8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство и как работает асинхронный двигатель

§76. Асинхронный двигатель с короткозамкнутым ротором

Асинхронный двигатель с короткозамкнутым ротором (рис. 249 и 250) состоит из следующих основных частей: статор с трехфазной обмоткой, ротор с короткозамкнутой обмоткой и остов. Обмотка ротора выполнена бесконтактной (она не соединена ни с какой внешней цепью), что определяет высокую надежность такого двигателя.

Магнитная система. Асинхронная машина в отличие от машины постоянного тока не имеет явно выраженных полюсов. Такую магнитную систему называют неявнополюсной. Число полюсов в машине определяется числом катушек в обмотке статора и схемой их соединения. В четырехполюсной машине (рис. 251) магнитная система состоит из четырех одинаковых ветвей, по каждой из которых проходит половина магнитного потока Фп одного полюса, в двухполюсной машине таких ветвей две, в шестиполюсной — шесть и т. д. Так как через все элементы магнитной системы проходит переменный магнитный поток, то не только ротор 1, но

Рис. 249. Асинхронный двигатель с короткозамкнутым ротором: 1 — остов; 2 — статор; 3 — ротор; 4 — стержни обмотки ротора; 5 — подшипниковый щит; 6 — вентиляционные лопатки ротора; 7 — вентилятор; 8 — коробка выводов

Рис. 250. Электрическая схема асинхронного двигателя с короткозамкнутым ротором (а) и его условное графическое изображение (б): 1 — статор; 2 — ротор

Рис.251. Магнитное поле четырехполюсной асинхронной машины

Рис. 252. Листы ротора (а) и статора (б)

Рис. 253. Пакет собранного статора (а) и статор с обмоткой (б)

и статор 2 выполняют из листов электротехнической стали (рис. 252), изолированных один от другого изоляционной лаковой пленкой, окалиной и пр. В результате этого уменьшается вредное действие вихревых токов, возникающих в стали статора и ротора при вращении магнитного поля. Листы статора и ротора имеют пазы открытой, полузакрытой или закрытой формы, в которых располагаются проводники соответствующих обмоток. В статоре чаще всего применяют полузакрытые пазы прямоугольной или овальной формы, в машинах большой мощности — открытые пазы прямоугольной формы.

Сердечник статора 1 (рис. 253, а) запрессовывают в литой остов 3 и укрепляют стопорными винтами. Сердечник ротора напрессовывают на вал ротора, который вращается в шариковых подшипниках, установленных в двух подшипниковых щитах. Воздушный зазор между статором и ротором имеет минимальный размер, допускаемый с точки зрения точности сборки и механической жесткости конструкции. В двигателях малой и средней мощности воздушный зазор обычно составляет несколько десятых миллиметра. Такой зазор обеспечивает уменьшение магнитного сопротивления магнитной цепи машины, а следовательно, и уменьшение намагничивающего тока, требуемого для создания в двигателе магнитного потока. Снижение намагничивающего тока позволяет повысить коэффициент мощности двигателя.

Обмотка статора. Она выполнена в виде ряда катушек из проволоки круглого или прямоугольного сечения. Проводники, находящиеся в пазах, соединяются, образуя ряд катушек 2 (рис. 253,б). Катушки разбивают на одинаковые группы по числу фаз, которые располагают симметрично вдоль окружности статора (рис. 254, а) или ротора. В каждой такой группе все катушки электрически соединяются, образуя одну фазу обмотки, т. е. отдельную электрическую цепь. При больших значениях фазного тока или при необходимости переключения отдельных катушек фазы могут иметь несколько параллельных ветвей. Простейшим элементом обмотки является виток (рис. 254,б), состоящий из двух проводников 1 и 2, размещенных в пазах, находящихся друг от друга на неко-

Рис. 254. Расположение катушек трехфазной обмотки на статоре асинхронного двигателя (а) и виток из двух проводников (б)

тором расстоянии у. Это расстояние приблизительно равно одному полюсному делению т, под которым понимают длину дуги, соответствующую одному полюсу.

Обычно витки, образованные проводниками, лежащими в одних и тех же пазах, объединяют в одну или две катушки. Иногда их называют секциями. Их укладывают таким образом, что в каждом пазу размещается одна сторона катушки или две стороны — одна над другой. В соответствии с этим различают одно- и двухслойные обмотки. Основным параметром, определяющим распределение обмотки по пазам, является число пазов q на полюс и фазу.

В обмотке статора двухполюсного двигателя (см. рис. 254, а) каждая фаза (А-Х; B-Y; C-Z) состоит из трех катушек, стороны которых расположены в трех смежных пазах, т. е. q = 3. Обычно q > 1, такая обмотка называется распределенной.

Наибольшее распространение получили двухслойные распределенные обмотки. Их секции 1 (рис. 255, а) укладывают в пазы 2 статора в два слоя. Проводники обмотки статора укрепляют в пазах текстолитовыми клиньями 5 (рис. 255,б), которые закладывают у головок зубцов.

Стенки паза покрывают листовым изоляционным материалом 4 (электрокартоном, лакотканью и пр.). Проводники, лежащие в пазах, соединяют друг с другом соответствующим образом с торцовых сторон машины. Соединяющие их провода называют лобовыми частями. Так как лобовые части не принимают участия в индуцировании э. д. с, их выполняют как можно короче.

Отдельные катушки обмотки статора могут соединяться «звездой» или «треугольником». Начала и концы обмоток каждой фазы выводят к шести зажимам двигателя.

Обмотка ротора. Обмотка ротора выполнена в виде беличьей клетки (рис. 256,а). Она сделана из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами (рис. 256,б). Стержни этой обмотки вставляют в пазы ротора без какой-либо изоляции, так как напряжение в короткозамкну-

Рис. 255. Двухслойная обмотка статора асинхронного двигателя: 1 — секция; 2 — паз; 3 — проводник; 4 — изоляционный материал; 5 — клин; 6 — зубец

Рис. 256. Короткозамкнутый ротор: а — беличья клетка; б — ротор с беличьей клеткой из стержней; в — ротор с литой беличьей клеткой; 1 — короткозамыкающие кольца; 2— стержни; 3— вал; 4 — сердечник ротора; 5 — вентиляционные лопасти; 6 — стержни литой клетки

той обмотке ротора равно нулю. Пазы короткозамкнутого ротора обычно выполняют полузакрытыми, а в машинах малой мощности — закрытыми (паз имеет стальной ободок, отделяющий его от воздушного зазора). Такая форма паза позволяет хорошо укрепить проводники обмотки ротора, хотя и несколько увеличивает ее индуктивное сопротивление.

В двигателях мощностью до 100 кВт стержни беличьей клетки обычно получают путем заливки расплавленного алюминия в пазы сердечника ротора (рис. 256, в). Вместе со стержнями беличьей клетки отливают и соединяющие их торцовые короткозамыкающие кольца.

Для этой цели пригоден алюминий, так как он обладает малой плотностью, достаточно высокой электропроводностью и легко плавится.

Обычно двигатели имеют вентиляторы, насаженные на вал ротора. Они осуществляют принудительную вентиляцию нагретых частей машины (обмоток и стали статора и ротора), позволяя получить от двигателя большую мощность. В двигателях с короткозамкнутым ротором лопасти вентилятора часто отливают совместно с боковыми кольцами беличьей клетки (см. рис. 256, в).

Асинхронные двигатели с короткозамкнутым ротором просты по конструкции, надежны в эксплуатации. Их широко применяют для привода металлообрабатывающих станков и других устройств, которые начинают работать без нагрузки. Однако сравнительно малый пусковой момент у этих двигателей и большой пусковой ток не позволяют использовать их для привода таких машин и механизмов, которые должны пускаться в ход сразу под большой нагрузкой (с большим пусковым моментом). К таким машинам относятся грузоподъемные устройства, компрессоры и др.

Увеличить пусковой момент и уменьшить пусковой ток можно при выполнении беличьей клетки с повышенным активным сопротивлением. При этом двигатель будет иметь увеличенное скольжение и большие потери мощности в обмотке ротора. Такие двигатели называют двигателями с повышенным скольжением (обозначаются АС). Их можно использовать для привода машин, работающих сравнительно небольшое время. На э. п. с. переменного тока эти двигатели (со скольжением до 10%) применяют для привода компрессоров, которые работают периодически в течение коротких промежутков времени при уменьшении давления в воздушных резервуарах ниже определенного предела.

Читать еще:  Jcb 3cx двигатель работает с перебоями

Двигатели с повышенным пусковым моментом. Короткозамкнутые асинхронные двигатели с повышенным пусковым моментом имеют специальную конструкцию ротора (обозначаются АП). К ним относятся двигатели с двойной беличьей клеткой и двигатели с глубокими пазами.

Ротор 3 (рис. 257,а) двигателя с двойной беличьей клеткой имеет две короткозамкнутые обмотки. Наружная клетка 1 является пусковой. Она обладает большим активным и малым реактивным сопротивлениями. Внутренняя клетка 2 является основной обмоткой ротора; она, наоборот, обладает незначительным активным и большим реактивным сопротивлениями. В начальный момент пуска ток проходит, главным образом, по наружной клетке, которая создает значительный вращающий момент. По мере увеличения частоты вращения ток переходит во внутреннюю клетку, и по окончании процесса пуска машина работает как обычный короткозамкнутый двигатель с одной (внутренней) клеткой. Вытеснение тока в наружную клетку в начальный момент пуска объясняется действием, э. д. с. самоиндукции, индуцируемой в проводниках ротора. Чем ниже расположен в пазу проводник, тем большим магнитным потоком рассеяния 6 он охватывается и тем большая э. д. с. самоиндукции в нем индуцируется (рис. 257, в), следовательно, тем большее он будет иметь индуктивное сопротивление.

Вытеснение тока в верхние проводники ротора сильно сказывается при неподвижном роторе, когда частота тока, индуцируемого в обеих клетках ротора, велика. При этом индуктивные

Рис. 257. Конструкция роторов асинхронных двигателей с повышенным пусковым моментом: с двойной беличьей клеткой (а), с глубокими пазами (б) и разрезы их пазов (в и г)

сопротивления обеих клеток значительно больше активных и ток распределяется между ними обратно пропорционально их индуктивным сопротивлениям, т. е. проходит в основном по наружной клетке с большим активным сопротивлением. По мере возрастания частоты вращения ротора частота тока в нем будет уменьшаться (вращающееся магнитное поле будут пересекать проводники ротора с меньшей частотой), и ток начнет проходить по обеим клеткам в соответствии с их активными сопротивлениями, т. е., главным образом, через внутреннюю клетку.

Таким образом, процесс пуска двигателя с двойной беличьей клеткой имеет сходство с процессом пуска асинхронного двигателя с фазным ротором, когда в начале пуска в цепь обмотки ротора вводится добавочное активное сопротивление (пусковой реостат), а по мере разгона это сопротивление выводится. Точно так же и в рассматриваемом двигателе ток в начале пуска проходит по наружной клетке с большим активным сопротивлением, а затем по мере разгона постепенно переходит во внутреннюю клетку с малым активным сопротивлением.

Для повышения активного сопротивления пусковой клетки стержни ее изготовляют из маргацовистой латуни или бронзы. Стержни рабочей клетки выполняют из меди, обладающей малым удельным сопротивлением, причем площадь поперечного сечения их больше, чем у пусковой клетки. В результате этого активное сопротивление пусковой клетки увеличивается в 4—5 раз по сравнению с рабочей. Между стержнями обеих клеток имеется узкая щель 5, размеры которой определяют индуктивность рабочей клетки. Двухклеточный двигатель на 20—30% дороже коротко-замкнутого двигателя обычной конструкции. Для упрощения технологии изготовления ротора двухклеточные двигатели небольшой и средней мощности выполняют с литой алюминиевой клеткой.

Действие двигателей с глубокими пазами (рис. 257, б) также основано на использовании явления вытеснения тока. В этих двигателях стержни 4 беличьей клетки выполнены в виде узких медных шин, заложенных в глубокие пазы ротора 3 (высота паза в 10— 12 раз больше его ширины). Нижние слои стержней, расположенные дальше от поверхности ротора, охватываются значительно большим числом магнитных линий потока рассеяния 6, чем верхние (рис. 257,г), поэтому они имеют во много раз большую индуктивность. В начале пуска в результате увеличенного индуктивного сопротивления нижних частей стержней ток проходит, главным образом, по их верхним частям. При этом используется только небольшая часть поперечного сечения каждого стержня, что приводит к увеличению его активного сопротивления, а следовательно, и к возрастанию активного сопротивления всей обмотки ротора.

