0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство тягового двигателя и принцип работы

Работа тягового двигателя

Принцип работы. Если машину постоянного тока подключить к источнику напряжения (контактной сети), то она станет работать как электрический двигатель, т. е. превращать электрическую энергию в механическую, развивая вращающий момент на валу двигателя. Принцип действия электродвигателя постоянного тока основан на взаимодействии тока, протекающего по обмотке якоря, и Магнитного поля, создаваемого полюсами машины.

Вращающий момент двигателя

где с — коэффициент пропорциональности, учитывающий постоянные для данного двигателя величины — число пар полюсов, число проводников и число параллельных ветвей обмотки якоря; I — ток якоря; Ф — магнитный поток.

Если поместить в магнитное поле прямоугольный виток с током, то на стороны витка будут действовать силы, направленные противоположно (направление сил можно определить, пользуясь правилом левой руки). В результате действия этих сил возникнет вращающий момент, который вызовет поворот витка. Машина постоянного тока имеет много витков, последовательно соединенных и расположенных на якоре в виде обмотки. Если пропустить ток через обмотку якоря, то в результате взаимодействия его с магнитным полем полюсов машины возникнут силы, действующие на каждый виток (рис. 43, а). При совместном действии этих сил создается вращающий момент на валу — машина работает двигателем.

При вращении якоря его обмотка пересекает магнитное поле главных полюсов, поэтому в ней по закону электромагнитной индукции возникает э.д.с. Направление э.д.с., индуцируемой в проводнике, определяемое правилом правой руки, будет противоположно напряжению сети. Отсюда ток в обмотке якоря двигателя при его работе

напряжение сети; Е- э.д.с.; гя — сопротивление обмотки якоря двигателя.

Рис. 43. Схема, поясняющая возникновение вращающего (а) и тормозного (б) моментов электродвигателя

Значение э.д.с. зависит от частоты вращения п (числа оборотов) двигателя и магнитного потока Ф:

Частота вращения якоря определяется в соответствии с формулами:

Частота вращения якоря электродвигателя последовательного возбуждения меняется в зависимости от нагрузки автоматически, так как вместе с изменением тока в обмотке якоря меняется магнитный поток полюсов. Из формулы (1) видно, что частота вращения якоря п обратно пропорциональна значению магнитного потока Ф. Поэтому нагруженный двигатель (например, при движении груженого вагона на подъеме), потребляющий из сети большой ток, имеет значительный магнитный поток и небольшую частоту вращения якоря. При уменьшении же нагрузки на валу ток в обмотке якоря уменьшается, магнитный поток также уменьшается и частота вращения якоря возрастает. В обоих случаях машина работает почти с постоянной мощностью, благодаря чему колебания нагрузки тяговых подстанций и контактной сети невелики, что улучшает условия их работы.

Реакция якоря. При работе двигателя ток в обмотке якоря создает свое магнитное поле — поле якоря. Одновременное существование двух магнитных полей — поля полюсов и поля якоря — приводит к образованию результирующего магнитного поля (рис. 44).

Действие магнитного поля якоря на поле полюсов машины называется реакцией якоря. Ось результирующего магнитного поля сдвигается относительно физической нейтрали (линии, перпендикулярной оси магнитного поля) в сторону, противоположную направлению вращения якоря двигателя. Для уменьшения реакции якоря и улучшения коммутации щетки двигателей постоянного тока сдвигают в сторону, обратную направлению вращения

Реакция якоря создает неравномерность распределения магнитного потока по окружности якоря: под краями полюсов интенсивность магнитного потока выше. Это может привести к возникновению сильного искрения под щетками и даже кругового огня на коллекторе. Для предотвращения сильного увеличения магнитной индукции под краями полюсных наконечников искусственно увеличивают магнитное сопротивление в указанных местах. Для этого делают больше воздушный зазор под краями полюсных наконечников, внутреннюю поверхность которых располагают эксцентрично относительно наружной поверхности якоря. Так как магнитный поток стремится пройти по пути наименьшего магнитного сопротивления, то большая часть потока полюса проходит в этом случае в якорь через среднюю часть полюса, а потоки через края полюсных наконечников будут минимальными.

Коммутация. Под коммутацией понимают все явления и процессы, возникающие под щетками при работе машин постоянного тока. Если щетки искрят, то говорят, что машина имеет плохую коммутацию; если искрение отсутствует, то коммутацию называют хорошей. Искрение щеток могут вызвать многие причины; их разбивают на две группы: механические и электромагнитные. К механическим причинам относятся: слабое нажатие щеток на коллектор, плохая притирка их по поверхности коллектора, некачественная продорожка, плохо отшлифованная поверхность пластин, вибрация щеткодержателей и т.д. Все это приводит к вибрации щеток, в связи с чем возможны кратковременный отрыв щетки от коллектора и возникновение кратковременной электрической дуги.

Электромагнитные причины приводят к тому, что даже при идеальном состоянии щеточного контакта при выходе коллекторной пластины из-под щетки разрывается ток и возникает короткая электрическая дуга, повреждающая сбегающие края щетки и коллекторных пластин. Искрение, вызванное электромагнитными причинами, повреждает поверхность коллектора и, как следствие, приводит к вибрации щеток, т. е. способствует возникновению искрения из-за механических причин.

Качество коммутации оценивается степенью искрения под сбегающим краем щетки при вращении коллектора по следующей шкале:

1 — отсутствие искрения (темная коммутация);

1 у — слабое точечное искрение под небольшим числом щеток; почернения на коллекторе и следов нагара на щетках нет;

1 У2 — слабое искрение под половиной щеток; наблюдается появление следов почернения на коллекторе и нагара на щетках, легко Устраняемых протиранием поверхности коллектора бензином;

2 — искрение под всеми щетками; следы почернения на коллекторе и следы нагара на щетках не устраняются при протирании коллектора бензином;

3 — значительное искрение под всеми щетками, наличие крупных вылетающих искр; происходят значительное почернение коллектора, подгар и частичное разрушение щеток.

При степенях искрения 2 и 3 тяговые двигатели к эксплуатации не допускаются.

Возбуждение. В зависимости от способа создания магнитного поля различают машины постоянного тока с независимым возбуждением и самовозбуждением.

У машин с независимым возбуждением обмотки главных полюсов (обмотки возбуждения) питаются от постороннего источника тока. Напряжение на обмотку возбуждения полюсов машины с самовозбуждением подается с ее щеток, причем обмотка возбуждения может быть включена последовательно с обмоткой якоря или параллельно ей. В первом случае машины называют машинами последовательного возбуждения, во втором — параллельного возбуждения. Возможен и такой вариант, когда машина имеет две обмотки возбуждения, намотанные на одни и те же полюса и включенные — одна последовательно с обмоткой якоря, другая — параллельно ей. Такие машины называют машинами смешанного возбуждения.

Тот или иной тип возбуждения определяется назначением машины. Тяговые двигатели вагонов метрополитена являются машинами постоянного тока последовательного возбуждения.

Ток, протекающий по обмоткам якоря и возбуждения, одинаков, и магнитный поток, создаваемый обмоткой возбуждения, при малом насыщении стали магнитопровода пропорционален току якоря: Ф = с,/я. Так как вращающий момент на валу двигателя М = с1яФ, то для двигателя последовательного возбуждения можно считать, что М= с21я 2 . В этих формулах с, с„ с2 — коэффициенты, учитывающие параметры двигателя (его размеры, число пар полюсов, число проводников обмотки якоря и т.п.) и размерности величин, входящих в формулу.

Квадратичная зависимость вращающего момента от тока в обмотке якоря позволяет при электродвигателе последовательного возбуждения резко увеличивать силу тяги, вращающий момент при пуске, когда двигатель должен преодолеть инерцию нагрузки на валу.

Контрольные вопросы 1. Поясните принцип работы машины постоянного тока в режиме двигателя.

2. От чего зависит вращающий момент двигателя?

3. Какой формулой определяется частота вращения вала двигателя? От чего зависит частота вращения?

4. Что такое реакция якоря и как она влияет на коммутацию машины?

5. Как оценивается качество коммутации?

6. Как классифицируются машины постоянного тока по способу возбуждения?

7. Почему в качестве тяговых двигателей используются машины постоянного тока с последовательным возбуждением?

Электропоезда метрополитена

  • Введение
  • Кузов вагона
  • Оборудование салона
  • Тележки. Рамы тележек
  • Колесные пары
  • Буксовые узлы
  • Рессорное подвешивание кузова
  • Тяговая передача и узел подвешивания редуктора
  • Карданная муфта
  • Узлы подвешивания тягового двигателя и бруса токоприемника
  • Тормозное оборудование
  • Автосцепка
  • Механическая часть. Узел подвешивания автосцепки
  • Пневматическая и электрическая части
  • Порядок сцепления и расцепления вагонов. Уход за автосцепкой
  • Тяговые двигатели. Мотор-компрессоры
  • Устройство тягового двигателя
  • Работа тягового двигателя
  • Пуск тягового двигателя
  • Регулирование частоты вращения якоря тягового двигателя и изменение направления его вращения
  • Электрическое торможение
  • Мотор-компрессоры
  • Уход за двигателями
  • Электрические аппараты и приборы
  • Токоприемники
  • Главный разъединитель
  • Заземляющие устройства
  • Главный предохранитель
  • Электропневматические вентили
  • Индивидуальные контакторы
  • Групповые контакторы
  • Реле управления и защиты
  • Выключатели
  • Регулятор давления
  • Резисторы, электрические печи и индуктивные шунты
  • Плавкие предохранители
  • Соединительные устройства
  • Измерительные приборы
  • Аккумуляторная батарея
  • Радиооборудование
  • Виды схем, принципы их построения
  • Условные графические и буквенные обозначения
  • Способы управления тяговыми двигателями
  • Перечень электрооборудования силовых цепей вагона Е
  • Силовые цепи вагона Е в тяговом режиме
  • Силовые цепи вагона Е в тормозном режиме
  • Перечень электрооборудования силовых цепей вагона ЕжЗ
  • Силовые цепи вагона ЕжЗ в тяговом режиме
  • Силовые цепи вагона ЕжЗ в тормозном режиме
  • Общие сведения о схеме цепей управления
  • Цепи управления вагона Е в тяговом режиме
  • Цепи управления вагона Е в тормозном режиме
  • Цепи управления вагона ЕжЗ в тяговом режиме
  • Цепи управления вагона ЕжЗ в тормозном режиме
  • Резервное управление поездом
  • Система АЛС — АРС. Контроль эффективности торможения и бдительности машиниста
  • Общие сведения о схеме вспомогательных цепей
  • Вспомогательные цепи высокого напряжения
  • Вспомогательные цепи низкого напряжения
  • Защита электрических цепей вагона
  • Цепи сигнализации неисправностей
  • Система планово-предупредительного ремонта
  • Причины производственного травматизма
  • Электротравматизм и его предупреждение
  • Правила безопасной работы с инструментами и приспособлениями
  • Правила безопасности при осмотре и ремонте вагонного оборудования
Читать еще:  Двигатель глохнет на холостых оборотах ford focus
Электродинамический тормоз электровозов ЧС2 Т и ЧС200

Рассмотрены устройство и работа основного электронного оборудования, применяемого в электродинамическом (реостатном) тормозе системы «Шкода». Применительно к электродинамическому тормозу электровозов ЧС2 Т и его модификации на скоростном электровозе ЧС200

Устройство тягового двигателя и принцип работы

На электровозе ВЛ10 установлены восемь тяговых электродвигателей типа ТЛ2К. Тяговый электродвигатель постоянного тока ТЛ2К предназначен для преобразования электрической энергии, получаемой из контактной сети, в механическую. Вращающий момент с вала якоря электродвигателя передается на колесную пару через двустороннюю одноступенчатую цилиндрическую косозубую передачу. При такой передаче подшипники двигателя не получают добавочных нагрузок по аксиальному направлению.

Подвеска электродвигателя опорно-осевая. Электродвигатель с одной стороны опирается моторно-осевыми подшипниками на ось колесной пары электровоза, а с другой на раму тележки через шарнирную подвеску и резиновые шайбы. Система вентиляции независимая, с подачей вентилирующего воздуха сверху в коллекторную камеру и выбросом сверху с противоположной стороны вдоль оси двигателя. Электрические машины обладают свойством обратимости, заключающимся в том, что одна и та же машина может работать как двигатель и как генератор. Благодаря этому тяговые электродвигатели используют не только для тяги, но и для электрического торможения поездов. При таком торможении тяговые двигатели переводят в генераторный режим, а вырабатываемую ими за счет кинетической или потенциальной энергии поезда электрическую энергию гасят в установленных на электровозах резисторах (реостатное торможение) или отдают в контактную сеть (рекуперативное торможение).

2. Принцип работы ТЛ-2К

При прохождении тока по проводнику, расположенному в магнитном поле, возникает сила электромагнитного взаимодействия, стремящаяся перемещать проводник в направлении, перпендикулярном проводнику и магнитным силовым линиям. Проводники обмотки якоря в определенном порядке присоединены к коллекторным пластинам. На внешней поверхности коллектора установлены щетки положительной (+) и отрицательной (-) полярностей, которые при включении двигателя соединяют коллектор с источником тока. Таким образом, через коллектор и щетки получает питание током обмотка якоря двигателя. Коллектор обеспечивает такое распределение тока в обмотке якоря, при котором ток в проводниках, находящийся в любое мгновение времени под полюсами одной полярности, имеет одно направление, а в проводниках, находящихся под полюсами другой полярности, — противоположное.

Катушки возбуждения и обмотка якоря могут получать питание от разных источников тока, т. е тяговый двигатель будет иметь независимое возбуждение. Обмотка якоря и катушки возбуждения могут быть соединены параллельно и получать питание от одного и того же источника тока, т.е тяговый двигатель будет иметь параллельное возбуждение. Обмотка якоря и катушки возбуждения могут быть соединены последовательно и получать питание от одного источника тока, т.е тяговый двигатель будет иметь последовательное возбуждение. Сложным требованием эксплуатации наиболее полно удовлетворяют двигатели с последовательным возбуждением, поэтому их применяют на электровозах.

3. Устройство ТЛ-2К

Тяговый двигатель ТЛ-2К имеет глухие подшипниковые щиты с выбросом охлаждающего воздуха через специальный патрубок.

Он состоит из остова, якоря, щеточного аппарата и подшипниковых щитов (рис.1). Остов двигателя 3 представляет собой отливку из стали марки 25Л цилиндрической формы и служит одновременно магнитопроводом. К нему крепятся шесть главных 34 и шесть дополнительных 4 полюсов, поворотная траверса 24 с шестью щеткодержателями 1 и щиты с роликовыми подшипниками, в которых вращается якорь 5 двигателя. С наружной поверхности остов имеет два прилива 27 для крепления букс моторно-осевых подшипников, прилив и съемный кронштейн для подвески двигателя, предохранительные приливы и приливы с отверстиями для транспортировки.

Со стороны коллектора имеются три люка, предназначенные для осмотра щеточного аппарата и коллектора. Люки герметично закрываются крышками.

Крышка верхнего коллекторного люка укреплена на остове специальным пружинным замком, крышка нижнего одним болтом М20 и специальным болтом с цилиндрической пружиной и крышка второго нижнего люка четырьмя болтами М12. Для подачи воздуха имеется вентиляционный люк. Выход вентилирующего воздуха осуществлен со стороны, противоположной коллектору, через специальный кожух, укрепленный на подшипниковом щите и остове.


