7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Холодильник идеального теплового двигателя имеет температуру

КПД теплового двигателя

Средняя оценка: 4.2

Всего получено оценок: 217.

Средняя оценка: 4.2

Всего получено оценок: 217.

Тепловой двигатель (машина) — это устройство, преобразующее внутреннюю энергию топлива в механическую работу, обмениваясь теплотой с окружающими телами. Большинство современных автомобильных, самолетных, судовых и ракетных двигателей сконструированы на принципах работы теплового двигателя. Работа производится за счет изменения объема рабочего вещества, а для характеристики эффективности работы любого типа двигателя используется величина, которая называется коэффициентом полезного действия (КПД).

Как устроен тепловой двигатель

С точки зрения термодинамики (раздел физики, изучающий закономерности взаимных превращений внутренней и механической энергий и передачи энергии от одного тела другому) любой тепловой двигатель состоит из нагревателя, холодильника и рабочего тела.

Рис. 1. Структурная схема работы теплового двигателя:.

Первое упоминание о прототипе тепловой машине относится к паровой турбине, которая была изобретена еще в древнем Риме (II век до н.э.). Правда, изобретение не нашло тогда широкого применения из-за отсутствия в то время многих вспомогательных деталей. Например, тогда еще не был придуман такой ключевой элемент для работы любого механизма, как подшипник.

Общая схема работы любой тепловой машины выглядит так:

    Нагреватель имеет температуру T1 достаточно высокую, чтобы передать большое количество теплоты Q1.

  • Адиабатический процесс — это термодинамический процесс, происходящий без теплообмена с окружающей средой (Q=0);
  • Изотермический процесс — это термодинамический процесс, происходящий при постоянной температуре. Так как у идеального газа внутренняя энергия зависит только от температуры, то переданное газу количество тепла Q идет полностью на совершение работы A (Q = A).

Сади Карно доказал, что максимально возможный КПД, который может быть достигнут идеальным тепловым двигателем, определяется с помощью следующей формулы:

Формула Карно позволяет вычислить максимально возможный КПД теплового двигателя. Чем больше разница между температурами нагревателя и холодильника, тем больше КПД.

Какие реальные КПД у разных типов двигателей

Из приведенных примеров видно, что самые большие значения КПД (40-50%) имеют двигатели внутреннего сгорания (в дизельном варианте исполнения) и реактивные двигатели на жидком топливе.

Рис. 3. КПД реальных тепловых двигателей:.

Что мы узнали?

Итак, мы узнали что такое КПД двигателя. Величина КПД любого теплового двигателя всегда меньше 100 процентов. Чем больше разность температур нагревателя T1 и холодильника Т2, тем больше КПД.

Коэффициент полезного действия

Коэффицие́нт поле́зного де́йствия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η («эта») [1] . КПД является безразмерной величиной и часто выражается в процентах.

Содержание

  • 1 Определение
  • 2 Другие похожие показатели
    • 2.1 КПД котлов
    • 2.2 Тепловые насосы и холодильные машины
  • 3 Литература
  • 4 Примечания

Определение [ править | править код ]

Математически КПД определяется как

η = A Q , >,>

где А — полезная работа (энергия), а Q — затраченная энергия.

Если КПД выражается в процентах, эту формулу иногда записывают в виде

η = A Q × 100 % >times 100%> .

Здесь умножение на 100 % не несёт содержательного смысла, поскольку 100 % = 1 . В связи с этим второй вариант записи формулы менее предпочтителен (одна и та же физическая величина может быть выражена в различных единицах независимо от формул, где она участвует).

В силу закона сохранения энергии и в результате неустранимых потерь энергии КПД реальных систем всегда меньше единицы, то есть невозможно получить полезной работы больше или столько, сколько затрачено энергии.

КПД теплово́го дви́гателя — отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя. КПД теплового двигателя может быть вычислен по следующей формуле

η = Q 1 − Q 2 Q 1 -Q_<2>>>>> ,

Читать еще:  Эбу двигателя bosch что это такое

где Q 1 > — количество теплоты, полученное от нагревателя, Q 2 > — количество теплоты, отданное холодильнику. Наибольшим КПД среди циклических машин, оперирующих при заданных температурах нагревателя T1 и холодильника T2, обладают тепловые двигатели, работающие по циклу Карно; этот предельный КПД равен

η k = T 1 − T 2 T 1 =-T_<2>>>>> .

Другие похожие показатели [ править | править код ]

Не все показатели, характеризующие эффективность энергетических процессов, соответствуют вышеприведённому описанию. Даже если они традиционно или ошибочно называются «коэффициент полезного действия», они могут иметь другие свойства, в частности, превышать 100 %.

КПД котлов [ править | править код ]

КПД котлов на органическом топливе традиционно рассчитывается по низшей теплоте сгорания; при этом предполагается, что влага продуктов сгорания покидает котёл в виде перегретого пара. В конденсационных котлах эта влага конденсируется, теплота конденсации полезно используется. При расчёте КПД по низшей теплоте сгорания он в итоге может получиться больше единицы. В данном случае корректнее было бы считать его по высшей теплоте сгорания, учитывающей теплоту конденсации пара; однако при этом показатели такого котла трудно сравнивать с данными о других установках.

Тепловые насосы и холодильные машины [ править | править код ]

Достоинством тепловых насосов как нагревательной техники является возможность получать больше теплоты, чем расходуется энергии на их работу. Холодильная машина может отвести от охлаждаемого конца больше теплоты, чем затрачивается энергии на организацию процесса.

Эффективность машин характеризует холодильный коэффициент [en]

ε X = Q X / A >=Q_ >/A> ,

где Q X >> — тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность); A — затрачиваемая на этот процесс работа (или электроэнергия).

Для тепловых насосов используют термин коэффициент трансформации

ε Γ = Q Γ / A =Q_/A> ,

где Q Γ > — тепло конденсации, передаваемое теплоносителю; A — затрачиваемая на этот процесс работа (или электроэнергия).

В идеальной машине Q Γ = Q X + A =Q_ >+A> , отсюда для идеальной машины ε Γ = ε X + 1 =varepsilon _ >+1>

Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно: в нём холодильный коэффициент

ε = T X T Γ − T X > over -T_ >>>> ,

где T Γ > , T X >> — температуры горячего и холодного концов, K [2] . Данная величина, очевидно, может быть сколь угодно велика; хотя практически к ней трудно приблизиться, холодильный коэффициент может превосходить единицу. Это не противоречит первому началу термодинамики, поскольку, кроме принимаемой в расчёт энергии A (напр., электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.

Холодильник идеального теплового двигателя имеет температуру

Идеальный тепловой двигатель 1, работающий по циклу Карно, имеет температуру нагревателя Т + . Система из двух других идеальных тепловых двигателей 2 и 3 действует следующим образом. Двигатель 2 с той же температурой нагревателя Тн2 = Тн1 и тем же потреблением теплоты за цикл Q + , что и двигатель 1, имеет температуру холодильника Тх2 = 60 °С = Тн3, и этот холодильник является нагревателем для двигателя 3, отдавая ему все количество теплоты, полученное от двигателя 2, причём холодильник двигателя 3 имеет ту же температуру, что и у двигателя 1 : Тх3 = Тх1. Найдите, во сколько раз работа A1, производимая двигателем 1 за цикл, отличается от суммарной работы A2 + A3 двигателей 2 и 3.

1. Для расчётов по термодинамическим формулам переведем вначале температуры, данные в условии, из градусов Цельсия в градусы Кельвина: Tн1 = 800 °С=1073 К, Tx1 = 0 °C = 273 К, Tx2 = 60 °С = 333 К.

2. Согласно определению КПД и формуле для КПД цикла Карно,

3. Аналогичным образом находим

Читать еще:  Что такое демпфер дизельного двигателя

4. Чтобы найти A3, надо вначале определить Q3 + , которое по условию равно |Q2 − |. По формулам для КПД имеем:

5. Далее получаем:

6. Таким образом, и

II) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов);

III) проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями);

Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют.

В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т. п.).

В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги.

Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи.

В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

Холодильник идеального теплового двигателя имеет температуру

Задание 9. У идеального теплового двигателя Карно температура нагревателя 600 К. Определите температуру холодильника, если КПД теплового двигателя составляет 25 %.

Для идеального теплового двигателя его КПД можно вычислить по формуле:

,

где T1 = 500 К – температура нагревателя; T2 – температура холодильника. Отсюда, получаем:

Ответ: 450.

  • Все задания варианта
  • Наша группа Вконтакте
  • Наш канал

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • Вариант 1
  • Вариант 1. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 2
  • Вариант 2. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 3
  • Вариант 3. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 4
  • Вариант 4. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 5
  • Вариант 5. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 6
  • Вариант 6. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 7
  • Вариант 7. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 8
  • Вариант 8. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 9
  • Вариант 9. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 10
  • Вариант 10. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 11 (совпадает с ЕГЭ 2018 вариант 1)
  • Вариант 1. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 12 (совпадает с ЕГЭ 2018 вариант 2)
  • Вариант 2. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 13 (совпадает с ЕГЭ 2018 вариант 3)
  • Вариант 3. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 14 (совпадает с ЕГЭ 2018 вариант 4)
  • Вариант 4. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 15 (совпадает с ЕГЭ 2018 вариант 5)
  • Вариант 5. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 16 (совпадает с ЕГЭ 2018 вариант 6)
  • Вариант 6. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 17 (совпадает с ЕГЭ 2018 вариант 7)
  • Вариант 7. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 18 (совпадает с ЕГЭ 2018 вариант 8)
  • Вариант 8. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 19 (совпадает с ЕГЭ 2018 вариант 9)
  • Вариант 9. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 20 (совпадает с ЕГЭ 2018 вариант 10)
  • Вариант 10. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 21 (совпадает с ЕГЭ 2017 вариант 11)
  • Вариант 11. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 22 (совпадает с ЕГЭ 2017 вариант 12)
  • Вариант 12. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 23 (совпадает с ЕГЭ 2017 вариант 13)
  • Вариант 13. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 24 (совпадает с ЕГЭ 2017 вариант 14)
  • Вариант 14. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 25 (совпадает с ЕГЭ 2017 вариант 15)
  • Вариант 15. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 26 (совпадает с ЕГЭ 2017 вариант 16)
  • Вариант 16. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 27 (совпадает с ЕГЭ 2017 вариант 21)
  • Вариант 21. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 28 (совпадает с ЕГЭ 2017 вариант 22)
  • Вариант 22. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 29 (совпадает с ЕГЭ 2017 вариант 23)
  • Вариант 23. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 30 (совпадает с ЕГЭ 2017 вариант 24)
  • Вариант 24. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
Читать еще:  В чем причина греица двигатель

Для наших пользователей доступны следующие материалы:

  • Инструменты ЕГЭиста
  • Наш канал
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector