Холодный источник для теплового двигателя
II. Молекулярная физика
Тестирование онлайн
Тепловой двигатель
Двигатель, в котором происходит превращение внутренней энергии топлива, которое сгорает, в механическую работу.
Любой тепловой двигатель состоит из трех основных частей: нагревателя, рабочего тела (газ, жидкость и др.) и холодильника. В основе работы двигателя лежит циклический процесс (это процесс, в результате которого система возвращается в исходное состояние).
Прямой цикл теплового двигателя
Общее свойство всех циклических (или круговых) процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником. Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q1 (происходит расширение) и отдает холодильнику количество теплоты Q2, когда возвращается в исходное состояние и сжимается. Полное количество теплоты Q=Q1-Q2, полученное рабочим телом за цикл, равно работе, которую выполняет рабочее тело за один цикл.
Обратный цикл холодильной машины
При обратном цикле расширение происходит при меньшем давлении, а сжатие — при большем. Поэтому работа сжатия больше, чем работа расширения, работу выполняет не рабочее тело, а внешние силы. Эта работа превращается в теплоту. Таким образом, в холодильной машине рабочее тело забирает от холодильника некоторое количество теплоты Q1 и передает нагревателю большее количество теплоты Q2.
Коэффициент полезного действия
Прямой цикл:
Показатель эффективности холодильной машины:
Цикл Карно
В тепловых двигателях стремятся достигнуть наиболее полного превращения тепловой энергии в механическую. Максимальное КПД.
На рисунке изображены циклы, используемые в бензиновом карбюраторном двигателе и в дизельном двигателе. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30%, у дизельного двигателя – порядка 40 %.
Французский физик С.Карно разработал работу идеального теплового двигателя. Рабочую часть двигателя Карно можно представить себе в виде поршня в заполненном газом цилиндре. Поскольку двигатель Карно — машина чисто теоретическая, то есть идеальная, силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю. Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. Этот цикл называют циклом Карно.
участок 1-2: газ получает от нагревателя количество теплоты Q1 и изотермически расширяется при температуре T1
участок 2-3: газ адиабатически расширяется, температура снижается до температуры холодильника T2
участок 3-4: газ экзотермически сжимается, при этом он отдает холодильнику количество теплоты Q2
участок 4-1: газ сжимается адиабатически до тех пор, пока его температура не повысится до T1.
Работа, которую выполняет рабочее тело — площадь полученной фигуры 1234.
Функционирует такой двигатель следующим образом:
1. Сначала цилиндр вступает в контакт с горячим резервуаром, и идеальный газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара некое количество тепла.
2. Затем цилиндр окружается идеальной теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется, и газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.
3. На третьей фазе теплоизоляция снимается, и газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.
4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией, и газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара. После этого теплоизоляция удаляется и цикл повторяется вновь с первой фазы.
КПД цикла Карно не зависит от вида рабочего тела
для холодильной машины
В реальных тепловых двигателях нельзя создать условия, при которых их рабочий цикл был бы циклом Карно. Так как процессы в них происходят быстрее, чем это необходимо для изотермического процесса, и в то же время не настолько быстрые, чтоб быть адиабатическими.
Коэффициент полезного действия
Коэффицие́нт поле́зного де́йствия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η («эта») [1] . КПД является безразмерной величиной и часто выражается в процентах.
Содержание
- 1 Определение
- 2 Другие похожие показатели
- 2.1 КПД котлов
- 2.2 Тепловые насосы и холодильные машины
- 3 Литература
- 4 Примечания
Определение [ править | править код ]
Математически КПД определяется как
η = A Q ,
где А — полезная работа (энергия), а Q — затраченная энергия.
Если КПД выражается в процентах, эту формулу иногда записывают в виде
η = A Q × 100 % .
Здесь умножение на 100 % не несёт содержательного смысла, поскольку 100 % = 1
. В связи с этим второй вариант записи формулы менее предпочтителен (одна и та же физическая величина может быть выражена в различных единицах независимо от формул, где она участвует).
В силу закона сохранения энергии и в результате неустранимых потерь энергии КПД реальных систем всегда меньше единицы, то есть невозможно получить полезной работы больше или столько, сколько затрачено энергии.
КПД теплово́го дви́гателя — отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя. КПД теплового двигателя может быть вычислен по следующей формуле
η = Q 1 − Q 2 Q 1 ,
где Q 1 — количество теплоты, полученное от нагревателя, Q 2
— количество теплоты, отданное холодильнику. Наибольшим КПД среди циклических машин, оперирующих при заданных температурах нагревателя T1 и холодильника T2, обладают тепловые двигатели, работающие по циклу Карно; этот предельный КПД равен
η k = T 1 − T 2 T 1 .
Другие похожие показатели [ править | править код ]
Не все показатели, характеризующие эффективность энергетических процессов, соответствуют вышеприведённому описанию. Даже если они традиционно или ошибочно называются «коэффициент полезного действия», они могут иметь другие свойства, в частности, превышать 100 %.
КПД котлов [ править | править код ]
КПД котлов на органическом топливе традиционно рассчитывается по низшей теплоте сгорания; при этом предполагается, что влага продуктов сгорания покидает котёл в виде перегретого пара. В конденсационных котлах эта влага конденсируется, теплота конденсации полезно используется. При расчёте КПД по низшей теплоте сгорания он в итоге может получиться больше единицы. В данном случае корректнее было бы считать его по высшей теплоте сгорания, учитывающей теплоту конденсации пара; однако при этом показатели такого котла трудно сравнивать с данными о других установках.
Тепловые насосы и холодильные машины [ править | править код ]
Достоинством тепловых насосов как нагревательной техники является возможность получать больше теплоты, чем расходуется энергии на их работу. Холодильная машина может отвести от охлаждаемого конца больше теплоты, чем затрачивается энергии на организацию процесса.
Эффективность машин характеризует холодильный коэффициент [en]
ε X = Q X / A ,
где Q X — тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность); A
— затрачиваемая на этот процесс работа (или электроэнергия).
Для тепловых насосов используют термин коэффициент трансформации
ε Γ = Q Γ / A ,
где Q Γ — тепло конденсации, передаваемое теплоносителю; A
— затрачиваемая на этот процесс работа (или электроэнергия).
В идеальной машине Q Γ = Q X + A , отсюда для идеальной машины ε Γ = ε X + 1
Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно: в нём холодильный коэффициент
ε = T X T Γ − T X ,
где T Γ , T X
— температуры горячего и холодного концов, K [2] . Данная величина, очевидно, может быть сколь угодно велика; хотя практически к ней трудно приблизиться, холодильный коэффициент может превосходить единицу. Это не противоречит первому началу термодинамики, поскольку, кроме принимаемой в расчёт энергии A (напр., электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.
Общая формулировка второго закона термодинамики
Из первого закона термодинамики следует, что взаимное превращение тепловой и механической энергии в двигателе должно осуществляться в строго эквивалентных количествах. Двигатель, который позволял бы получать работу без энергетических затрат, называется вечным двигателем первого рода. Ясно, что такой двигатель не возможен, ибо он противоречит первому закону термодинамики. Поэтому первый закон можно сформулировать в виде следующего утверждения: вечный двигателя первого рода невозможен.
В 1755 г. французская Академия наук «раз и навсегда» объявила, что не будет больше принимать на рассмотрение какие-либо проекты вечных двигателей.
Рисунок 4.1 — Термодинамическая схема теплового двигателя
Несмотря на эквивалентность теплоты и работы, процессы их взаимного превращения неравнозначны. Опыт показывает, что механическая энергия может быть полностью превращена в теплоту, например, путем трения, однако теплоту полностью превратить в механическую энергию в периодически повторяющемся процессе нельзя. Многолетние попытки осуществить такой процесс не увенчались успехом. Это связано с существованием фундаментального закона природы, называемого вторым законом термодинамики. Чтобы выяснить его сущность, обратимся к принципиальной схеме теплового двигателя.
Как показал опыт, все без исключения тепловые двигатели должны иметь горячий источник теплоты, рабочее тело, совершающее замкнутый процесс — цикл, и холодный источник теплоты.
‘Практически в существующих тепловых двигателях горячими источниками служат химические реакции сжигания топлива или внутриядерные реакции, а в качестве холодного источника используется окружающая среда — атмосфера. В качестве рабочих тел, как отмечалось выше, применяются газы или пары.
Рисунок 4.2 — Круговой процесс (цикл) в р, v и Т, s-координатах
Работа двигателя осуществляется следующим образом. Расширяясь по линии 1B2 , рабочее тело совершает работу, равную площади 1B22´1´. В непрерывно действующей тепловой машине этот процесс должен повторяться многократно. Для этого нужно уметь возвращать рабочее тело в исходное состояние. Такой переход можно осуществить в процессе 2В1, но при этом потребуется совершить над рабочим телом ту же самую работу. Ясно, что это не имеет смысла, так как суммарная работа — работа цикла — окажется равной нулю.
Для того чтобы двигатель непрерывно производил механическую энергию, работа расширения должна быть больше работы сжатия. Поэтому кривая сжатия 2A1 должна лежать ниже кривой расширения. Затраченная в процессе 2A1 работа изображается площадью 2A11´2´. В результате каждый килограмм рабочего тела совершает за цикл полезную работу lц, эквивалентную площади 1В2А1, ограниченной контуром цикла. Цикл можно разбить на два участка: A1B, на котором происходит подвод теплоты q1, и B2A, на котором происходит отвод теплоты q2. В точках А и В нет ни подвода, ни отвода теплоты, и в этих точках поток теплоты меняет знак. Таким образом, для непрерывной работы двигателя необходим циклический процесс, в котором к рабочему телу от горячего источника подводится теплота q1и отводится от него к холодному теплота q2. B T,s—диаграмме теплота q1эквивалентна площади A´A1BB´,a q2 — площади A´A2BB´.
Применим первый закон термодинамики к циклу, который совершает 1 кг рабочего тела:
.
Здесь означает интегрирование по замкнутому контуру 1В2А1.
Внутренняя энергия системы является функцией состояния. При возвращении рабочего тела в исходное состояние она также приобретает исходное значение. Поэтому , и предыдущее выражение превращается в равенство
, (4.1)
где представляет собой ту часть теплоты горячего источника, которая превращена в работу. Это — теплота, полезно использованная в цикле, она равна разности теплот
и эквивалентна площади, ограниченной контуром цикла в T,s-диаграмме.
Отношение работы, производимой двигателем за цикл, к количеству теплоты, подведенной за этот цикл от горячего источника, называется термическим коэффициентом полезного действия (КПД) цикла:
.
Коэффициент полезного действия оценивает степень совершенства цикла теплового двигателя. Чем больше КПД, тем большая часть подведенной теплоты превращается в работу.
Соотношение (4.1) является математическим выражением принципа эквивалентности тепловой и механической энергии.
Отметим, что если исключить из схемы теплового двигателя холодный источник, то формально принцип эквивалентности не будет нарушен. Однако, как показывает опыт и как следует из проведенного выше анализа работы двигателя, такой двигатель работать не будет.
Тепловой двигатель без холодного источника теплоты, т. е. двигатель, полностью превращающий в работу всю полученную от горячего источника теплоту, называется вечным двигателем второго рода.
Таким образом, второй закон термодинамики можно сформулировать в виде следующего утверждения: «Вечный двигатель второго рода невозможен». В более расшифрованном виде эту формулировку в 1851 г. дал В. Томсон: «Невозможна периодически действующая тепловая машина, единственным результатом действия которой было бы получение работы за счет отнятия теплоты от некоторого источника».
Проблема создания вечного двигателя привлекала исследователей на протяжении длительного времени. Человечество овладело бы неисчерпываемыми запасами внутренней энергии тел, будь построен вечный двигатель второго рода. Действительно, количество теплоты, выделяющейся при охлаждении, например, земного шара всего на 1 К (масса земного шара равна кг, его удельную теплоемкость примем равной 840 Дж/(кг-К), равно
Дж. Для сравнения следует указать, что в 2000 г. мировое потребление всех энергоресурсов мира не превысит
Дж, т. е. будет в 10 миллионов раз меньше.
Прямой цикл Карно
Итак, для превращения теплоты в работу в непрерывно действующей машине нужно иметь, по крайней мере, тело или систему тел, от которых можно было бы получить теплоту (горячий источник); рабочее тело, совершающее термодинамический процесс, и тело, или систему тел, способную охлаждать рабочее тело, т. е. забирать от него теплоту, не превращенную в работу (холодный источник).
Рассмотрим простейший случай, когда имеется один горячий с температурой T1 и один холодный с температурой T2 источники теплоты. Теплоемкость каждого из них столь велика, что отъем рабочим телом теплоты от одного источника и передача ее другому практически не меняет их температуры. Хорошей иллюстрацией могут служить земные недра в качестве горячего источника и атмосфера в качестве холодного.
Единственная возможность осуществления в этих условиях цикла, состоящего только из равновесных процессов, заключается в следующем. Теплоту от горячего источника к рабочему телу нужно подводить изотермически. В любом другом случае температура рабочего тела будет меньше температуры источника T1, т. е. теплообмен между ними будет неравновесным. Равновесно охладить рабочее тело от температуры горячего до температуры холодного источника T2, не отдавая теплоту другим телам (которых по условию нет), можно только путем адиабатного расширения с совершением работы. По тем же соображениям процесс теплоотдачи от рабочего тела к холодному источнику тоже должен быть изотермическим, а процесс повышения температуры рабочего тела от T1 до T2 — адиабатным сжатием с затратой работы. Такой цикл, состоящий из двух изотерм и двух адиабат, носит название цикла К а р н о, поскольку именно с его помощью С. Карно в 1824 г. установил основные законы превращения тепловой энергии в механическую.
Осуществление цикла Карно в тепловой машине можно представить следующим образом. Газ (рабочее тело) с начальными параметрами, характеризующимися точкой а, помещен в цилиндр под поршень, причем боковые стенки цилиндра и поршень абсолютно нетеплопроводны, так что теплота может передаваться только через основание цилиндра.
![]() |
Рисунок 4.3 — Прямой цикл Карно
Вводим цилиндр в соприкосновение с горячим источником теплоты. Расширяясь изотермически при температуре от объема va до объема vb, газ забирает от горючего источника теплоту . В точке b подвод теплоты прекращаем и ставим цилиндр на теплоизолятор. Дальнейшее расширение рабочего тела происходит адиабатно. Работа расширения совершается при этом только за счет внутренней энергии, в результате чего температура газа падает до T2.
Теперь возвратим тело в начальное состояние. Для этого сначала поместим цилиндр на холодный источник с температурой T2 и будем сжимать рабочее тело по изотерме cd, совершая работу l2 и отводя при этом к нижнему источнику от рабочего тела теплоту . Затем снова поставим цилиндр на теплоизолятор и дальнейшее сжатие проведем в адиабатных условиях. Работа, затраченная на сжатие по линии da, идет на увеличение внутренней энергии, в результате чего температура газа увеличивается до T1.
Таким образом, в результате цикла каждый килограмм газа получает от горячего источника теплоту q1, отдает холодному теплоту q2 и совершает работу lц.
Подставив в формулу , справедливую для любого цикла, выражения для q1 и q2, получим, что термический КПД цикла Карно определяется формулой
.
Из нее видно, что термический КПД цикла Карно зависит только от абсолютных температур горячего и холодного источников. Увеличить КПД цикла можно либо за счет увеличения температуры горячего источника, либо за счет уменьшения температуры холодного, причем влияние температур и на значение различно:
,
,
а так как .
Таким образом, увеличение температуры горячего источника в меньшей степени повышает КПД цикла Карно, чем такое же (в Кельвинах) уменьшение температуры холодного.
Являясь следствием второго закона термодинамики, формула для КПД цикла Карно, естественно, отражает его содержание. Из нее видно, что теплоту горячего источника можно было бы полностью превратить в работу, т. е. получить КПД цикла, равный единице, лишь в случае, когда либо
. Оба значения температур недостижимы. (Недостижимость абсолютного нуля температур следует из третьего начала термодинамики).
При T1=T2 термический КПД цикла равен нулю.
Это указывает на невозможность превращения теплоты в работу, если все тела системы имеют одинаковую температуру, т. е. находятся между собой в тепловом равновесии. Для ориентировки приводим значения термического КПД цикла Карно при различных температурах горячего источника и при температуре холодного источника, равной 10 °С.
t,°С | ||||||||
![]() | 0,40 | 0,58 | 0,68 | 0,74 | 0,78 | 0,81 | 0,83 | 0,85 |
Приведенные цифры дают КПД идеального цикла. Коэффициент полезного действия реального теплового двигателя, конечно, ниже.
Как обкатать двухтактный двигатель
Зачем нужно обкатывать двигатель
Термин «обкатка», в данном случае, подразумевает время приработки трущихся поверхностей деталей двигателя. Любая, даже самая качественная и дорогостоящая механическая обработка оставляет технологические неровности на рабочих поверхностях трущихся деталей, которые выглядят в виде небольших пиков и ложбинок (Рис.1А).
Рис. 1А Рабочие поверхности трущихся деталей
Цель обкатки состоит в том, что сгладить пики, которые в конечном итоге образуют ровные участки и образуют опорную поверхность (Рис.1 В)
Рис.1В Рабочие поверхности трущихся деталей
Ложбинки играют роль масляных резервуаров. При этом надо понимать, что при взаимном перемещении двух трущихся поверхностей на высоких скоростях и, особенно, под воздействием высоких нагрузок и температур возможно явление «микросваривания» поверхностей.
Если «микросварка» разрушается, то происходит перенос металла с одной трущейся поверхности на другую. Это явление называется прихватом. Если разрушения «микросварки» не происходит, то подвижность деталей теряется и происходит заклинивание двигателя. Поэтому в период обкатки не следует подвергать трущиеся детали большим нагрузкам или проводить обкатку на высоких оборотах.
Холодный и горячий способы обкатки
Но на двухтактных двигателях холодный способ обкатки не применяется, только горячий.
Неправильная обкатка
Попробуем разобраться, почему не рекомендуется производить обкатку на холостых оборотах?
Масло, которое находится в топливной смеси, должно сгорать без образования нагара внутри двигателя. Если бензин и масло качественное, смесь приготовлена правильно, то при работе под нагрузкой, как правило, так и происходит. Но при работе двигателя на холостых оборотах, без нагрузки, масло сгорает не полностью.
В этом можно легко убедиться, если оставить двигатель работать на холостых оборотах, без какой- либо нагрузки, длительное время. Через 10-15 минут работы, из глушителя потечет черная маслянистая жидкость, похожая на деготь. Это и есть не сгоревшее масло, которое остается в виде жирных смолистых отложений на днище поршня (Рис.2 А).
Рис. 2А Отложения на днище поршня
При дальнейшей работе под нагрузкой эти отложения прогорают и выносятся в выпускное окно цилиндра. Но если этих отложений очень много, то часть их может попасть между юбкой поршня и зеркалом цилиндра. Свежий (мягкий) нагар размазывается по юбке поршня и препятствует образованию масляной пленки на юбке поршня, а старый (затвердевший) нагар оставляет царапины. Процесс смазки нарушается, и двигатель выходит из строя по причине нарушения режима смазки (Рис.2 В).
Рис. 2В Задиры на юбке поршня
Правильная обкатка
В первое время не следует давать максимальную нагрузку (пилить толстые деревья или косить высокую траву триммером так, чтобы при этом значительно снижались обороты двигателя). В таком режиме достаточно выработать 3-4 полные заправки топливного бака.