Рис. 1 Тяговый двигатель ТЛ-2К

Выводы из двигателя выполнены кабелем марки ПМУ-4000 сечением 120 мм2. Кабели защищены брезентовыми чехлами с комбинированной пропиткой. На кабелях имеются ярлычки из полихлорвиниловых трубок с обозначениями Я, ЯЯ, К и КК. Выводные кабели Я и ЯЯ соединены с обмотками: якоря, дополнительных полюсов и с компенсационной , а выводные кабели К и КК соединены с обмотками главных полюсов.

Сердечники главных полюсов собраны из листовой электротехнической стали толщиной 0,5 мм, скреплены заклепками и укреплены на остове четырьмя болтами М24 каждый. Между сердечником главного полюса и остовом имеется одна стальная прокладка толщиной 0,5 мм. Катушка главного полюса, имеющая 19 витков, намотана на ребро из мягкой ленточной меди МГМ размерами 1,95 х 65 мм, изогнута по радиусу для обеспечения прилегания к внутренней поверхности остова. Корпусная изоляция состоит из восьми слоев стекломикаленты марки ЛМК-ТТ 0,13*30 мм и одного слоя стеклоленты толщиной 0,2 мм, уложенных с перекрытием в половину ширины ленты. Межвитковая изоляция выполнена из бумаги асбестовой в два ряда слоя толщиной 0,2 мм и пропитана лаком К-58. Для улучшения рабочих характеристик двигателя применена компенсационная обмотка, расположенная в пазах, проштампованных в наконечниках главных полюсов, и соединенная с обмоткой якоря последовательно.

Компенсационная обмотка состоит из шести катушек, намотанных из мягкой прямоугольной медной проволоки МГМ сечением 3,28?22 мм и имеет 10 витков. В каждом пазу расположено по два стержня. Корпусная изоляция состоит из 9 слоев микаленты марки ЛФЧ-ББ 0,1х20 мм и одного слоя стеклоленты толщиной 0,1 мм, уложенных с перекрытием в половину ширины ленты. Витковая изоляция имеет один слой микаленты толщиной 0,1 мм, уложенной с перекрытием в половину ширины ленты. Крепление компенсационной обмотки в пазах клиньями из текстолита марки Б.

Сердечники дополнительных полюсов выполнены из толстолистового проката или поковки и укреплены на остове тремя болтами М20 каждый. Для уменьшения насыщения добавочного полюса между остовом и сердечником дополнительных полюсов предусмотрены латунные прокладки толщиной 7 мм. Катушки дополнительных полюсов намотаны на ребро из мягкой медной проволоки МГМ сечением 6х20 мм и имеют 10 витков каждая. Корпусная и покровная изоляция этих катушек аналогична изоляции катушек главного полюса. Межвитковая изоляция состоит из асбестовых прокладок толщиной 0,5 мм, пропитанных лаком К-58.

Щеточный аппарат тягового электродвигателя состоит из траверсы разрезного типа с поворотным механизмом, шести кронштейнов и шести щеткодержателей. Траверса стальная, отливка швеллерного сечения имеет по наружному ободу зубчатый венец, входящий в зацепление с шестерней поворотного механизма. В остове фиксирована и застопорена траверса щеточного аппарата болтом фиксатора, установленным на наружной стенке верхнего коллекторного люка, и прижата к подшипниковому щиту двумя болтами стопорного устройства: одно – внизу остова, второе – со стороны подвески. Электрическое соединение кронштейнов траверсы между собой выполнено кабелями ПС-4000 сечением 50 мм2.

Кронштейны щеткодержателя разъемные (из двух половин) закреплены болтами М20 на двух изоляционных пальцах, установленных на траверсе. Изоляционные пальцы представляют собой стальные шпильки, опрессованные прессмассой АГ-4, сверху на них насажены фарфоровые изоляторы. Щеткодержатель имеет две цилиндрические пружины, работающие на растяжение. Пружины закреплены одним концом на оси, вставленной в отверстие корпуса щеткодержателя, другим на оси нажимного пальца с помощью регулирующего винта, которым регулируют натяжение пружины. Кинематика нажимного механизма выбрана так, что в рабочем диапазоне обеспечивает практически постоянное нажатие на щетку. Кроме того, при максимально допустимом износе щетки давление нажимного пальца на нее автоматически прекращается. Это позволяет предотвратить повреждение рабочей поверхности коллектора шунтами сработанных щеток.
В окна щеткодержателя вставлены две разрезные щетки марки ЭГ-61 размером 2(8х50)х60 мм с резиновыми амортизаторами. Крепление щеткодержателей к кронштейну осуществлено шпилькой и гайкой.

Читать еще:  Характеристика топлива для карбюраторных двигателей

Для более надежного крепления и для регулировки положения щеткодержателя относительно рабочей поверхности по высоте коллектора на корпусе щеткодержателя и кронштейна предусмотрена гребенка.

Якорь двигателя состоит из коллектора обмотки, вложенной в пазы сердечника, набранного в пакет из лакированных листов электротехнической стали марки Э-22 толщиной, 0,5 мм, стальной втулки, задней и передней нажимных шайб, вала, катушек и 25 секционных уравнителей, концы которых впаяны в петушки коллектора. В сердечнике имеется один ряд аксиальных отверстий для прохода вентилирующего воздуха. Передняя нажимная шайба одновременно служит корпусом коллектора. Все детали якоря собраны на общей втулке коробчатой формы, напрессованной на вал якоря, что обеспечивает его замены. Катушка имеет 14 отдельных проводников, расположенных по высоте в два ряда, и по семи проводников в ряду, они изготовлены из ленточной меди размером 0,9?8,0 мм марки МГМ и изолированы одним слоем с перекрытием в половину ширины микаленты ЛФЧ-ББ толщиной 0,075 мм. Корпусная изоляция пазовой части катушки состоит из шести слоев стеклослюдянитовой ленты ЛСК-110тт 0,11х20 мм, одного слоя ленты электроизоляционного фторопласта толщиной 0,03 мм и одного слоя стеклоленты толщиной 0,1 мм, уложенных с перекрытием в половину ширины ленты. Уравнители секционные изготавливают из трех проводов сечением 0,90х2,83 мм марки ПЭТВСД. Изоляция каждого провода состоит из одного слоя стеклослюдянитовой ленты ЛСК-110тт 0,11х20 мм, одного слоя ленты электроизоляционного фторопласта толщиной 0,03 мм и одного слоя стеклоленты толщиной 0,11 мм. Вся изоляция уложена с перекрытием половины ширины ленты. В пазовой части обмотка якоря крепится текстолитовыми клиньями, а в лобовой части – стеклобандажом. Коллектор тягового двигателя с диаметром рабочей поверхности 660 мм состоит из 525 медных пластин, изолированных друг от друга миканитовыми прокладками.

От нажимного конуса и корпуса коллектор изолирован миканитовыми манжетами и цилиндром. Обмотка якоря имеет следующие данные: число пазов – 75, шаг по пазам – 1 – 13, число коллекторных пластин – 525, шаг по коллектору – 1 – 2, шаг уравнителей по коллектору – 1 – 176. Якорные подшипники двигателя тяжелой серии с цилиндрическими роликами типа 8Н2428М обеспечивают разбег якоря в пределах 6,3 – 8,1 мм. Наружные кольца подшипников запрессованы в щиты подшипников, а внутренние кольца напрессованы на вал якоря. Подшипниковые камеры для предотвращения воздействия внешней среды и утечки смазки имеют уплотнения. Подшипниковые щиты запрессованы в остов и прикреплены к нему каждый восемью болтами М24 с пружинными шайбами. Моторно- осевые подшипники состоят из латунных вкладышей, залитых по внутренней поверхности баббитом Б16, и букс с постоянным уровнем смазки. Буксы имеют окно для подачи смазки. Для предотвращения поворота вкладышей предусмотрено в буксе шпоночное соединение.

ЛИТЕРАТУРА

1. Правила МПС России от 26.05.2000 № ЦРБ-756 «Правила технической эксплуатации железных дорог Российской Федерации».
2. Алябьев С.А. и др. Устройство и ремонт электровозов постоянного тока. Учебник для технических школ ж.д. транспорта — М., Транспорт, 1977
3. Дубровский З.М. и др. Электровоз. Управление и обслуживание. — М., Транспорт, 1979
4. Красковская С.Н. и др. Текущий ремонт и техническое обслуживание электровозов постоянного тока. — М., Транспорт, 1989
5. Афонин Г.С., Барщенков В.Н., Кондратьев Н.В. Устройство и эксплуатация тормозного оборудования подвижного состава. Учебник для начального профессионального образования. М.: Издательский центр «Академия», 2005.
6. Кикнадзе О.А. Электровозы ВЛ-10 и ВЛ-10у. М.: Транспорт, 1975
7. Охрана труда на железнодорожном транспорте и в транспортном строительстве. Учебник для учащихся техникумов ж.д транспорта. — М., Транспорт, 1983

Устройство тягового двигателя и принцип работы

ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ
«Регионального Центра Инновационных Технологий»
Тяговый электродвигатель ТЛ-2К
Тяговый электродвигатель ТЛ-2К
1. Назначение тягового двигателя ТЛ-2К

На электровозе ВЛ10 установлены восемь тяговых электродвигателей типа ТЛ2К. Тяговый электродвигатель постоянного тока ТЛ2К предназначен для преобразования электрической энергии, получаемой из контактной сети, в механическую. Вращающий момент с вала якоря электродвигателя передается на колесную пару через двустороннюю одноступенчатую цилиндрическую косозубую передачу. При такой передаче подшипники двигателя не получают добавочных нагрузок по аксиальному направлению.

Подвеска электродвигателя опорно-осевая. Электродвигатель с одной стороны опирается моторно-осевыми подшипниками на ось колесной пары электровоза, а с другой на раму тележки через шарнирную подвеску и резиновые шайбы. Система вентиляции независимая, с подачей вентилирующего воздуха сверху в коллекторную камеру и выбросом сверху с противоположной стороны вдоль оси двигателя. Электрические машины обладают свойством обратимости, заключающимся в том, что одна и та же машина может работать как двигатель и как генератор. Благодаря этому тяговые электродвигатели используют не только для тяги, но и для электрического торможения поездов. При таком торможении тяговые двигатели переводят в генераторный режим, а вырабатываемую ими за счет кинетической или потенциальной энергии поезда электрическую энергию гасят в установленных на электровозах резисторах (реостатное торможение) или отдают в контактную сеть (рекуперативное торможение).

2. Принцип работы ТЛ-2К

При прохождении тока по проводнику, расположенному в магнитном поле, возникает сила электромагнитного взаимодействия, стремящаяся перемещать проводник в направлении, перпендикулярном проводнику и магнитным силовым линиям. Проводники обмотки якоря в определенном порядке присоединены к коллекторным пластинам. На внешней поверхности коллектора установлены щетки положительной (+) и отрицательной (-) полярностей, которые при включении двигателя соединяют коллектор с источником тока. Таким образом, через коллектор и щетки получает питание током обмотка якоря двигателя. Коллектор обеспечивает такое распределение тока в обмотке якоря, при котором ток в проводниках, находящийся в любое мгновение времени под полюсами одной полярности, имеет одно направление, а в проводниках, находящихся под полюсами другой полярности, — противоположное.

Катушки возбуждения и обмотка якоря могут получать питание от разных источников тока, т. е тяговый двигатель будет иметь независимое возбуждение. Обмотка якоря и катушки возбуждения могут быть соединены параллельно и получать питание от одного и того же источника тока, т.е тяговый двигатель будет иметь параллельное возбуждение. Обмотка якоря и катушки возбуждения могут быть соединены последовательно и получать питание от одного источника тока, т.е тяговый двигатель будет иметь последовательное возбуждение. Сложным требованием эксплуатации наиболее полно удовлетворяют двигатели с последовательным возбуждением, поэтому их применяют на электровозах.

3. Устройство ТЛ-2К

Тяговый двигатель ТЛ-2К имеет глухие подшипниковые щиты с выбросом охлаждающего воздуха через специальный патрубок.

Он состоит из остова, якоря, щеточного аппарата и подшипниковых щитов (рис.1). Остов двигателя 3 представляет собой отливку из стали марки 25Л цилиндрической формы и служит одновременно магнитопроводом. К нему крепятся шесть главных 34 и шесть дополнительных 4 полюсов, поворотная траверса 24 с шестью щеткодержателями 1 и щиты с роликовыми подшипниками, в которых вращается якорь 5 двигателя. С наружной поверхности остов имеет два прилива 27 для крепления букс моторно-осевых подшипников, прилив и съемный кронштейн для подвески двигателя, предохранительные приливы и приливы с отверстиями для транспортировки.

Со стороны коллектора имеются три люка, предназначенные для осмотра щеточного аппарата и коллектора. Люки герметично закрываются крышками.

Крышка верхнего коллекторного люка укреплена на остове специальным пружинным замком, крышка нижнего одним болтом М20 и специальным болтом с цилиндрической пружиной и крышка второго нижнего люка четырьмя болтами М12. Для подачи воздуха имеется вентиляционный люк. Выход вентилирующего воздуха осуществлен со стороны, противоположной коллектору, через специальный кожух, укрепленный на подшипниковом щите и остове.


Рис. 1 Тяговый двигатель ТЛ-2К

Выводы из двигателя выполнены кабелем марки ПМУ-4000 сечением 120 мм2. Кабели защищены брезентовыми чехлами с комбинированной пропиткой. На кабелях имеются ярлычки из полихлорвиниловых трубок с обозначениями Я, ЯЯ, К и КК. Выводные кабели Я и ЯЯ соединены с обмотками: якоря, дополнительных полюсов и с компенсационной , а выводные кабели К и КК соединены с обмотками главных полюсов.

Сердечники главных полюсов собраны из листовой электротехнической стали толщиной 0,5 мм, скреплены заклепками и укреплены на остове четырьмя болтами М24 каждый. Между сердечником главного полюса и остовом имеется одна стальная прокладка толщиной 0,5 мм. Катушка главного полюса, имеющая 19 витков, намотана на ребро из мягкой ленточной меди МГМ размерами 1,95 х 65 мм, изогнута по радиусу для обеспечения прилегания к внутренней поверхности остова. Корпусная изоляция состоит из восьми слоев стекломикаленты марки ЛМК-ТТ 0,13*30 мм и одного слоя стеклоленты толщиной 0,2 мм, уложенных с перекрытием в половину ширины ленты. Межвитковая изоляция выполнена из бумаги асбестовой в два ряда слоя толщиной 0,2 мм и пропитана лаком К-58. Для улучшения рабочих характеристик двигателя применена компенсационная обмотка, расположенная в пазах, проштампованных в наконечниках главных полюсов, и соединенная с обмоткой якоря последовательно.

Читать еще:  Двигатель автомобиля стал громко работать

Компенсационная обмотка состоит из шести катушек, намотанных из мягкой прямоугольной медной проволоки МГМ сечением 3,28?22 мм и имеет 10 витков. В каждом пазу расположено по два стержня. Корпусная изоляция состоит из 9 слоев микаленты марки ЛФЧ-ББ 0,1х20 мм и одного слоя стеклоленты толщиной 0,1 мм, уложенных с перекрытием в половину ширины ленты. Витковая изоляция имеет один слой микаленты толщиной 0,1 мм, уложенной с перекрытием в половину ширины ленты. Крепление компенсационной обмотки в пазах клиньями из текстолита марки Б.

Сердечники дополнительных полюсов выполнены из толстолистового проката или поковки и укреплены на остове тремя болтами М20 каждый. Для уменьшения насыщения добавочного полюса между остовом и сердечником дополнительных полюсов предусмотрены латунные прокладки толщиной 7 мм. Катушки дополнительных полюсов намотаны на ребро из мягкой медной проволоки МГМ сечением 6х20 мм и имеют 10 витков каждая. Корпусная и покровная изоляция этих катушек аналогична изоляции катушек главного полюса. Межвитковая изоляция состоит из асбестовых прокладок толщиной 0,5 мм, пропитанных лаком К-58.

Щеточный аппарат тягового электродвигателя состоит из траверсы разрезного типа с поворотным механизмом, шести кронштейнов и шести щеткодержателей. Траверса стальная, отливка швеллерного сечения имеет по наружному ободу зубчатый венец, входящий в зацепление с шестерней поворотного механизма. В остове фиксирована и застопорена траверса щеточного аппарата болтом фиксатора, установленным на наружной стенке верхнего коллекторного люка, и прижата к подшипниковому щиту двумя болтами стопорного устройства: одно – внизу остова, второе – со стороны подвески. Электрическое соединение кронштейнов траверсы между собой выполнено кабелями ПС-4000 сечением 50 мм2.

Кронштейны щеткодержателя разъемные (из двух половин) закреплены болтами М20 на двух изоляционных пальцах, установленных на траверсе. Изоляционные пальцы представляют собой стальные шпильки, опрессованные прессмассой АГ-4, сверху на них насажены фарфоровые изоляторы. Щеткодержатель имеет две цилиндрические пружины, работающие на растяжение. Пружины закреплены одним концом на оси, вставленной в отверстие корпуса щеткодержателя, другим на оси нажимного пальца с помощью регулирующего винта, которым регулируют натяжение пружины. Кинематика нажимного механизма выбрана так, что в рабочем диапазоне обеспечивает практически постоянное нажатие на щетку. Кроме того, при максимально допустимом износе щетки давление нажимного пальца на нее автоматически прекращается. Это позволяет предотвратить повреждение рабочей поверхности коллектора шунтами сработанных щеток.
В окна щеткодержателя вставлены две разрезные щетки марки ЭГ-61 размером 2(8х50)х60 мм с резиновыми амортизаторами. Крепление щеткодержателей к кронштейну осуществлено шпилькой и гайкой.

Для более надежного крепления и для регулировки положения щеткодержателя относительно рабочей поверхности по высоте коллектора на корпусе щеткодержателя и кронштейна предусмотрена гребенка.

Якорь двигателя состоит из коллектора обмотки, вложенной в пазы сердечника, набранного в пакет из лакированных листов электротехнической стали марки Э-22 толщиной, 0,5 мм, стальной втулки, задней и передней нажимных шайб, вала, катушек и 25 секционных уравнителей, концы которых впаяны в петушки коллектора. В сердечнике имеется один ряд аксиальных отверстий для прохода вентилирующего воздуха. Передняя нажимная шайба одновременно служит корпусом коллектора. Все детали якоря собраны на общей втулке коробчатой формы, напрессованной на вал якоря, что обеспечивает его замены. Катушка имеет 14 отдельных проводников, расположенных по высоте в два ряда, и по семи проводников в ряду, они изготовлены из ленточной меди размером 0,9?8,0 мм марки МГМ и изолированы одним слоем с перекрытием в половину ширины микаленты ЛФЧ-ББ толщиной 0,075 мм. Корпусная изоляция пазовой части катушки состоит из шести слоев стеклослюдянитовой ленты ЛСК-110тт 0,11х20 мм, одного слоя ленты электроизоляционного фторопласта толщиной 0,03 мм и одного слоя стеклоленты толщиной 0,1 мм, уложенных с перекрытием в половину ширины ленты. Уравнители секционные изготавливают из трех проводов сечением 0,90х2,83 мм марки ПЭТВСД. Изоляция каждого провода состоит из одного слоя стеклослюдянитовой ленты ЛСК-110тт 0,11х20 мм, одного слоя ленты электроизоляционного фторопласта толщиной 0,03 мм и одного слоя стеклоленты толщиной 0,11 мм. Вся изоляция уложена с перекрытием половины ширины ленты. В пазовой части обмотка якоря крепится текстолитовыми клиньями, а в лобовой части – стеклобандажом. Коллектор тягового двигателя с диаметром рабочей поверхности 660 мм состоит из 525 медных пластин, изолированных друг от друга миканитовыми прокладками.

От нажимного конуса и корпуса коллектор изолирован миканитовыми манжетами и цилиндром. Обмотка якоря имеет следующие данные: число пазов – 75, шаг по пазам – 1 – 13, число коллекторных пластин – 525, шаг по коллектору – 1 – 2, шаг уравнителей по коллектору – 1 – 176. Якорные подшипники двигателя тяжелой серии с цилиндрическими роликами типа 8Н2428М обеспечивают разбег якоря в пределах 6,3 – 8,1 мм. Наружные кольца подшипников запрессованы в щиты подшипников, а внутренние кольца напрессованы на вал якоря. Подшипниковые камеры для предотвращения воздействия внешней среды и утечки смазки имеют уплотнения. Подшипниковые щиты запрессованы в остов и прикреплены к нему каждый восемью болтами М24 с пружинными шайбами. Моторно- осевые подшипники состоят из латунных вкладышей, залитых по внутренней поверхности баббитом Б16, и букс с постоянным уровнем смазки. Буксы имеют окно для подачи смазки. Для предотвращения поворота вкладышей предусмотрено в буксе шпоночное соединение.

ЛИТЕРАТУРА

1. Правила МПС России от 26.05.2000 № ЦРБ-756 «Правила технической эксплуатации железных дорог Российской Федерации».
2. Алябьев С.А. и др. Устройство и ремонт электровозов постоянного тока. Учебник для технических школ ж.д. транспорта — М., Транспорт, 1977
3. Дубровский З.М. и др. Электровоз. Управление и обслуживание. — М., Транспорт, 1979
4. Красковская С.Н. и др. Текущий ремонт и техническое обслуживание электровозов постоянного тока. — М., Транспорт, 1989
5. Афонин Г.С., Барщенков В.Н., Кондратьев Н.В. Устройство и эксплуатация тормозного оборудования подвижного состава. Учебник для начального профессионального образования. М.: Издательский центр «Академия», 2005.
6. Кикнадзе О.А. Электровозы ВЛ-10 и ВЛ-10у. М.: Транспорт, 1975
7. Охрана труда на железнодорожном транспорте и в транспортном строительстве. Учебник для учащихся техникумов ж.д транспорта. — М., Транспорт, 1983

Устройство тягового двигателя постоянного тока

Тяговый электродвигатель как машина, преобразующая электрическую энергию в механическую для привода в движение колесных пар вагонов. Обзор основных частей тягового двигателя электровоза: остов с полюсами, якорь, щеткодержатели и щетки, подшипниковые щиты.

  • посмотреть текст работы «Устройство тягового двигателя постоянного тока»
  • скачать работу «Устройство тягового двигателя постоянного тока» (реферат)

Подобные документы

Общие сведения об электровозах. Расположение оборудования на электровозах и устройство тягового электродвигателя электровоза (ТЭД). Построение тяговой и удельной тяговой характеристик электровоза 3ЭС5К. Вспомогательные машины и цепи электровозов.

учебное пособие, добавлен 06.10.2014

Крупноагрегатный метод ремонта электровоза с очерёдностью разборки и сборки и испытания после ремонта тягового двигателя. Назначение и устройство центральных и боковых опор электровоза. Осмотр механической части локомотива на промежуточных станциях.

дипломная работа, добавлен 09.12.2015

Устройство и назначение тяговых электродвигателей, их неисправности, ремонт и дефектоскопия. Устройство, назначение и техническая характеристика тягового электродвигателя пульсирующего тока НБ-418 Кб. Устройство для балансировки якоря электродвигателя.

дипломная работа, добавлен 26.05.2018

Силовая часть гидравлического привода, преобразующая механическую энергию двигателя в энергию движения рабочей жидкости и обратно. Принцип действия гидрораспределителя. Предохранительные клапаны, служащие для предохранения гидро-передачи от давления.

реферат, добавлен 09.12.2020

Анализ развития железнодорожного транспорта в России. Изучение устройства, принципа действия и особенностей эксплуатации тягового трансформатора электровоза. Описание технологии его ремонта и технического обслуживания, а также правил техники безопасности.

курсовая работа, добавлен 28.10.2016

История электропоездов: 1927-1932 гг. Технические характеристики, особенности эксплуатации, основные части и принцип действия тягового двигателя. Причины неисправности и способы их устранения. Ремонт остовов, статоров, якорей и щеточного аппарата.

реферат, добавлен 20.10.2014

Расчет номинального тока тягового электродвигателя. Особенность силовой электрической цепи электровоза постоянного стрежня. Главный анализ работы системы управления локомотивом при разгоне поезда. Основная характеристика рационального ведения товарника.

курсовая работа, добавлен 26.08.2015

Понятия двигателя-компрессора и двигателя-генератора, их предназначение. Устройство пневматических тормозов поезда и электрических аппаратов электровозов. Характеристика генератора с тремя обмотками возбуждения и генератора с расщепленными полюсами.

реферат, добавлен 02.04.2015

Конструкция якоря тягового электродвигателя (ТЭД) электровоза ВЛ-80с. Основные неисправности и их влияние на безопасность движения. Технология диагностики состояния отдельных узлов ТЭД. Диагностические методы измерения уровня шума и вибрации якоря ТЭД.

дипломная работа, добавлен 30.07.2015

Характеристика тягового электродвигателя. Принцип работы и устройство ТЛ-2К. Общая структура ремонта магнитной системы остова. Осмотр и проверка полюсов и межкатушечных соединений. Соблюдение требований техники безопасности при ремонте электромашин.

курсовая работа, добавлен 13.01.2014

  • 1
  • 2
  • 3
  • 4
  • 5
  • »
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector