0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Векторное управление асинхронным двигателем характеристики

Особенности векторного управления электроприводами

Практически все электроприводы Unidrive от Control Techniques используют векторное управление двигателем, за счет которого расширяется диапазон частот, в которых может эффективно работать привод (номинальный крутящий момент развивается на частоте 1 Гц в разомкнутом контуре, 0 Гц — в замкнутом контуре). Привод Unidrive может устойчиво работать на скоростях вплоть до 0,001 об/мин, что эквивалентно одному обороту вала двигателя за 16 часов. Частота 0 Гц в замкнутом контуре фактически означает возможность привода удерживать вал двигателя в одном положении при меняющейся нагрузке.

Специфическая особенность привода Unidrive — возможность работы в режиме цифрового замка. Для этого информация об угловом положении вала двигателя одного привода (ведущего, оснащенного энкодером) передается в другой привод (ведомый). Вал ведомого двигателя начинает движение синхронно с движением вала ведущего двигателя (синхронизация может быть выполнена как по скорости, так и по положению).

При этом реализуется электронный вариант механической коробки передач. Передаточный коэффициент корректируется с точностью до 3 знаков после запятой, его можно менять динамически кнопками «больше/меньше» с помощью цифрового потенциометра. Число синхронизированных приводов не ограничено. Датчик положения (энкодер) можно ставить не только на вал двигателя, управляемого приводом Unidrive, но и на любую вращающуюся деталь, с которой нам нужно синхронизироваться. При этом отпадает необходимость в вариаторах и подобных им устройствах, которые требуют регулярного обслуживания. Для реализации режима цифрового замка Unidrive необходим модуль второго энкодера или модуль для включения в сеть CTNet. Описанные возможности применимы в робототехнике, металлообрабатывающих станках, машинах многоцветной печати и т.д.

Режим рекуперации энергии применяется в тех случаях, когда нагрузка двигателя имеет большую механическую инерцию и способна высвобождать накопленную кинетическую энергию при торможении. При этом будет происходить отдача электроэнергии приводом обратно в питающую сеть.

Использование данного режима приводит к значительному снижению потребления энергии. Может использоваться в устройствах, обладающих большой механической инерцией и способных отдавать накопленную кинетическую энергию при торможении. В данном режиме используются два привода Unidrive, связанных по шине постоянного тока, один в двигательном режиме, другой в режиме рекуперации. При торможении двигателя энергия начинает поступать на шину постоянного тока двигателя, работающего в двигательном режиме, и передается в двигатель, работающий в режиме рекуперации, который генерирует из него переменное напряжение 380 В и отдает его обратно в сеть. В результате мы получаем экономию электроэнергии. Данный режим включается изменением значения параметра, определяющего режим работы привода.

1. Разомкнутый контур со скалярным управлением

Обратная связь не требуется, двигатель – стандартный асинхронный двигатель переменного тока. Скалярное управление является традиционным способом управления двигателем (в противоположность более современному способу векторного регулирования). Минимальная скорость, на которой развивается номинальный крутящий момент — 15-20Гц.

2. Векторное управление в разомкнутом контуре

Обратная связь здесь также не требуется, двигатель – стандартный асинхронный двигатель переменного тока. Векторное управление предоставляет возможность проведения специальной процедуры – автонастройки, в процессе которой привод очень точно измеряет параметры подключенного к нему двигателя: сопротивления обмоток статора, их индуктивность, индуктивность рассеивания, ток намагничивания и т.д. Векторное управление включается специальным параметром в приводе. Точность поддержания скорости 1%, минимальная скорость, на которой развивается номинальный крутящий момент – 1 Гц.

3. Векторное управление в замкнутом контуре

Двигатель – асинхронный двигатель переменного тока. Требует наличия датчика обратной связи по скорости/положению вала двигателя (например, инкрементального энкодера). За счет введения обратной связи точность поддержания скорости возрастает на два порядка, плюс появляется возможность управления угловым положением вала двигателя. Становится возможной работа в режиме электрического вала, когда вал двигателя вращается строго синхронно с какой-либо другой координатой, которая механически соединена с датчиком обратной связи (энкодером), подключенным к Unidrive. Точность поддержания скорости 0,01%, минимальная скорость, на которой развивается номинальный крутящий момент — 0 Гц.