При увеличении частоты вращения ротора вытеснение тока в верхние части стержней уменьшается (по той же причине, что и в двигателе с двойной беличьей клеткой), и после окончания пуска ток равномерно распределяется по площади их поперечного сечения.

Устройство и принцип работы асинхронных двигателей с фазным ротором

Основная классификация асинхронных двигателей осуществляется в зависимости от особенностей их пусковых свойств, которые определяются нюансами конструкции.

  • Технические характеристики ↓
  • Устройство ↓
  • Принцип работы ↓
  • Преимущества и недостатки ↓
  • Применение ↓

Если рассматривать устройство с фазным ротором, то пуск происходит следующим образом:

  1. Начало запуска параллельно сопровождается переходом фазного ротора из спокойного состояния к постепенному равномерному вращению, во время которого машина начинает уравновешивать момент сил сопротивления на собственном валу.
  2. При совершении запуска наблюдается увеличение объемов потребления электроэнергии из сети. Усиленное питание обуславливается необходимостью преодоления тормозного момента, приложенного к валу; передачей движущимся элементам кинетической энергии и компенсацией потерь внутри самого двигателя.
  3. Начало пускового момента и параметры скольжения в этот период напрямую зависят от активного сопротивления, которое оказывают резисторы, введенные в роторную цепь.
  4. Иногда показателей малого начального пускового момента бывает недостаточно для того, чтобы перевести асинхронный агрегат в полноценный рабочий режим. В такой ситуации, ускорение не является достаточным, а пусковой электрический ток со значительными показателями воздействует на обмотки двигателя, что вызывает их чрезмерный нагрев. Это может ограничить частоту его включений, а если машина была подключена к электросети с малой мощностью, такой запуск может вызвать понижение общего напряжения, что негативно сказывается на функционировании иных потребителей.
  5. Благодаря введению в роторную цепь пусковых резисторов происходит понижение показателей электрического тока и пропорциональное увеличение начального пускового момента вплоть до достижения им максимальных параметров.
  6. Последующее увеличение параметров сопротивления резисторов не является необходимым условием, поскольку оно будет способствовать снижению начального пускового момента и постепенному отклонению от максимальных характеристик его работы. Область скольжения при этом рискует достигнуть недопустимых показателей, что негативно скажется на разгоне ротора.
  7. Пуск двигателя может быть легким, нормальным или тяжелым, именно этот фактор определит оптимальное значение сопротивления резисторов.
  8. Далее, необходимо только поддержание достигнутого вращающего момента во время разгона ротора, это позволяет сократить длительность переходного процесса, в котором находится запущенная машина, а также способствует снижению степени нагрева. Для достижения этих целей, осуществляется постепенное понижение показателей сопротивления пусковых резисторов. Параметры допустимого изменения момента зависят от общих условий, которые определяют пиковый предел этого параметра.
  9. Процесс переключения разных резисторов осуществляется за счет последовательного подключения контакторов ускорения. На протяжении всего пуска, моменты, во время которых достигаются пиковые значения, являются одинаковыми, а периоды переключения равными между собой.
  10. Процесс отключения машины от электросети разрешается осуществлять при накоротко замкнутой роторной цепи, поскольку, в противном случае имеется риск возникновения перенапряжения в обмоточных фазах статора.
  11. Параметры напряжения могут достичь значения, которое превосходит его номинальные показатели в 3-4 раза, если во время отключения машины роторная цепь находилась в разомкнутом состоянии.

Технические характеристики

Основные требования, которые обеспечивают качественное функционирование асинхронных агрегатов с фазным ротором, определены и указаны в соответствующих ГОСТах.

Именно они определяют главные технические характеристики и к таким параметрам относятся:

  1. Габариты и мощность двигателя, которые должны иметь показатели, соответствующие техническому регламенту.
  2. Уровень защиты должен соответствовать условиям, в которых происходит процесс эксплуатации, поскольку различные виды машин могут быть предназначены для установки на улице или только внутри помещений.
  3. Высокая степень изоляции, которая должна обладать устойчивостью к повышению рабочей температуры и последующему нагреву.
  4. Различные виды асинхронных двигателей предназначены для использования в определенных климатических условиях. Это касается в первую очередь установки подобных машин в крайне холодных местностях или, наоборот, жарких областях. Исполнение агрегата должно соответствовать климату местности, в которой проходит процесс эксплуатации.
  5. Полное соответствие режимам функционирования.
  6. Наличие системы охлаждения, которая должна соответствовать рабочим режимам машины.
  7. Уровень шума при запуске агрегата на холостом ходу должен соответствовать второму классу или быть ниже его.
Читать еще:  Активатор запуска двигателя моментальный старт

Устройство

Для работы с асинхронными двигателями и полного понимания принципов функционирования подобных машин, необходимо ознакомиться с особенностями их устройства:

  1. Основными частями конструкции агрегата является статор, находящийся в неподвижном состоянии, и вращающийся ротор, который расположен внутри него.
  2. Воздушный зазор разделяет оба элемента между собой.
  3. И статор, и ротор обладают специальной обмоткой.
  4. Статорная обмотка имеет подключение к питающей электросети с переменным напряжением.
  5. Роторная обмотка по своей сути является вторичной, поскольку не имеет подключения к сети, а передачу необходимой энергии для нее осуществляет непосредственно статор. Этот процесс происходит благодаря созданию магнитного потока.
  6. Корпус статора и корпус двигателя – это один элемент, который имеет в своей структуре запрессованный сердечник.
  7. В пазах сердечника размещены проводники обмотки. Специальный электротехнический лак обеспечивает надежную изоляцию данных объектов друг от друга.
  8. Обмотка сердечника особым образом разделена на секции, которые соединены в катушки.
  9. Катушки составляют фазы самого двигателя, к которым происходит подключение фазы от питающей электросети.
  10. Ротор состоит из вала и сердечника.
  11. Роторный сердечник создан из набранных пластин, которые изготавливаются из особой разновидности электротехнической стали. На его поверхности имеются симметричные пазы, внутри которых размещены проводники обмотки.
  12. Роторный вал в ходе работы выполняет функции по передаче крутящего момента непосредственно к приводному механизму машины.
  13. Роторы обладают собственной классификацией, короткозамкнутая разновидность имеет в своей конструкции стержни, изготовленные из алюминия. Они располагаются внутри сердечника, а на торцах замкнуты специальными кольцами. Подобная система получила название беличьего колеса. В машинах с наиболее высокой мощностью, пазы дополнительно заливаются алюминием, что способствует повышению прочности конструкции.
  14. Вместо короткозамкнутого ротора в конструкции может присутствовать фазная разновидность. Количество катушек, сдвинутых под определенным углом относительно друг друга, в такой системе зависит от числа парных полюсов. При этом, роторные пары полюсов всегда равны количеству аналогичных пар в статоре. Роторная обмотка соединена особым образом и напоминает по своей форме звезду, а ее лучи выводятся на контакты токосъемных колец, которые соединены при помощи механизма щеточного типа и пускового реостата.

Принцип работы

После освоения устройства асинхронного двигателя с фазным ротором и особенностей его запуска, можно переходить к изучению принципа работы, который заключается в следующем:

  1. На статор, обладающий тройной обмоткой, начинает подаваться трехфазное напряжение, идущее от внешней электросети с переменным током.
  2. Последовательно происходит процесс возбуждения магнитного поля, которое начинает совершать вращательные движения.
  3. Совершаемые вращения постепенно становятся быстрее скорости ротора.
  4. В определенный момент времени начинает происходить пересечение отдельных линий полей статора и ротора, что обуславливает возникновение электродвижущей силы.
  5. Электродвижущая сила оказывает прямое воздействие на закороченную обмотку ротора, благодаря чему в ней начинает появляться электрический ток.
  6. Через определенное время начинает происходить взаимодействие между возникшим в роторе током и статорным магнитным полем, из-за этого образуется крутящий момент, обеспечивающий функционирование асинхронной машины.

Преимущества и недостатки

Востребованность асинхронных двигателей подобного типа на сегодняшний день обуславливается следующими значимыми преимуществами, которыми они обладают:

  1. Значительные показатели, которых способен достигать начальный вращающий момент после запуска машины.
  2. Механические перегрузки, которые возникают на протяжении коротких промежутков времени, переносятся агрегатом без каких-либо значимых последствий и не оказывают влияния на процесс функционирования машины.
  3. При возникновении разнообразных перегрузок в системе, двигатель сохраняет постоянную скорость, возможные отклонения не являются значимыми.
  4. Показатели пускового тока значительно меньше, чем у большинства асинхронных аналогов, например, имеющих в своей конструкции короткозамкнутый ротор.
  5. Использование подобных агрегатов предусматривает возможность использования систем, автоматизирующих процесс их запуска и введения в рабочее состояние.
  6. Конструкция и устройство таких машин являются довольно простыми.
  7. Запуска агрегата осуществляется по простой схеме, не подразумевающей значимых усилий.
  8. Относительно невысокая стоимость.
  9. Обслуживание таких машин не требует значительных затрат сил и времени.

Однако, при таком большом количестве положительных сторон, асинхронные двигатели с фазным ротором обладают и некоторыми недостатками, основными из них являются следующие особенности подобных машин:

  1. Слишком большие размеры двигателя, которые могут причинять некоторые неудобства при монтаже и эксплуатации.
  2. Коэффициент полезного действия и общая выработка у них намного ниже, чем у многих аналогов. Разновидность агрегатов с короткозамкнутым ротором значительно превосходит их по этим показателям.

Применение

На сегодняшний день, большая часть двигателей, выпускаемых в промышленных масштабах, относится к асинхронной разновидности.

Благодаря ряду преимуществ, которыми обладают машины с фазными роторами, они широко используются в разных сферах человеческой деятельности, в том числе для поддержания работы:

  1. Устройств автоматики и приборов из телемеханической области.
  2. Бытовых приборов.
  3. Медицинского оборудования.
  4. Оборудования, предназначенного для осуществления аудиозаписи.

Принцип работы электродвигателя

Еще на уроках физики изучают принцип работы электродвигателя, однако полноценно описать процесс могут немногие. Компания UA MOTOR собрала общие сведения по работе электрических преобразователей и предлагает освежить знания по вопросам принципа работы электродвигателя на примере наиболее востребованных типов преобразователей.

Что такое электрический двигатель, его виды и особенности

Обнаруженная уже более 200 лет назад электрическая энергия стала предметом изучения инженеров того времени, и со временем они научились преобразовывать электричество в механическое движение. Устройство, которое осуществляет подобное преобразование, называется электрическим двигателем.

Сегодня промышленники могут купить электродвигатель трех основных видов: постоянного тока (ДПТ), асинхронные (АД) и синхронные (СД).

Виды электрических двигателей

АД питается от источника переменного тока, который идет напрямую от электростанций через трансформаторы. В зависимости от количества питающих фаз принцип работы электродвигателя различается, а сами устройства разделяются на:

Особое внимания заслуживают асинхронные и синхронные двигатели переменного тока, и именно их рассмотрим подробнее.

Как работает асинхронник и синхронник

Принцип работы асинхронного электродвигателя, как и любого другого, основан на принципе электромагнитной индукции: при изменении магнитного поля образуется электрическое поле, которое наводит электрический ток в движущейся внутри этого поля материальной среде.

В АД присутствует две основные части:

  • статор – статичный элемент, установленный в чугунном или алюминиевом корпусе;
  • ротор – подвижный изолированный сердечник. Он состоит из тонких слоев стали. Такое строение содействует появлению электромагнитной индукции и минимизирует потери на вихревые токи.

Двигатель называется асинхронным, потому что частота вращения магнитного поля статора не совпадает с частотой вращения магнитного поля ротора.

Статор изготавливается из набора стальных высокопроницаемых пластин, на внутренней стороне которых выполнены специальные углубления – пазы. В них укомплектовывается обмотка статора. На нее при запуске подается трехфазный переменный ток, который (по принципу э/м индукции) формирует магнитное поле. Так как ток переменный, его изменение провоцирует изменение магнитного поля, которое приводит к появлению в обмотке ротора магнитной индукции. Она наводит ток и по закону Лоренца вызывает вращение ротора. Нередко по этой причине асинхронные двигатели называют индукционными (в роторе возникает электричество из-за магнитной индукции, а не из-за прямого электрического соединения, как в ДПТ и СД) и самозапускающимся.

Читать еще:  Что за двигатель змз 410400

В соответствии с принципом работы электродвигателя переменного тока скорость вращения поля статора немного выше, чем у ротора. Разница этих скоростей называется скольжением.

Механическая энергия вращения передается через приводной вал и приводит в движение последующее звено приводной цепи – исполнительный механизм.

Выше было описано, как работает асинхронный электродвигатель, принцип работы которого лег в основу создания устройств с синхронной частотой вращения. Машины подобного типа используют для обеспечения высокой точности. В отличие от АД, и на ротор, и на статор синхронного устройства подается напряжение, но на статор – переменное, а на ротор – постоянное. Последний работает как постоянный магнит. В этом случае частота вращения ротора и статора совпадают, а значит, такое оборудование само запуститься не может (его пуск нужно осуществлять дополнительным оборудованием).

Плавный запуск промышленного асинхронника

В соответствии с принципом работы и устройством плавного пуска электродвигателя вы можете регулировать подачу напряжения от нуля до номинального значения.

Устройство плавного пуска – напоминает продвинутых трехфазный диммер (регулятор мощности). Он представляет собой целый программируемый комплекс, который устанавливается индивидуально на каждый двигатель и защищает от затяжного нахождения в режиме повышенных пусковых токов.

В состав этого устройства входит группа симисторов и два тиристора для каждой фазы. Они регулируют напряжение, обрезая волну и способствуют плавному увеличению напряжения. Как только пусковые токи достигли значения токов холостого хода, устройство плавного пуска «выбрасывается» из схемы.

Когда двигателю требуется установка электромагнитного тормоза

Что такое электродвигатель с тормозом и каков принцип работы такого устройства? В состав такого оборудования включается дополнительный механизм. Он состоит из якоря, электромагнита и тормозного диска. В двух словах работа заключается в следующем: при подаче команды от оператора электромагнит подводит диск к вращающейся части двигателя, что, соответственно, прекращает его вращение.

Наличие тормозного устройства является модификацией, которое устанавливается на преобразователь при необходимости контролировать его остановку. Это используется для кранового оборудования, приводов лифтов, станков, эскалаторов и пр.

В компании «ЮА МОТОР» вы можете приобрести все виды промышленных преобразователей электрического тока в механическое движение. Мы предлагаем купить взрывозащищенный электродвигатель, устройства, работающие от источника постоянного тока, и специальные модели, улучшенные по вашему требованию. Мы осуществляем замену, ремонт и обслуживание промышленных двигателей и даем честную гарантию на все виды услуг.

Асинхронные двигатели АИР. История, особенности, производители

На самом деле, данная маркировка появилась более 30 лет назад. На территории стран социалистического лагеря были разработаны единые стандарты, их разработчик — Международная организация по экономическому и научно-техническому сотрудничеству в области электротехнической промышленности «Интерэлектро», которая была учреждена на основе Соглашения, подписанного правительствами ряда стран, включая СССР, 13 декабря 1973 года.

Маркировка «АИ» обозначает «асинхронные электродвигатели Интерэлектро». АИР — их разновидность для внутренних продаж и экспорта.

Данные двигатели унифицированны по рядам мощностей, установочных размеров и других характеристик.

Сегодня двигатели АИР производит ряд заводов, некоторые из них: в России — «Мосэлектромаш», Ярославский электромашиностроительный завод (ОАО «ELDIN») и в Украине — СЛЭМЗ, Могилевский завод «Электродвигатель» и крупнейший — Харьковский электротехнический завод Укрэлектромаш (ХЭЛЗ).

Виды обозначения в серии АИР

В серии АИ принято три вида обозначения: базовое, основное и полное. Базовое обозначение — это сочетание элементов символов, которые определяют серию, его мощность, частоту вращения (обозначение серии, вариант увязки мощности к установочным размерам, высоту оси вращения, установочный размер подлине станины и длина магнитопровода статора, число полюсов), например: АИР200 Мб (серия АИ, увязка по варианту Р, высота оси вращения 200 мм, длина корпуса по установочным размерам М, число полюсов 6).

Основное обозначение — это сочетание базового обозначения электродвигателя с обозначением вида защиты и охлаждения, электрической и конструктивной модификации, специализированного исполнения и исполнения по условиям окружающей среды, например: АИРБС100М4НПТ2 (АИР100М4 — базовое обозначение, Б — закрытое исполнение с естественным охлаждением без обдува, С — с повышенным скольжением, Н — малошумные, П — с повышенной точностью установочных размеров, Т — для тропического климата, 2 — категория размещения).

Полное обозначение — сочетание основного обозначения с дополнительными электрическими и конструктивными характеристиками, например: АИРБС100М4НПТ2 220/380 В, 60IM218I, КЗ-Н-3, F-100, (АИРБС100М4НПТ2 — основное обозначение, 220/380 В — напряжение, 60 — частота сети, IM2181 — исполнение по способу монтажа и по концу вала, КЗ-Н-3 — исполнение выводного устройства и число штуцеров, F100 — исполнение фланцевого щита).

Итак, полное стандартизованное обозначение описывает практически все характеристики двигателя и имеет вид — АИР ХХХ ДПСИ, КККК ММММММ ЗЗЗЗ, где

АИР — обозначение серии;

ХХХ – габарит, высота оси двигателя в миллиметрах (56, 63 … 355);

Д – длина пакета статора, установочный размер (А, В, L, S, M);

П – число пар полюсов;

СИ – специальное исполнение ( Б, Е, Е2, Ж, Р3, Ш, П, Ф, А, Х2);

КККК – исполнение по климатическим условиям (У1…У3, УХЛ2, УХЛ4, Т2, ОМ2);

ММММММ – способ монтажа (IM1081, IM2081, IM2181, IM1082, IM2082, IM5010);

ЗЗЗЗ – степень защиты оболочки (IP44, IP54, IP55).

Конструктивные исполнения двигателей АИР

Электродвигатели АИР имеют следующие конструктивные исполнения

по окружающей среде (тропическое, химическое, для сельского хозяйства);

по установочным размерам;

имеющие дополнительные функции (фазный ротор, электромагнитный тормоз), повышенный пусковой момент, узкоспециальные и другие функции.

Преимущества двигателей АИР:

низкий уровень шума

высокий класс нагревостойкости изоляции

высокая степень защиты электродвигателя от влаги

отсутствие подвижных контактов

Двигатели АИР обладают привлекательными свойствами и с точки зрения изготовителя, и с позиции потребителя.

Благодаря простой конструкции эти двигатели легко производить, обслуживать и ремонтировать.

Устройство работает непосредственно от сети с переменным током, а множество вариантов исполнения (по монтажу, защите, климатическим условиям и пр.) позволяет эксплуатировать асинхронный двигатель практически в любых условиях, в том числе в помещениях с присутствием агрессивных сред.

Мотор обладает высоким коэффициентом полезного действия. В зависимости от конкретного типа этот показатель достигает 85%. Он пригоден для использования в оборудовании непрерывного цикла, например, в приводных узлах конвейеров, транспортеров и т. п.

Асинхронный двигатель высоко надежен и редко выходит из строя. Он успешно претерпевает кратковременные механические перегрузки.

Мотор как нельзя лучше подходит для целей автоматизации производственных процессов. Совокупность таких качеств, как надежность, легкость монтажа, простота обслуживания, неприхотливость к условиям эксплуатации делают его незаменимым в деле поддержания автоматической работы устройств.

Практически каждый асинхронный двигатель в соотношении цены и качества оказывается исключительно выгодным приобретением.

Китайские АИР

Если ранее двигатели АИР производили только участники «Интерэлектро», сегодня серию активно производит Китай. В связи с распространенностю маркировки китайские производители имеют возможность изготавливать большие объемы продукции по одним стандартам, что очень выгодно. Для выпуска данных двигателей достаточно соблюдения стандартов и предписаний по тех.характеристикам.

Однако китайские двигатели имеют ряд недостатков, которые заставляют относится к ним настороженно. Первейшие из них это, конечно, качество материалов и сборки. Отечественные двигатели, по общему мнению потребителей, значительно выигрывают в качестве. Убедиться в этом вы можете сами!

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector