри него ротор, шпиндельную секцию и внутренний соединительный узел, соединяющий обе секции, согласно изобретению внутренний соединительный узел в виде S-образно изогнутого торсиона, размещенного ниже ротора или внутри него, имеет рабочую длину L и диаметр d, заданные соотношениями:
Z — число зубьев ротора;
Е — модуль упругости, МПа;
ρ — удельный вес, кг/м 3 ;
G — осевая сила, Н;
n — частота вращения, с -1 ;
a, b — безразмерные параметры-координаты, задающиеся из внутренней части области устойчивости торсиона, ограниченной линиями: а=-3b+19; а=0; a=b; а=-b+4.
Кроме того, согласно изобретению торсион винтового забойного двигателя изготовлен из титана или титановых сплавов.
Предлагаемое изобретение в отличие от прототипа позволяет определить геометрические размеры торсиона (рабочую длину L и диаметр d) для конкретного двигателя с учетом показателей назначения (частоты вращения, осевой гидравлической силы, зависящих от расхода бурового раствора, габарита двигателя и кинематического отношения в рабочей паре ротор-статор) и механических свойств материала (модуля упругости, удельного веса) через безразмерные параметры-координаты а и b области устойчивости, что приводит к повышению ресурса и надежности двигателя.
Выполнение торсиона с геометрическими размерами (L, d), определенными с учетом показателей назначения и механических свойств материала через безразмерные параметры-координаты а и b из внутренней части области устойчивости торсиона, ограниченной линиями а=-3b+19; а=0; а=b, а=-b+4, позволяет уменьшить отрицательное воздействие нагрузок, действующих со стороны торсиона на сопрягаемые детали и узлы двигателя, и улучшить работу двигателя.
Выполнение ВЗД с торсионом из титана или титановых сплавов имеет преимущества: такой торсион более легкий, гибкий и упругий, с меньшей жесткостью на изгиб по сравнению со стальным торсионом при одинаковых геометрических размерах, что приводит к уменьшению воздействия отрицательных сил, стабилизации контакта зацепления в рабочей паре, уменьшению износа основных деталей, узлов и объемных утечек, увеличению ресурса, повышению надежности и в итоге всех технико-экономических показателей бурения.
Значения предельных величин прочности у стали и титана практически равные, но значения модуля упругости (2·10 5 МПа) и удельного веса (4,5 г/см 3 ) титана в два раза меньше, чем у стали. Следовательно, при работе ВЗД с торсионом из титана (титановых сплавов) так же кратно снизится отрицательное влияние изгибающего момента и перерезывающей силы, износ деталей двигателя. Таким образом, винтовой забойный двигатель будет работать более стабильно, длительно, сохраняя технические показатели назначения в рабочем режиме.
Изобретение поясняется иллюстрациями.
На фиг.1 показан винтовой забойный двигатель (частичный разрез) с торсионом, установленным ниже ротора.
На фиг.2 показан винтовой забойный двигатель с торсионом, расположенным внутри ротора.
На фиг.3 изображена область устойчивости торсиона, где a, b — безразмерные параметры-координаты.
Винтовой забойный двигатель (фиг.1 и 2) содержит секцию рабочих органов 1, шпиндельную секцию 2 и торсион 3. Секция рабочих органов 1 включает статор 4 и расположенный внутри него ротор 5. Статор 4 выполнен в виде стального корпуса 6 с привулканизированной внутри него резиновой обкладкой 7, имеющей винтовые зубья левого направления. Стальной ротор 5 имеет наружные винтовые зубья также левого направления, число которых на единицу меньше, чем у статора 4. Ось ротора О2 смещена относительно оси статора O1 на величину эксцентриситета е, равную половине высоты зуба. Торсион 3 является внутренним соединительным узлом деталей винтового забойного двигателя и выполнен металлическим — из стали или титана (титановых сплавов). Торсион 3 устанавливают ниже ротора 5 (фиг.1) или внутри него (фиг.2).
Винтовой забойный двигатель работает следующим образом.
Зубья ротора 5 и статора 4, находясь в непрерывном контакте, образуют замыкающиеся на длине шага статора 4 единичные камеры. Буровой раствор, поступающий в двигатель от насосов, проходит к долоту при провороте ротора 5 двигателя внутри обкладки 7 статора 4, который обкатывается по зубьям статора 4 под действием неуравновешенных гидравлических сил. При этом ротор 5 совершает планетарное движение: геометрически ось О2 ротора 5 вращается относительно оси O1 статора 4 против часовой стрелки (переносное движение), а сам ротор 5 поворачивается по часовой стрелке (абсолютное движение). За счет разности в числах зубьев ротора 5 и статора 4 переносное движение редуцируется в абсолютное с передаточным числом, равным числу зубьев ротора 5, что обеспечивает пониженную частоту вращения и высокий момент силы на выходном валу двигателя.
Шпиндельная секция 2 служит для восприятия гидравлических нагрузок, возникающих в секции рабочих органов 1, реакции забоя и радиальных нагрузок от долота при бурении.
Торсион 3 преобразует планетарное движение ротора 5 в соосное вращение выходного вала двигателя и служит для передачи крутящего момента и осевой гидравлической нагрузки, возникающих в рабочих органах, на выходной вал шпинделя.
При этом торсион 3 должен выдерживать сложное напряженно-деформируемое состояние от передаваемых сил и возникающих отрицательных сил из-за непостоянной ориентации ротора при работе двигателя и оказывать минимальные отрицательные воздействия на сопряженные с ним детали для уменьшения износа и предотвращения поломки.
Для выполнения предъявляемых к торсиону требований в предлагаемом изобретении геометрические размеры (рабочая длина L и диаметр d) торсиона определяются через безразмерные параметры-координаты из внутренней части области устойчивости торсиона.
Область устойчивости торсиона получена теоретическим путем из математических расчетов, в которых принималось, что во время работы двигателя торсион обращается вокруг основной оси двигателя с частотой, равной частоте обращения ротора. Обращение торсиона рассматривается как изгибные колебания, описываемые дифференциальным уравнением в частных производных, решение которого проводится с учетом схемы соединения ротора с валом шпинделя (для вертикального бурения и отклонителя) и условий закрепления концов торсиона и его первоначальной S-изогнутости — соединение не соосных деталей (граничные условия для расчетов на устойчивость).
После решения дифференциального уравнения относительно амплитуды колебаний и проведения необходимых преобразований получаем трансцендентное уравнение для определения устойчивости торсиона:
где а, b — безразмерные параметры-координаты.
Решение трансцендентного уравнения относительно а и b получено численным методом и графически изображено на фиг.3 в виде кривой I (KF). Для инженерных расчетов допустимо кривую I аппроксимировать в прямую линию II а=-3b+19. Линия III (OF) a=0, ограничивающая область устойчивости, соответствует работе ВЗД в тормозном режиме, когда осевая сила G максимальна, частота вращения выходного вала n практически равна нулю. Линия IV (ОК) получена из расчетов, которые показали, что эту пограничную прямую можно минимизировать как a=b, что соответствует зоне рабочего режима винтового забойного двигателя от холостого хода до режима максимального КПД. Исходя из предназначения торсиона и требований, предъявляемых к нему, базы данных многочисленных расчетов на устойчивость торсиона и напряженно-деформируемого состояния сопрягаемых с ним деталей, анализа стендовых характеристик двигателя была получена линия V (DN) a=-b+4, которая разграничивает общую область устойчивости OKF на зоны ODN и DKFN.
Установлено, что торсион с рабочей длиной L и диаметром d, рассчитанными через безразмерные параметры-координаты а и b из внутренней части области ODN, устойчив, обладает высоким запасом прочности, но при этом имеет повышенную жесткость на изгиб. В винтовом забойном двигателе при работе с таким торсионом будут возникать большие по величине отрицательные силы: перекашивающий момент и перерезывающая сила, следствием действия которых будет повышенный износ в рабочей паре, ухудшение энергетических показателей назначения, стабильности его работы, заниженный ресурс.
Анализ испытаний двигателей и математические расчеты показали, что торсион с рабочей длиной L и диаметром d, определенными через безразмерные параметры-координаты, взятые из внутренней части области устойчивости DKFN, является устойчивым, имеет достаточный запас прочности и оказывает минимальные отрицательные воздействия на сопрягаемые с ним детали.
Например, винтовой забойный двигатель Д 1-105, содержащий секцию рабочих органов с кинематическим отношением zp/zc, равным 5/6, (zp и zc — числа зубьев ротора и статора соответственно), секцию шпиндельную и торсион, расположенный внутри ротора (фиг.2), у которого рабочая длина торсиона L и диаметр d определены по предлагаемому изобретению.
В расчете геометрических размеров торсиона (L, d) винтового забойного двигателя Д 1-105 по предлагаемому изобретению учтены следующие исходные данные:
— расход бурового раствора Q=10, л/с;
— осевая сила G=45,9, кН, частота вращения вала n=3,8, с -1 (режим максимальной мощности);
— свойства материала (сталь): модуль упругости Е=2·10 5 , МПа, удельный вес ρ=7,85, кг/м 3 ;
— безразмерные параметры-координаты из области устойчивости DKFN_a=2, b=3,2.
В итоге получены значения:
L=1540 мм и d=36,5 мм.
С учетом конструкторских возможностей винтового забойного двигателя были приняты значения геометрических размеров торсиона винтового забойного двигателя Д1-105 рабочая длина L=1520 мм, диаметр d=36 мм.
Винтовой забойный двигатель Д1-105 востребован на буровых предприятиях, очень стабилен в работе, обладает высокой надежностью, вырабатывает полный ресурс 600 часов без замены торсиона.
Таким образом, торсион с геометрическими размерами (рабочей длиной L и диаметром d), определенными по соотношениям, приведенным в предлагаемом изобретении, выдерживает сложное напряженно-деформируемое состояние от передаваемых сил и возникающих отрицательных сил из-за непостоянной ориентации ротора при работе винтового забойного двигателя и, кроме того, оказывает минимальные отрицательные воздействия на сопряженные с ним детали для уменьшения износа и их поломки, что повышает ресурс и надежность ВЗД.
ТЕХНОЛОГИИ, ИНЖИНИРИНГ, ИННОВАЦИИ
Измеритель диаметра, измеритель эксцентриситета, автоматизация, ГИС, моделирование, разработка программного обеспечения и электроники, БИМ
В Перми освоено производство винтовых забойных двигателей для бурения нефтяных и газовых скважин
Заемщик Фонда развития промышленности — ООО “Гидробур-сервис” (входит в группу НьюТек Сервисез) — освоил новые технологии для производства винтовых забойных двигателей и начал в Перми серийный выпуск новых моделей для бурения нефтяных и газовых скважин. Стоимость проекта 180 млн рублей, из которых 90 млн рублей предоставлены ФРП в виде льготного займа. Планируется создать 55 рабочих мест. Успешная реализация проекта позволит предприятию вывести на рынок высокотехнологичное оборудование российского производства. Винтовой забойный двигатель — это объемный (гидростатический) роторный гидравлический механизм, предназначенный для бурения вертикальных, наклонно-направленных и горизонтальных нефтяных и газовых скважин, а также для капитального ремонта скважин и проводки боковых стволов.
- Наша продукция
- Презентации по направлениям
- Инжиниринг
- Консалтинг
- Металлообработка
- Моделирование
- Разработки
По итогам реализации проекта планируется увеличить годовой объем выпуска винтовых забойных двигателей со 180 до 372 единиц в год, начиная с 2019 года. В рамках проекта планируется производство винтовых забойных двигателей наружным диаметром 95 мм, 106 мм, 120 мм, 178 мм, 240 мм.
Организация собственной производственной линии по гуммированию статоров позволит добиться высокого качества выпускаемой продукции и увеличения производственных мощностей предприятия, а также сокращения доли аутсорсинга в производственном процессе. Продукция проекта соответствует требованиям технических условий ТУ 3664-003-14673381-2016 по ГОСТ 12.2.003.
Справка:
Для добычи нефти и/или газа либо для проведения капитального ремонта скважин используют винтовой забойный двигатель (ВЗД), обладающий необходимым крутящим моментом и способный осуществлять бурение в различных направлениях в зависимости от типа используемой конструкции. Такой выбор обусловлен необходимостью разрушения горных пород с высокой эффективностью и достаточной скоростью. Использование в конструкции эластичных, но прочных зубьев статора позволяют достичь высокой жёсткости на изгиб, а также существенно сократить утечки жидкости при её прокачке.
Конструкция ВЗД
Винтовой забойный двигатель представляет собой симметричный роторный агрегат с применением зубчатого косого зацепления, приводимый в действие за счёт давления подаваемой жидкости.
Конструктивно состоит из:
- Двигательного узла.
- Рабочей части.
Двигательный узел
Двигательная секция ВЗД – основной силовой компонент двигателя и поэтому определяет его основные технические характеристики, такие как мощность, крутящий момент, КПД и частота вращения ротора. Состоит из роторного механизма в виде корпуса (статора), внутри которого закреплена эластомерная вставка с винтовой поверхностью, за которую зацепляется ротор и затем под давлением подаваемой жидкости начинает вращаться.
Эластичная оболочка позволяет разделить две полости камер с высоким градиентом давления. Она изготавливается из износостойкой резины, которая пластична, но в то же время способна выдерживать значительные силы трения при попадании абразивных частиц на её поверхность.
Ротор имеет конструкцию похожую на сверло, но с высокопрочным износостойким покрытием, так как предназначен для передачи крутящего момента. Его изготавливают из высокопрочной легированной стали.
Количество зубьев у него меньше на одну единицу, чем у статора. Двигательный узел выполняют с определённым натяжением зубчатого зацепления, который зависит от параметров рабочей жидкости, свойств эластомера, температуры эксплуатации, а также других характеристик. От того, насколько точно они будут подобраны зависит прочность двигателя в целом и его ресурс работы.
На ресурс работы рабочей пары влияют следующие факторы:
- Присутствие в рабочей жидкости абразивных твёрдых частиц и дополнительных примесей.
- Использование в составе жидкости веществ, которые разъедают эластомер или изменяют его механические свойства. К ним относятся: соли, жидкость с высоким содержанием нефтепродуктов, хлориды, кислоты и соли.
- Превышение допустимых норм по температурным условиям в точке забоя, которые могут влиять на эластомер.
- Недостаточный прогрев рабочей пары при старте двигателя.
- Использование неправильного натяжения статор-ротор.
Рабочие органы ВЗБ
Винтовой забойный двигатель состоит из следующих рабочих органов:
- шпиндельного узла;
- регулятора угла.
1 – осевой подшипник; 2 – радиальная опора; 3 – центратор; 4 – противоаварийный бурт
Шпиндельный узел является вторым по важности конструктивным элементом двигателя. Он предназначен для передачи крутящего момента от рабочей пары рабочему инструменту для разрушения плотных пород грунта. При этом он способен выносить значительные осевые нагрузки, вызванные не только необходимостью передачи крутящего момента, а и силу трения о стенки креплений при угловом или горизонтальном бурении.
Шпиндельный узел представляет собой корпус с двумя опорами (радиальной и осевой), на которых закреплён вал. Вращение ротора передаёт крутящий момент посредством торсиона или карданного вала на вал шпиндельного узла, который начинает вращаться и передавать момент уже рабочей части.
Данный узел может быть выполнен в двух конструктивных исполнениях:
- Открытом, когда рабочие узлы смазываются рабочей жидкостью.
- Закрытом или герметизированном. Все рабочие элементы находятся в масляной ванне под давлением до 20 атм, которое выбирается таким, чтобы значительно превышало давление окружающей их среды.
Бурение винтовыми забойными двигателями под углом может быть осуществлено только при помощи регулятора угла. Он представляет собой сложный механизм, который состоит из верхнего и нижнего переводников, сердечника и зубчатой муфты.
По сути он немного напоминает по конструкции карданный вал, но из-за тяжёлых условий эксплуатации и необходимости обеспечения определённой функциональности он был существенно усложнён. Все детали изготавливаются из прочной твердосплавной стали, с выполнением армирования поверхностного слоя.
Основные особенности ВЗД, влияющие на его технические параметры
- Скорость потока жидкости должна соответствовать типу используемого двигателя и его технических параметров рабочей пары. Чем больше лопастей на роторе и витков на статоре, тем больше поток жидкости, но при этом повышается и износ за счёт увеличения сил трения. Поэтому для конкретных условий бурения нужно варьировать эти параметры для достижения нужного результата.
- Во время отсутствия нагрузки на забойную часть в ней происходит падение давления: когда ротор находится в подвешенном состоянии нужно затратить огромную энергию на приведение его в движение. При этом потеря давления будет пропорциональна скорости потока рабочей жидкости. Обычно она составляет примерно 7 атм.
- При нагрузке на винтовой забойный двигатель в момент начала забоя происходит падение давления в системе, но со временем восстанавливается по мере раскручивания ротора.
- Для двигателя существует предельное давление, которое возникает при бурении в рабочем узле. При необходимости увеличении усилия на долото требуется увеличить давление в системе, что приводит к деформации эластомера и потере крутящего момента. В результате полезной работы не производится, а рабочая жидкость просто протекает через двигатель.
- Чем больше площадь поперечного сечения долота, тем меньше потери рабочего давления. При уменьшении размеров долота происходит быстрый износ подшипников, так как потока жидкости не хватает, чтобы их охладить.
- Использование насадок на сопло ротора позволяет изменять поток жидкости через ВЗБ и, таким образом, учитывать особенности бурения конкретного вида горных пород при минимальном износе деталей и узлов.
Классификация двигателей по их назначению
Винтовые забойные двигатели для бурения скважин по основному назначению подразделяются на следующие виды:
- Универсальные двигатели используются при бурении рабочих и разведывательных скважин, а также для их ремонта. Они имеют внешний диаметр от 127 до 240 мм. Конструктивно состоят из рабочего и шпиндельного узлов. Корпусные части имеют модульную конструкцию и соединяются с помощью резьбовых, конусных и конусно-шлицевых соединений. Все детали изготовлены из высокопрочной легированной стали, позволяющей обеспечивать одинаковый уровень производительности в различных условиях работы.
- Для бурения под наклоном применяют двигатели типа ДГ. Их диаметр составляет 60-172 мм, что позволяет существенно нарастить скорость вращения ротора и повысить производительность в целом. Длина силовой и шпиндельной секции существенно уменьшена, по сравнению с универсальным двигателем. Обычно применяют ротор с двухзаходной резьбой, которого достаточно для центровки и обеспечения достаточной мощности вращения. Для обеспечения наклонного бурения установлены два переводника с высокоточной регулировкой наклона и надёжными шарнирами. Также предусмотрено крепление опорно-центрирующих устройств. Соединение ротора и вала выполнено таким образом, чтобы были минимальные потери крутящего момента и обеспечивалась высокая надёжность работы под разными углами в забое.
- Винтовой забойный двигатель для проведения ремонтных работ в скважинах. Их размеры составляют до 108 мм. Это позволяет их применять в различных условиях нарушения структуры скважины. Основное их назначение – разбуривание цементных мостов, удаление песчаных пробок, фрезерование труб и прочих конструкций. За счёт небольших размеров появляется возможность исправлять любые повреждения, не разрушая ствол скважины. При этом они относительно недорогие, имеют простую конструкцию и весьма надёжны в работе. Обычно оснащаются торсионной трансмиссией и прорезинеными опорами. Иногда их изготавливают с полыми роторами, что позволяет уменьшить массу двигателя и увеличить КПД.
Источники: http://ru-good.ru/, http://snkoil.com/
- Наша продукция
- Презентации по направлениям
- Инжиниринг
- Консалтинг
- Металлообработка
- Моделирование
- Разработки
Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!
ВИНТОВОЙ ЗАБОЙНЫЙ ДВИГАТЕЛЬ ДЛЯ БУРЕНИЯ СКВАЖИН
Изобретение относится к буровой технике, а именно к винтовым забойным двигателям. Винтовой забойный двигатель для бурения скважин содержит шпиндель, в вал которого ввинчен породоразрушающий инструмент, карданный вал, регулятор угла изгиба двигателя, рабочий орган, состоящий из ротора и статора, причем статор состоит из цилиндрической металлической гильзы и снабжен внутри гильзы эластичной обкладкой с внутренними винтовыми зубьями для взаимодействия с ротором, размещенным внутри статора и снабженным наружными винтовыми зубьями, количество которых на единицу меньше числа зубьев статора. Эластичная обкладка статора выполнена из полиуретановой композиции Уникспур 2B092S с твердостью от 92 единиц по Шору А до 75 единиц по Шору Д, с условной прочностью при разрыве 50 МПа, с относительным удлинением при разрыве от 450% до 700%, с истираемостью 20-25 м 3 /тДж, обеспечивающей длительную устойчивую работу двигателя в буровом растворе при температуре до 120°С. Обеспечивается повышение энергетических характеристик, ресурса и надежности двигателя при увеличении крутящего момента силы на выходном валу в режиме максимальной мощности. 2 ил.
Винтовой забойный двигатель для бурения скважин, содержащий шпиндель, в вал которого ввинчивается породоразрушающий инструмент, карданный вал, регулятор угла изгиба двигателя, рабочий орган, состоящий из ротора и статора, причем статор состоит из цилиндрической металлической гильзы, снабженный внутри гильзы эластичной обкладкой с внутренними винтовыми зубьями для взаимодействия с ротором, размещенным внутри статора и снабженным наружными винтовыми зубьями, количество которых на единицу меньше числа зубьев статора, отличающийся тем, что эластичная обкладка статора выполнена из полиуретановой композиции Уникспур 2B092S с твердостью от 92 единиц по Шору А до 75 единиц по Шору Д, с условной прочностью при разрыве 50 МПа, с относительным удлинением при разрыве от 450% до 700%, с истираемостью 20-25 м 3 /тДж, обеспечивающей длительную устойчивую работу двигателя в буровом растворе при температуре до 120°С.
Изобретение относится к буровой технике, а именно к винтовым забойным двигателям (ВЗД), предназначенным для бурения и ремонта нефтяных и газовых скважин.
Известен винтовой забойный двигатель (Pat. №3112801 USA Clark W. Well drilling apparatus. 1963), представляющий собой обращенный винтовой насос Муано (R. Moineau), включающий рабочий орган (в дальнейшем «РО») «статор-ротор» (статор с металлическим трубчатым корпусом и резиновой внутренней его обкладкой с двухзаходной внутренней резьбой; металлический ротор, размещенный внутри статора, с однозаходной наружной резьбой, причем резьбы ротора и статора образуют замкнутые камеры, число которых равно числу витков резьбы ротора), карданный вал и шпиндель с осевыми и радиальными опорами. По сравнению с другими забойными двигателями этот двигатель позволял более оперативно управлять траекторией скважины,
Недостатком данного забойного двигателя является высокая скорость вращения вала и недостаточный крутящий момент, что не позволяло обеспечить большую проходку на каждое долото.
Известен другой винтовой двигатель (Авт. св. №237596 СССР Забойный винтовой гидравлический двигатель. Гусман М.Т., Никомаров С.С. и др. 1966 г.), в котором ротор выполнен многозаходным, причем число зубьев ротора на единицу меньше, чем у статора. В этом устройстве, работающем как двигатель с зубчатой передачей, кратно увеличился передаваемый крутящий момент и снизилась скорость вращения. Показатели бурения (проходка на долото и рейсовая скорость, учитывающая затраты времени на спуско-подъемные операции для замены изношенных долот) значительно увеличились. Однако прогресс в технике и технологии бурения(особенно в создании новых моментоемких долот) показал, что жесткость и прочность зубьев резиновой обкладки статоров в новых условиях уже недостаточны. Конфигурация резиновой обкладки, характеризующаяся многократной разницей толщины резины на выступах и впадинах зубьев, при повышенных перепадах давлений на зубе, характерных для новой технологии бурения, приводит к деформации резинового зуба, нарушению герметичности в зацеплении РО, снижению крутящего момента и скорости бурения скважин. Для снижения напряжений увеличивают длину статора, что приводит к повышению материалоемкости, трудоемкости изготовления, но не всегда позволяет получить нужный результат.
Прогресс в совершенствовании технологии и техники бурения показал необходимость дальнейшего совершенствования ВЗД, в частности, направленного на увеличение жесткости и прочности зубьев резиновой обкладки статоров.
Наиболее близким к заявляемому изобретению является ВЗД, описанный в монографии Д.Ф. Балденко и др. «Одновинтовые гидравлические машины» том 2 «Винтовые забойные двигатели» стр. 67-68, М. 2007 г. В этом известном двигателе для повышения жесткости зубьев статора на внутренней поверхности остова выполнены внутренние металлические зубья, на которые наносится эластичная обкладка с расчетным профилем зуба. Металлическая часть зуба позволяет значительно уменьшить толщину резиновой обкладки, что увеличивает жесткость зуба, уменьшает деформацию и разогрев резины, позволяет передавать на долото более высокий крутящий момент. Изготовление внутреннего металлического зуба в длинномерных остовах статоров осуществляется различными методами: радиальной ковкой остова, элекроэррозией, изготовлением металлических вкладышей с внутренним зубом, закрепляемых в остове сваркой или другими способами. Это повышает параметры характеристики ВЗД, но такие двигатели имеют и свои недостатки. Одним из недостатков является высокая стоимость рабочего органа «ротор-статор» (как минимум, вдвое дороже обычных РО одинаковых размеров) из-за больших затрат на изготовление внутреннего металлического зуба. Другим недостатком является то, что увеличение параметров характеристики и стоимости рабочего органа не обеспечивает сохранения необходимой долговечности двигателя из-за ухудшения условий крепления резины к сложной зубчатой поверхности остова. При использовании металлических вкладышей с внутренним зубом усложняется процесс сборки статора, имеются случаи отказов по причине ненадежного крепления вкладышей в остове статора.
Техническим результатом предлагаемого изобретения является повышение энергетических характеристик, ресурса и надежности винтового забойного двигателя при увеличении крутящего момента силы на выходном валу в режиме максимальной мощности.
Для достижения указанного результата в предлагаемом изобретении эластичная обкладка статора ВЗД выполнена из полиуретановой композиции Уникспур 2B092S, компоненты которой придают эластику ряд необходимых физико-механических свойств, практически недостижимых для резин. В частности, высокую твердость (от 92 единиц по Шору А до 75 по Шору Д; твердость резин, используемых в ВЗД, составляет 71-77 единиц по Шору А) в сочетании с эластичностью (повышенное относительное удлинение при разрыве до 700%, у наиболее эластичных резин 250-400%), высокую прочность при разрыве (50 Мпа, у резин 20-25 Мпа), минимальную истираемость (20-25 м 3 /тДж, у резин 30-60), а также способность работать в гидроабразивной среде в присутствии неконцентрированных растворов солей, кислот, щелочей и нефтепродуктов. Температура, при которой длительно сохраняется работоспособность композиции, достигает 120°C. Ввиду того, что твердость полиуретановой композиции Уникспур 2B092S значительно выше, чем у резин, используемых в ВЗД, обеспечивается более высокая, чем у резинового зуба, и не менее, чем у профилированного, жесткость зуба. Поэтому отпадает необходимость в использовании внутреннего металлического зуба статора, что позволяет при высоких значениях параметров характеристик полиуретановой композиции Уникспур 2B092S получить надежную и долговечную, с высокими техническими характеристиками, сравнительно простую и технологичную в изготовлении конструкцию статора (а, следовательно, и всего двигателя), значительно снизить себестоимость и повысить эффективность применения ВЗД.
Предлагаемое изобретение иллюстрируется чертежами:
На фиг. 1 — показан продольный разрез винтового забойного двигателя.
На фиг. 2 — показан продольный разрез рабочего органа.
Винтовой забойный двигатель, включает шпиндель 1, в вал которого ввинчивается породоразрушающий инструмент (долото, на чертеже не показано), вал карданный 2 и регулятор 3 угла изгиба двигателя, а также рабочий орган 4 двигателя. Статор, состоит из металлической гильзы 5 с цилиндрической внутренней поверхностью, а также скрепленную с этой поверхностью эластичную обкладку 6, с внутренней многозаходной винтовой поверхностью, выполненной из полиуретановой композиции Уникспур 2B092S (ТУ2292-013-55180710-2009), обладающей всеми указанными выше свойствами по твердости, эластичности, прочности, минимальной истираемости и работоспособной в химически агрессивной жидкости, в статоре расположен многозаходный винтовой ротор 7, число заходов которого на единицу меньше, чем в обкладке 6 статора.
Нанесение полиуретановой композиции Уникспур 2B092S на внутреннюю поверхность остова статора осуществляется аналогично нанесению резиновой обкладки, за некоторыми исключениями. Используется специальный клей (на основе адгезива «Силбонд»), который наносится на внутреннюю обезжиренную поверхность гильзы. В гильзу 5 вводится сердечник (как и при запрессовке сырой резины, на чертежах не показан), имеющий на наружной поверхности винтовую нарезку, формирующую будущую форму винтовой поверхности обкладки 6, Сердечник центрируется в гильзе по его концам специальными втулками. Для заливки полиуретановой композиции Уникспур 2B092S не требуется мощного прессового оборудования, т.к. заливаемая полиуретановая композиция представляет собой жидкость с невысокой вязкостью. После полимеризации эластомера сердечник извлекается, а эластомер продолжает упрочняться при определенных температурных условиях.
Работа винтового двигателя со статором с полиуретановой обкладкой (5, 6) осуществляется, как и в прототипе, в комплекте с ротором 7, карданным валом 2 и шпинделем 1. При подаче жидкости ротор 7 приводится в сложное планетарное вращение, которое передается на вал шпинделя 1 и долото. С увеличением нагрузки на долото увеличивается крутящий момент, повышается давление прокачиваемой жидкости, возрастают нагрузки на зубья ротора 7 и статора 6. Зуб статора, выполненный из полиуретановой композиции Уникспур 2B092S, благодаря другому химическому составу и температурной стойкости по сравнению с резиной и другими полиуретановыми композициями позволяет передать повышенный крутящий момент за счет увеличения осевой нагрузки, что обеспечивает повышение показателей бурения. Прочностные характеристики полиуретановой композиции способствуют повышению температурной стойкости, долговечности и надежности двигателя, и обладают работоспособностью в химически агрессивной жидкости позволяют работать в гидроабразивной среде в присутствии растворов солей, кислот, щелочей и нефтепродуктов.
ООО «Гидробур-сервис» совместно с НПП «Уником-Сервис», изготовлена партия двигателей диаметром 106 мм с внутренней многозаходной винтовой поверхностью, выполненной из полиуретановой композиции Уникспур 2B092S (Unikspur 2B092S) (ТУ2292-013-55180710 -2009), обладающей всеми указанными выше свойствами по твердости, эластичности, прочности, минимальной истираемости и работоспособнсти в химически агрессивной жидкости.
Промышленная партия предлагаемых двигателей успешно прошла стендовые испытания, показав более высокие, по сравнению с другими двигателями тех же размеров, характеристики: высокий крутящий момент на выходном валу, более устойчивую скорость вращения, повышенная химическая стойкость, высокий КПД. В настоящее время двигатели этой партии работают на месторождениях Урало-Поволжья и в Западной Сибири с высокими показателями бурения. Изобретение позволяет повысить долговечность и надежность двигателя при снижении материалоемкости, трудоемкости изготовления и себестоимости.