4. Серворежим

Требует серводвигателя (бесщеточного электродвигателя переменного тока с постоянными магнитами на роторе). В сочетании с таким двигателем система имеет отличные динамические характеристики (в среднем в 15-20 раз лучшие, чем в замкнутом контуре с векторным управлением). Точность поддержания скорости 0,01%, развитие номинального крутящего момента при нулевой скорости вращения. Данный режим применяется в наиболее ответственных задачах, требующих высоких динамических и точностных показателей регулирования. Режим цифрового замка (электрический вал)

Настройка всех приводов Control Techniques практически одинакова и отличается лишь в деталях, она может быть проведена как вручную (с панели управления привода), так и с помощью специального «софта», запущенного на персональном компьютере.

Удобная структура меню: Все параметры привода разбиты на функциональные группы, названные «меню». В каждом меню хранятся параметры, определяющие работу какого-либо функционального блока привода: меню 1- задание скорости, меню 2-величины ускорения/замедления и т.д. Наиболее часто используемые параметры вынесены в специальное меню – «Меню 0».

Гибкая, перестраиваемая структура привода: Большинство функций в приводе могут быть перепрограммированы пользователем в соответствии со своими потребностями. Например, сигнал, поданный на аналоговый вход, может управлять скоростью, крутящим моментом, быть прецизионным смещением, прибавляемым к заданному цифровому значению скорости, служить входным сигналом для ПИД регулятора, сравниваться компаратором с некоторым пороговым значением, по достижении которого привод меняет режим работы и т.д.

Имеется набор дополнительных модулей, расширяющих возможности приводов. Все модули относительно дешевы, не требуют дополнительного пространства для установки (устанавливаются прямо внутрь привода), не требуют подачи питания (питание поступает от привода).

Имеются следующие модули:

· Одноосевой сервоконтроллер, управляющий траекторией движения управляемого механизма. Программируется на специальном языке DPL (Drive Programming Language, основан на языке BASIC), обеспечивающем точное управление позицией вала двигателя в реальном масштабе времени.

· Модули для включения привода в промышленные сети Profibus, Interbus, Device Net, CTNet, Modbus +, SLM, CANopen, SERCOS, CAN, Ethernet

· Модули для подключения дополнительных входов/выходов

· Модули для подключения дополнительных внешних устройств (внешнего энкодера от ведущего привода) или альтернативного датчика обратной связи.

Встроенный ПИД регулятор: имеет входы для подачи заданного значения (уставки) и текущего значения контролируемого параметра. На эти входы могут быть поданы сигналы от любого источника: аналоговый вход (обычно сигнал от датчика), цифровое значение, выход от автоматического потенциометра, значение, переданное по сети и т.д.

Читать еще:  Что за двигатель змз 407

Встроенные логические функции: две операции логического «и» с возможностью инвертирования всех входов и выходов позволяют реализовать любые логические функции: И, И-НЕ, ИЛИ, ИЛИ-НЕ, НЕ. На выходе функций встроена задержка переднего фронта полученного сигнала, позволяющая проверить наличие сигнала в течение некоторого времени (для исключения ложных срабатываний и т.д.). На входы функций можно подать любой цифровой сигнал, существующий внутри или снаружи привода.

Типичный пример использования такой функции: если скорость двигателя меньше 1 об/мин (сигнал сравнения поступает от компаратора), ток двигателя больше 130% от номинального (сигнал сравнения поступает со второго компаратора).

И если эта ситуация продолжается более трех секунд (включена задержка переднего фронта на три сек.), то необходимо остановить двигатель, так как такая ситуация характерна для механического заклинивания вала.

Встроенные входы/выходы: все приводы имеют несколько цифровых и аналоговых входов и выходов (в среднем по три каждого типа), режимы аналоговых входов(4-20 мА, 0-20 мА, +/-10 В) и цифровых (положительная или отрицательная логика управления, выход +24 В или выход с открытым коллектором), которые свободно программируются. Число входов/выходов в приводах Control Techniques больше, чем в приводах других производителей, причем некоторые клеммы могут быть запрограммированы на работу, как в качестве входа, так и выхода.

Кроме стандартных функций, которые обычно выполняют цифровые входы в приводах всех производителей (старт/стоп привода, выбор направления вращения, сброс ошибки привода), в приводах Control Techniques входы могут использоваться для:

· выбора номера используемой предустановленной скорости (всего до 8 предустановок)

· включения/выключения функциональных блоков: ПИД регулятор, компаратор, логические функции, аналоговые входы, автоматический потенциометр.

Преимущества векторного управления асинхронным двигателем

Линейная скалярная рабочая характеристика ПЧ

При работе асинхронного электродвигателя от скалярного частотного преобразователя напряжение на двигателе понижается линейно с понижением частоты. Это происходит из-за того, что применяется широтно-импульсная модуляция (ШИМ), при которой отношение действующего напряжения к частоте является константой во всем диапазоне регулирования.

Вольт-частотная (вольт-герцовая) рабочая характеристика ПЧ будет линейной, пока напряжение на возрастет до предела, определяемого напряжением питания преобразователя. Скалярное управление не позволяет двигателю развить требуемую мощность на низких частотах (мощность зависит от напряжения), и момент на валу сильно падает.

Квадратичная скалярная рабочая характеристика

В некоторых случаях, например, при работе преобразователя на мощные вентиляторы и насосы, используют квадратичную вольт-частотную характеристику с пониженным моментом, что позволяет учесть механику процесса, снизить токи, и, соответственно, потери на низких частотах.

Основной минус скалярной вольт-частотной характеристики

У линейной и квадратичной вольт-частотной зависимости, при её простоте и широком распространении, есть большой минус – падение мощности на валу, а значит падение момента и частоты вращения двигателя. При этом происходит так называемое скольжение, когда частота вращения ротора отстает от частоты вращения электромагнитного поля.

Для устранения этого эффекта используется компенсация скольжения, позволяющая скорректировать выходную частоту (обороты двигателя) при возрастании момента нагрузки. Если правильно выбрать значение компенсации, фактическая скорость вращения при большой нагрузке будет приближаться к скорости вращения на холостом ходу.

Кроме этого, в большинстве ПЧ с линейной вольт-частотной характеристикой имеется функция компенсации момента на низких скоростях. Данная функция реализуется за счет повышения напряжения на низких частотах и при неправильном применении может вызвать перегрев двигателя.

Оба параметра компенсации имеют неизменное (установленное при настройке) значение и от нагрузки не зависят.

Преимущества векторного управления

Существует множество задач, когда нужно обеспечить заданную частоту вращения, и описанный недостаток становится очень актуальным. В таких случаях применяют векторное частотное управление, при котором контроллер вычисляет напряжение, необходимое для поддержания момента, обеспечивающего стабильную частоту. В отличие от скалярного режима, здесь происходит «умное» управление магнитным потоком ротора.

Векторное управление асинхронным двигателем особенно актуально на низких частотах – ниже 10 Гц, когда рабочий момент двигателя сильно падает. Кроме того, данный метод позволяет держать стабильную скорость (с предсказуемым линейным изменением) при разгоне. Это достигается за счет получения высокого пускового момента вплоть до выхода двигателя на режим.
Важно и то, что при векторном управлении происходит сбережение электроэнергии (в некоторых случаях – до 60%), поскольку большую часть времени частотный преобразователь передает в двигатель ровно столько энергии, сколько необходимо для поддержания заданной скорости.

Различают два вида векторного управления — без датчика скорости (без обратной связи, или бессенсорное) и с обратной связью, когда в качестве датчика, как правило, используется энкодер.

Векторное управление без обратной связи

В этом случае частотный преобразователь вычисляет скорость вращения двигателя по математической модели на основе ранее введенных данных (параметров двигателя) и данных о мгновенных значениях тока и напряжения. Опираясь на полученные расчеты, ПЧ принимает решение об изменении выходного напряжения.

Перед включением векторного бессенсорного режима необходимо тщательно выставить номинальные параметры двигателя: напряжение, ток, частоту, скорость (обороты), мощность, количество полюсов, а также сопротивление обмоток и индуктивные параметры. Если какие-то значения неизвестны, рекомендуется провести автотестирование двигателя на холостом ходу. Некоторые модели частотных преобразователей устанавливают параметры по умолчанию для стандартного двигателя после введения номинальных значений. Также необходимо задать пределы временных и токовых параметров векторного управления.

Векторное управление с обратной связью

Этот режим отличается более высокой точностью управления скоростью двигателя. Обратную связь обеспечивает энкодер, который сопрягается с частотным преобразователем через дополнительный модуль.

Энкодер устанавливается на валу электродвигателя либо последующего механизма и передает данные о текущей частоте вращения. На основании полученной информации преобразователь меняет напряжение, момент и, соответственно, скорость двигателя.
Стоит добавить, что при больших динамических нагрузках (частых изменениях момента) и работе на пониженных скоростях рекомендуется применение принудительного охлаждения внешним вентилятором.

Методы регулирования, используемые в преобразователях частоты для управления двигателями переменного тока

В настоящее время, управление скоростью двигателей переменного тока с помощью преобразователей частоты широко применяется практически во всех отраслях промышленности.

Читать еще:  Где ставят датчик температуры двигателя

На практике, применяются системы регулирования скорости трехфазных двигателей переменного тока на основе двух разных принципов управления:
1. U/f- регулирование (вольт-частотное или скалярное управление);
2. Векторное управление.

В настоящее время, управление скоростью двигателей переменного тока с помощью преобразователей частоты широко применяется практически во всех отраслях промышленности. Это, прежде всего, связано с большими достижениями в области силовой электроники и микропроцессорной техники, на основе которых были разработаны частотные преобразователи. С другой стороны, унификация производства преобразователей частоты производителями, позволила достаточно сильно повлиять на их стоимость и сделала их окупаемыми в достаточно короткие промежутки времени. Экономия энергоресурсов при применении преобразователей для управления асинхронными двигателями в некоторых случаях может достигать 40% и более.
На практике, применяются системы регулирования скорости трехфазных двигателей переменного тока на основе двух разных принципов управления:
1. U/f- регулирование (вольт-частотное или скалярное управление);
2. Векторное управление.

U/f- регулирование скорости асинхронного электропривода

Скалярное управление или U/f-регулирование асинхронным двигателем – это изменение скорости двигателя путем воздействия на частоту напряжения на статоре при одновременном изменении модуля этого напряжения. При U/f-регулировании частота и напряжение выступают как два управляющих воздействия, которые обычно регулируются совместно. При этом частота принимается за независимое воздействие, а значение напряжения при данной частоте определяется исходя из того, как должен изменяться вид механических характеристик привода при изменении частоты, т.е., из того, как должен меняться в зависимости от частоты критический момент. Для реализации такого закона регулирования необходимо обеспечить постоянство соотношения U/f=const, где U-напряжение на статоре, а f-частота напряжения статора.
При постоянстве перегрузочной способности номинальные коэффициент мощности и к.п.д. двигателя на всем диапазоне регулирования частоты вращения практически не изменяются.
К законам U/f-регулирования можно отнести законы, связывающие величины и частоты питающего двигатель напряжения (U/f=const, U/f2=const и другие). Их достоинством является возможность одновременного управления группой электродвигателей. Скалярное управление используется для большинства практических случаев применения частотного электропривода с диапазоном регулирования частоты вращения двигателя без использования датчика обратной связи до 1:40. Алгоритмы скалярного управления не позволяют реализовать контроль и управление вращающим моментом электродвигателя, а также режим позиционирования. Наиболее эффективная область применения данного способа управления: вентиляторы, насосы, конвейеры и т.д.

Векторное управление

Векторное управление – это метод управления синхронными и асинхронными двигателями, не только формирующий гармонические токи и напряжения фаз (скалярное управление), но и обеспечивающий управление магнитным потоком двигателя. В основе векторного управления лежит представление о напряжениях, токах, потокосцеплениях, как о пространственных векторах.
Основные принципы были разработаны в 70-х годах 20 века. В результате фундаментальных теоретических исследований и успехов в области силовой полупроводниковой электроники и микропроцессорных систем, на сегодняшний день, разработаны электроприводы с векторным управлением, которые серийно выпускаются производителями приводной техники всего мира.
При векторном управлении в асинхронном электроприводе в переходных процессах имеется возможность поддерживать постоянство потокосцепления ротора, в отличие от скалярного регулирования, где потокосцепление ротора в переходных процессах меняется при изменении токов статора и ротора, что приводит к снижению темпа изменения электромагнитного момента. В приводе с векторным управлением, где потокосцепление ротора можно поддерживать постоянным, электромагнитный момент изменяется так быстро, как быстро изменяется составляющая тока статора (аналогия с изменением момента при изменении тока якоря в машине постоянного тока).
При векторном управлении в звене управления подразумевается наличие математической модели регулируемого электропривода. Режимы векторного управления можно проклассифицировать следующим образом:
1. По точности математической модели электродвигателя, используемой в звене управления:
• Использование математической модели без дополнительных уточняющих измерений устройством управления параметров электродвигателя (используются лишь типовые данные двигателя, введенные пользователем);
• Использование математической модели с дополнительными уточняющими измерениями устройством управления параметров электродвигателя, т.е. активных и реактивных сопротивлений статора/ротора, напряжения и тока двигателя.
2. По наличию или отсутствию обратной связи по скорости (датчика скорости) векторное управление можно разделить на:
• Управление двигателем без обратной связи по скорости – при этом устройством управления используются данные математической модели двигателя и значения, полученные при измерении тока статора и/или ротора;
• Управление двигателем с обратной связью по скорости – при этом устройством используется не только значения, полученные при измерении тока статора и/или ротора электродвигателя (как в предыдущем случае), но и данные о скорости (положении) ротора от датчика, что в некоторых задачах управления позволяет повысить точность отработки электроприводом задания скорости (положения) .

К основным законам векторного управления можно отнести следующие:
а. Закон обеспечивающий постоянство магнитного потокосцепления статора ψ1 (соответствующее постоянству Евнеш /f).
б. Закон, обеспечивающий постоянство магнитного потокосцепления воздушного зазора ψ0 (постоянство Е/f );
в. Закон, обеспечивающий постоянство магнитного потокосцепления ротора ψ2 (постоянство Евнут/f).
Закон поддержания постоянства потокосцепления статора реализуется при поддержании постоянного отношения ЭДС статора к угловой частоте поля. Основной недостаток такого закона – пониженная перегрузочная способность двигателя при работе на высоких частотах. Обусловлено это увеличением индуктивного сопротивления статора и, следовательно, снижением потокосцепления в воздушном зазоре между статором и ротором при увеличении нагрузки.
Поддержание постоянства главного потока повышает перегрузочную способность двигателя, но усложняет аппаратную реализацию системы управления и требует либо изменений конструкции машины, либо наличия специальных датчиков.
При поддержании постоянного потокосцепления ротора, момент двигателя не имеет максимума, однако при увеличении нагрузки увеличивается главный магнитный поток, приводящий к насыщению магнитных цепей и, следовательно, к невозможности поддержания постоянства потокосцепления ротора.

Сравнительная оценка законов регулирования скорости асинхронным электроприводом изменением частоты напряжения на статоре

На рис.1 приведены результаты теоретических исследований энергетических показателей асинхронного двигателя мощностью Рн=18,5 кВт при различных законах частотного управления, которые проводились в работе В.С. Петрушина и к.т.н. А.А. Танькова «Энергетические показатели асинхронного двигателя в частотном электроприводе при различных законах управления». Там же даны результаты эксперимента, проведенного при испытании этого двигателя (закон частотного управления U/f = const). Двигатель работал на нагрузку с постоянным моментом 30,5 Нм в диапазоне скоростей 500 — 2930 об/мин.
Сопоставив полученные зависимости можно сделать вывод, что в зоне небольших скоростей при использовании законов управления второй группы КПД больше на 7-21%, а коэффициент мощности меньше на 3-7%. С увеличением скорости различия снижаются.

Читать еще:  Что такое двигатель рядная шестерка


а)

Рис.1. Изменение КПД (а) и cosφ (б) в диапазоне регулирования: 1 — экспериментальные зависимости; расчетные зависимости при разных законах управления: 2 — U/f = const, 3 — Евнеш /f = const, 4 — Е/f= const, 5 — Евнут /f= const.
Таким образом, законы векторного управления обеспечивают не только лучшее управление электроприводом в статических и динамических режимах, но и повышение КПД двигателя и, соответственно, всего привода. Однако все законы с поддержанием постоянства потокосцепления имеют свои определенные недостатки.
Общим недостатком законов с поддержанием постоянства потокосцепления являются: низкая надежность, обусловленная наличием датчиков, встраиваемых в двигатель, и потери в стали при работе двигателя с нагрузочным моментом меньше номинального. Эти потери вызваны необходимостью поддержания постоянного номинального потокосцепления в различных режимах работы.
Существенно повысить КПД двигателя можно путем регулирования магнитного потока статора (ротора) в зависимости от величины нагрузочного момента (скольжения). Недостатками такого управления являются низкие динамические характеристики привода, обусловленные большой величиной постоянной времени ротора, из-за чего магнитный поток машины восстанавливается с некоторой задержкой и сложность технической реализации системы управления.
На практике группа законов с постоянством магнитного потока получила распространение для динамичных электроприводов, работающих с постоянным моментом сопротивления на валу и с частыми ударными приложениями нагрузки. В то время как группа законов с регулированием магнитного потока в функции нагрузки на валу применяется для низкодинамичных электроприводов и для приводов с “вентиляторной” нагрузкой.

Преимущества векторного управления асинхронным двигателем

Преобразователь частоты регулирует момент и скорость вращения асинхронного двигателя, используя один из двух основных методов частотного управления — скалярный или векторный. Рассмотрим подробнее особенности этих методов.

Линейная скалярная рабочая характеристика ПЧ

При работе асинхронного электродвигателя от скалярного частотного преобразователя напряжение на двигателе понижается линейно с понижением частоты. Это происходит из-за того, что применяется широтно-импульсная модуляция (ШИМ), при которой отношение действующего напряжения к частоте является константой во всем диапазоне регулирования.

Вольт-частотная (вольт-герцовая) рабочая характеристика ПЧ будет линейной, пока напряжение на возрастет до предела, определяемого напряжением питания преобразователя. Скалярное управление не позволяет двигателю развить требуемую мощность на низких частотах (мощность зависит от напряжения), и момент на валу сильно падает.

Квадратичная скалярная рабочая характеристика

В некоторых случаях, например, при работе преобразователя на мощные вентиляторы и насосы, используют квадратичную вольт-частотную характеристику с пониженным моментом, что позволяет учесть механику процесса, снизить токи, и, соответственно, потери на низких частотах.

Основной минус скалярной вольт-частотной характеристики

У линейной и квадратичной вольт-частотной зависимости, при её простоте и широком распространении, есть большой минус – падение мощности на валу, а значит падение момента и частоты вращения двигателя. При этом происходит так называемое скольжение, когда частота вращения ротора отстает от частоты вращения электромагнитного поля.

Для устранения этого эффекта используется компенсация скольжения, позволяющая скорректировать выходную частоту (обороты двигателя) при возрастании момента нагрузки. Если правильно выбрать значение компенсации, фактическая скорость вращения при большой нагрузке будет приближаться к скорости вращения на холостом ходу.

Кроме этого, в большинстве ПЧ с линейной вольт-частотной характеристикой имеется функция компенсации момента на низких скоростях. Данная функция реализуется за счет повышения напряжения на низких частотах и при неправильном применении может вызвать перегрев двигателя.

Оба параметра компенсации имеют неизменное (установленное при настройке) значение и от нагрузки не зависят.

Преимущества векторного управления

Существует множество задач, когда нужно обеспечить заданную частоту вращения, и описанный недостаток становится очень актуальным. В таких случаях применяют векторное частотное управление, при котором контроллер вычисляет напряжение, необходимое для поддержания момента, обеспечивающего стабильную частоту. В отличие от скалярного режима, здесь происходит «умное» управление магнитным потоком ротора.

Векторное управление асинхронным двигателем особенно актуально на низких частотах – ниже 10 Гц, когда рабочий момент двигателя сильно падает. Кроме того, данный метод позволяет держать стабильную скорость (с предсказуемым линейным изменением) при разгоне. Это достигается за счет получения высокого пускового момента вплоть до выхода двигателя на режим.

Важно и то, что при векторном управлении происходит сбережение электроэнергии (в некоторых случаях – до 60%), поскольку большую часть времени частотный преобразователь передает в двигатель ровно столько энергии, сколько необходимо для поддержания заданной скорости.

Различают два вида векторного управления — без датчика скорости (без обратной связи, или бессенсорное) и с обратной связью, когда в качестве датчика, как правило, используется энкодер.

Векторное управление без обратной связи

В этом случае частотный преобразователь вычисляет скорость вращения двигателя по математической модели на основе ранее введенных данных (параметров двигателя) и данных о мгновенных значениях тока и напряжения. Опираясь на полученные расчеты, ПЧ принимает решение об изменении выходного напряжения.

Перед включением векторного бессенсорного режима необходимо тщательно выставить номинальные параметры двигателя: напряжение, ток, частоту, скорость (обороты), мощность, количество полюсов, а также сопротивление обмоток и индуктивные параметры. Если какие-то значения неизвестны, рекомендуется провести автотестирование двигателя на холостом ходу. Некоторые модели векторных преобразователей частоты устанавливают параметры по умолчанию для стандартного двигателя после введения номинальных значений. Также необходимо задать пределы временных и токовых параметров векторного управления.

Векторное управление с обратной связью

Этот режим отличается более высокой точностью управления скоростью двигателя. Обратную связь обеспечивает энкодер, который сопрягается с частотным преобразователем через дополнительный модуль.

Энкодер устанавливается на валу электродвигателя либо последующего механизма и передает данные о текущей частоте вращения. На основании полученной информации преобразователь меняет напряжение, момент и, соответственно, скорость двигателя. Стоит добавить, что при больших динамических нагрузках (частых изменениях момента) и работе на пониженных скоростях рекомендуется применение принудительного охлаждения внешним вентилятором.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector