Характеристики двигателей внутреннего сгорания для моделей
Что нельзя делать с моделью с Двигателем Внутреннего Сгорания?
Модели с ДВС- это сложно организованный механизм, который любит точность в настройке и правильное использование. Такие модели также требуют технического ухода и терпения при ремонте.
В обмен на такое бережное отношение, модели с ДВС гарантируют непередаваемое удовольствие от катания и, конечно, мощность.
Новички, приобретающие модели с ДВС не всегда понимают, на что способен такой двигатель, каковы его характеристики и что такому двигателю может быть противопоказано. В данной статье мы собрали несколько советов и правил, которые рекомендуются для моделей, под капотом которых уже рычит ДВС.
- Не рекомендуется производить какие либо действия по регулировке и обкатке модельных двигателей внутреннего сгорания без соответствующего опыта. Обратитесь к специалистам в сервисный центр за оказанием помощи в данном вопросе.
- Нельзя использовать неподходящее топливо для Вашего типа двигателя. Например, использовать бензин в калильных двигателях.
- Не трогать заводские настройки игл карбюратора двигателя. В случае крайней необходимости производить настройку не прилагая усилий, для предотвращения деформации игл и жиклеров.
- Никогда не давать работать двигателю без воздушного фильтра. Следить за чистотой фильтра, регулярно его промывать и смазывать, особенно после пыльных трасс.
- Не вытягивать шнур ручного стартера, при запуске двигателя более чем на 25 сантиметров, во избежание обрыва или поломки возвратной пружины.
- Не включать электростартер, для моделей с электростартом, более чем на 5 секунд, для избежания перегорания щеток электродвигателя.
- Не прилагать усилий для прокрутки коленвала двигателя, в случае если двигатель был «перезалит» при запуске. Примите меры для удаления излишков топлива из картера и камеры сгорания. Закройте подачу топлива, выкрутите свечу, наклоните модель в сторону глушителя и несколько раз проверните вал двигателя.
- Не давать не прогретому и не обкатанному двигателю работать на высоких оборотах для избежания заклинивания поршня.
- Не вывешивать колеса модели с работающим на высоких оборотах двигателем, для избежания заклинивания поршня и обрыва шатуна.
- Не перегревать двигатель выше 110 С.
- Не касаться руками работающего двигателя, в частности радиатора охлаждения и глушителя, для избежания получения ожогов.
- Не касаться руками работающих механизмов двигателя, в частности сцепления, маховика и шестерен дифференциала или коробки передач, для избежания получения травм и ожогов.
- Не оставлять поршень в верхней мертвой точке (ВМТ), после глушения двигателя. После остановки с помощью маховика опустить поршень в нижнюю мертвую точку (НМТ), соблюдая осторожность, что бы не получить ожоги.
- Не подавать на свечу накала напряжение больше чем 1,2 вольта, для избежания выхода свечи из строя.
- Не заводить двигатель и не использовать модель без включенного бортового питания, равно как с разряженными бортовыми аккумуляторами, для избежания потери контроля над моделью. Напряжение на бортовых АКБ должно быть не менее 4,8 вольта.
- Не погружать, при заездах, модель в воду, для исключения попадания влаги в карбюратор двигателя и на электронику модели.
- Не рекомендуется разбирать двигатель для самостоятельного ремонта. Обратитесь к специалистам в сервисный центр за оказанием помощи в данном вопросе.
Разборка двигателя внутреннего сгорания
В этом разделе мы шаг за шагом покажем вам, как разобрать и собрать ваш двигатель. Для примера на фотографиях здесь показан двигатель Nitro Star 15FE, однако эти шаги по разборке и сборке мотора идентичны для любого автомодельного двухтактного двигателя, который используется на радиоуправляемых машинах. В таблицах ниже будут указаны номера деталей, рекомендуемых для моторов марки HPI. Если ваш двигатель не относится к моторам марки HPI, номера деталей будут другие.
Прежде всего, необходимо снять двигатель с модели. Любой двигатель со временем требует капремонта (как правило, капремонт производится после того, как будет израсходовано 1 — 3 галлона топлива, в зависимости от того, как вы заботились, обслуживали и эксплуатировали ваш двигатель). Если вы собственноручно собирали свою модель, проблем по демонтажу двигателя с шасси у вас не возникнет. Если вы владелец готовой к запуску машины, найдите в инструкции по эксплуатации раздел, в котором описывается процесс установки двигателя и посмотрите, что следует сделать, чтобы снять двигатель. Демонтаж двигателя с модели выходит за рамки данной инструкции, у разных машин демонтаж мотора может иметь индивидуальные нюансы, поэтому мы рекомендуем обратиться к инструкции к вашей машине, чтобы ознакомиться с процессом демонтажа.
Следующим шаг, это подготовка необходимых инструментов. На картинке ниже, в правом верхнем углу вы можете видеть двигатель (15FE), а ниже расположены инструменты, которые вам понадобятся. В перечень инструментов включены острогубцы, крестовые отвертки № 1 и № 2 (с закаленными наконечниками) и шестигранный ключ 2.5мм.
После того, как вы извлекли двигатель из машины, вы можете решить, какие детали вы хотите заменить, например: маховик, коленвал, поршневой палец и шатун. Чтобы узнать номера деталей, которые вы будете заказывать в ближайшем хобби магазине, обратитесь к таблице. Если вы решили заменить маховик, вам понадобится тюбик специальной смазки, которая поставляется с комплектом Nitro модели или ее эквивалент.
Мы настоятельно рекомендуем использовать отвертки с закаленными наконечниками, это уменьшит вероятность повреждения головок винтов и, в то же время, такие отвертки прослужат гораздо дольше, чем обычный бытовой инструмент.
К деталям, которые, как правило, требуют замены, относится: цилиндр и поршень, прокладки головки и задней крышки двигателя. Убедитесь, что вы приобрели правильную поршневую пару (поршень/цилиндр) и набор прокладок соответствующего размера. Для определения правильных номеров деталей, пожалуйста, обратитесь к инструкции для вашего двигателя. Если у вас есть все необходимые детали для ремонта мотора, вы можете приступить к разборке мотора.
Сначала определите тип винтов крепления головки двигателя. На моторе Nitro Star Pro 15FE для фиксации головки двигателя используются винты с головкой под крестовую отвертку # 2, другие двигатели могут использовать винты с головкой под шестигранные ключи, поэтому, прежде, чем откручивать винты, убедитесь, что вы выбрали инструмент правильного размера. В нашем случае очень важно использовать именно крестовую отвертку # 2, а НЕ # 1. Если вы будете использовать отвертку # 1 или другого, не подходящего размера, вы повредите головку винтов. Пожалуйста, обратите внимание, в данном примере показан двигатель HPI 15FE! Ваш двигатель может быть другого типа или марки, но процесс будет выглядеть так же. Главное, не забудьте определить тип и размер головок винтов, которые необходимо выкрутить и подберите для этого соответствующий инструмент. Винты крепления головки двигателя 15FE могут иметь другой тип головки винта, но их расположение будет таким же, как и на вашем двигателе.
Теперь снимите головку двигателя и отложите ее в сторону. Запомните, в каком положении была установлена головка двигателя. Важно запомнить, в каком направлении были ориентированы ребра охлаждения головки мотора, чтобы позже, после того, как вы установите двигатель на модель, вам не пришлось менять положение головки двигателя.
Copyright 1986-2021 HPI Racing A/S.
All rights reserved. Images may not be used without express permission.
- Europe
- USA
- Japan
- AUS
- China
- English
- German
- Japanese
- Polish
- Russian
- Spanish
- French
- Chinese
- Finnish
- Turkish
- Korean
- Portuguese
Бензиновые и калильные двигатели внутреннего сгорания (ДВС) в RC-моделях: в чем разница, особенности, преимущества и недостатки
В предыдущих статьях мы рассказывали об особенностях радиоуправляемых моделей с ДВС и электродвигателем. Вместе разбирались, что лучше, а что имеет свои недостатки, думали как выбрать, чтобы не ошибиться. Однако, если вы заметили, в разговоре постоянно проскакивала тема ДВС на бензине и на нитро-топливе.
В этой статье мы подробно остановимся на двигателях внутреннего сгорания для RC-моделей – они ведь тоже бывают разных типов.
Калильный или бензиновый?
Радиоуправляемые модели с ДВС – это профессиональная техника, которая хоть и требует особого ухода и внимания, зато и удовольствия дарит побольше, чем аппараты на электротяге.
С изобретением бесколлекторных электромоторов и емких литий-полимерных аккумуляторов радиоуправляемые электромодели практически не уступают по техническим характеристикам моделям с ДВС. Однако визуальный эффект в эксплуатации RC-модели с ДВС часто перевешивает все доводы в пользу «простых в использовании» электромоторов.
Двигатели внутреннего сгорания подразделяют на калильные нитро-ДВС и бензиновые.
Все просто: для бензинового нужен бензин, а для калильного – специальное топливо (топливная смесь) на основе метилового спирта.
Для чего эти два вида ДВС? В чем разница?
Бензиновые моторы большие и тяжелые – их используют на крупных моделях (масштаб 1:5 и размеры более полуметра). Минимальный объем такого мотора около 20 см3, а то и больше – 23-30 см3.
Калильные двигатели предусмотрены для моделей меньшего масштаба и размера. Они компактные и легкие, но при этом не уступают по мощности бензиновым ДВС.
Объем калильного двигателя 2-6 куб.см, но определяют его не в кубических сантиметрах, а в сотых долях кубического дюйма. Так калильный ДВС объемом 3,44 куб. см. – это всего 0,21 куб. дюйма. Сотые доли объема двигателя в дюймах называют классом двигателя. Так, наш приведённый в примере двигатель с объемом 0,21 куб дюйма относится к 21-му классу.
Принципиальные отличия
1. Алгоритм работы
Калильный и бензиновый двигатели кардинально отличаются по способу воспламенения топливной смеси.
Для бензинового используется свеча зажигания как в обычном автомобиле (искровая). Просто в нужный момент на свечу подается напряжение, вызывающее искру, что и воспламеняет топливо после подачи. Размер искровой свечи около 4-5 см.
Калильный двигатель предусматривает работу калильной свечи. Она разогревается перед запуском мотора, а в процессе работы не теряет температуру, достаточную для воспламенения топливной смеси при контакте.
Размер калильной свечи – около 1 см.
2. Топливная смесь
Бензиновый мотор работает на смеси бензина и масла. Обратите внимание, что обычный автомобильный бензин не всегда можно использовать для RC-модели. Тут применяется бензин АИ-92 и АИ-95, разбавленный специальным синтетическим маслом для двухтактных двигателей. Пропорции масла и бензина указываются в инструкции для каждой отдельной модели.
Калильный намного меньше по размеру, а потому нуждается в более эффективной смеси. В состав горючего для него входит нитрометан, масло и метанол. Пропорции сложные и отличаются для разных классов RC-моделей, но об этом мы говорим в следующих публикациях.
Параметры для оценки двигателя внутреннего сгорания
Размер двигателя и модели
Крупный (для автомоделей это масштаб 1:5)
Средний (для автомоделей это масштаб 1:8 и 1:10)
Продолжительность работы
Универсальность использования
(только для больших моделей)
Стоимость смеси
Доступность топлива
Высокая (продается на любой заправке)
Продается только в специализированных магазинах
Стоимость модели
Настройка двигателя
Не нуждаются в подстройке
Постоянная подстройка в зависимости от температуры и влажности
Чистота модели после эксплуатации
Загрязнений меньше, более чистые выхлопы
Выхлопы грязные, модель пачкается
Высокий, свечи более долговечные
Реалистичные шумовые и звуковые эффекты
Техобслуживание
Не нуждается в особом уходе
Теперь вы в курсе, что если модель ревет и выдает клубы дыма, то это не обязательно бензин.
Калильный мотор (слева на картинке) ничем не хуже, но называют его «бензиновым» только те, кто не знаком с тонкостями RC-моделизма.
Поршневые двигатели
Отдел ЭМ 2.1 НИИ ЭМ («Поршневые двигатели») занимается проектированием и исследованием двигателей внутреннего сгорания. Отдел оснащен вычислительной техникой, имеет современную лабораторию, осуществляет активные связи с предприятиями, занимающимися производством двигателей и компонентов. Фундаментальный научный уровень разработок ведущих специалистов позволил приобрести высокую репутацию в своей отрасли.
Лаборатории отдела ЭМ 2.1 НИИ ЭМ
Сложившиеся коллективы специалистов разработали и продолжают совершенствование специального прикладного программного обеспечения, использующегося в промышленности.
Направления научной работы отдела ЭМ 2.1 НИИ ЭМ
Моделирование рабочих процессов в ДВС
Математическое моделирование рабочих процессов двигателей внутреннего сгорания может осуществляться для различных режимов работы, включая скоростную, нагрузочную, высотную и другие характеристики двух- и четырехтактных ДВС, с различными схемами подключения коллекторов, преобразователей импульсов, турбин, компрессоров и охладителей наддувочного воздуха; учет агрегатов наддува осуществляется разными способами, включая согласование их характеристик (возможен оптимальный подбор проточных частей турбин и компрессоров к поршневому ДВС).
Рассчитываются поля универсальных характеристик турбин и компрессоров по размерам их проточных частей.
Прогнозируются мощностные, экономические и экологические показатели двигателя при проведении различных конструктивных мероприятий, связанных с модернизацией топливной аппаратуры, формы камеры сгорания, организацией закрутки заряда, выбором фаз газораспределения и системы наддува.
Решаются многофакторные задачи оптимизации рабочего процесса, используя для этого как метод сканирования, так и методы нелинейного программирования.
Теплообмен в поршневых двигателях
На основе многозонной модели расчета локальных нестационарных температур рабочего тела в объеме цилиндра дизеля производится расчет теплового состояния деталей, образующих камеру сгорания в трехмерной постановке с учетом наличия тонких слоев нагара на тепловоспринимающие поверхности. Разработанная математическая модель сложного (радиационно- конвективного) теплообмена в цилиндре дизеля, учитывает течение рабочего тела, как излучающей и поглощающей лучистую энергию турбулентной среды.
Совершенствование конструкций и прочностной анализ поршневых и комбинированных ДВС
Проблема повышения прочности базовых узлов и деталей двигателей внутреннего сгорания традиционно занимает важное место в научной работе. При этом по мере непрерывного форсирования двигателей по удельной и агрегатной мощности, повышению требований к экономичности, экологическим, массо-габаритным показателям, а также надежности значение исследований в области тепловой и механической напряженности поршневых двигателей постоянно повышается.
Снижение механических потерь и энергосбережение в поршневых двигателях
Специалисты отдела занимаются моделированием, оценкой и снижением механических потерь, макро- и микропрофилированием поверхностей трения деталей цилиндро-поршневой группы, разработкой принципов трибологической адаптации конструкций, методов трибометрии и тестирования энергосберегающих конструкционных и смазочных материалов для поршневых двигателей.
Теоретико-расчетной основой практических рекомендаций по трибологическому энергосбережению служит активно используемый пакет расчетных программ динамики, гидродинамики и трибологии основных трущихся сопряжений.
Изучение процессов газообмена, смесеобразования и сгорания в ДВС методом физического моделирования
Физическое моделирование процессов газообмена, процессов смесеобразования и сгорания в ДВС позволяет изучать сложные физические процессы, которые в эксперименте на натурном двигателе наблюдать либо невозможно, либо это настолько технически сложно, что становится мало доступным. К таким процессам относят движение газов в цилиндре двигателя, от которого зависит и качество газообмена, и условия смесеобразования и сгорания топлива.
Моделирование течений газа во впускных каналах и трубопроводах
Методом физического моделирования выполнены исследование структуры течения во впускных каналах при нестационарных и стационарных условиях, воздействие волн на наполнение цилиндра двигателя с неразветвленным впускным трубопроводом. Изучено влияние волн в разветвленном впускном трубопроводе на неравномерность наполнения цилиндров многоцилиндрового двигателя.
В математических моделях четырехтактного дизеля применяется термодинамический метод для процессов в цилиндре и метод нестационарной газовой динамики для процессов в трубопроводах в одномерной постановке. Алгоритмы реализации моделей различаются методами численного решения основных уравнений и уравнений граничных условий.
Газообмен и наддув двигателей
При расчетах течений в газовоздушных трактах двигателей используются самые передовые численные методы газовой динамики – метод характеристик, распада разрыва и крупных частиц.
С помощью неявных представлений для расчетных сеток методов крупных частиц и распада разрыва разработаны новые модификации этих методов. На базе создания системы нестационарных газодинамических функций, а также экспериментов на модельных установках предложены новые граничные условия у органов газораспределения, разветвлений трубопроводов и агрегатов наддува, существенно уточняющие результаты расчета нестационарного газообмена.
Создание топливных систем дизелей
Созданы образцы специализированных ТНВД для Common Rail и усовершенствованные электрогидравлические форсунки.
Топливные насосы с электронным управлением с двумя рейками управления подачей и углом опережения были созданы и прошли успешные испытания.
Были созданы проекты насосов с быстродействующим электроуправляемым клапаном для нужд отечественных заводов. Для них также подготовлены математические модели наполнения-отсечки и процессов в линии низкого давления, а также модели быстродействующих электроприводов.
Использование альтернативных топлив в ДВС
Наряду с исследованиями газовых двигателей проведен ряд работ по газогенераторам: разработана методика расчета и выбора оборудования газогенераторных установок, созданы руководящие материалы для проектирования газогенераторов обращенного процесса и разработаны типовые проекты генераторов и очистительных устройств. Работы по генераторам были завершены расчетом и проектированием серии типовых генераторов и очистительных устройств.
Была разработана и реализована технология питания автомобильных дизелей с газообразными присадками водорода и (или) синтез-газа, подаваемыми вместе с дизельным топливом через штатную форсунку. Испытания показали эффективность таких присадок в отношении улучшения физических и химических факторов смесеобразования и сгорания и, в конечном счете, снижения всех четырех актуальных вредных выбросов с ОГ.
Был проведен цикл разноплановых работ по реализации исходной идеи Рудольфа Дизеля – осуществлении работы двигателя с воспламенением от сжатия на угле. В данном случае использовались топливоугольные и водоугольные суспензии. Были осуществлены работы по изучению и описанию физических свойств суспензий, в первую очередь вязкостных. Суспензия, будучи неньютоновкой жидкостью, имеет очень сложную и почти неизученную реологию. Новые закономерности распыливания угольных суспензий, полученные методом лазерной дифракции, обосновали необходимость резкой интенсификации впрыскивания суспензий. Была разработана и реализована топливная аппаратура, обеспечивающая работоспособность и ресурс дизеля.
Проведена работа по подготовке топливной аппаратуры и дизеля к применению альтернативного топлива – диметилового эфира. Концепцией стала технология смесевого топлива (дизельного с ДМЭ). Она обеспечила разумность экономических затрат в отношении достигаемого экологического результата (тогда ДМЭ был в 5 раз дороже дизельного топлива) и еще десяток практически важных достоинств.
Исследования в области автоматического регулирования ДВС
Одним из основных направлений научных исследований является математическое моделирование переходных процессов САР. В рамках этого направления проведены работы по созданию линейных и нелинейных математических моделей дизеля с турбонаддувом как объекта автоматического регулирования, и в целом системы автоматического регулирования такого двигателя.
Швеция запретит двигатели внутреннего сгорания в 2030 году
Новое правительство в Стокгольме провозгласило защиту климата одним из своих приоритетов. Обе компании Volvo уже настроились на выпуск легковых и грузовых электромобилей.
Концерн Volvo Group уже наладил выпуск электрических мусоровозов и даже начал экспортировать их в ФРГ
Швеция в 2030 году прекратит продажу автомобилей с двигателями внутреннего сгорания. Таков один из ключевых пунктов программы нового шведского правительства. Оно рассматривает борьбу против глобального потепления и выполнение Парижского соглашения по климату как один из своих приоритетов.
Норвегия опередит Швецию на 5 лет
«Швеция должна стать первым в мире государством всеобщего благоденствия, не использующим ископаемые энергоносители», — заявил прежний и новый шведский премьер-министр, социал-демократ Стефан Лёвен, представляя 21 января в парламенте в Стокгольме свой кабинет министров.
Социал-демократ Стефан Лёвен вновь стал премьер-министром Швеции
Однако первопроходцем в деле радикального сокращения вредных выбросов в транспортной сфере Швеция не станет. Это уже десятая страна, которая назвала конкретную дату прекращения регистрации новых автомобилей с бензиновыми или дизельными двигателями, подсчитала Марион Тиман (Marion Tiemann), представительница немецкого отделения Greenpeace. Эта экологическая организация приветствовала решение нового шведского правительства.
На пять лет раньше Швеции, уже в 2025 году, отказаться от автотранспорта с двигателями внутреннего сгорания намерена соседняя Норвегия. Здесь в 2018 году почти каждая вторая проданная легковая машина работала на электрической тяге. При этом доля чистых электромобилей составила 31,2 процента, остальные были плагин-гибридами, имеющими как электрический мотор, так и бензиновый.
Чем для России ценен опыт скандинавских стран
А Швеция в 2030 году, по всей видимости, окажется в одной группе с такими странами, как Дания, Израиль, Ирландия, Исландия, Нидерланды (а также с французской столицей Парижем). Все они тоже объявили о намерении через десять с небольшим лет прекратить регистрацию автомобилей с двигателями внутреннего сгорания. Более того, эту же дату называют как Китай — бесспорный мировой лидер по числу продаваемых электромобилей, — так и Индия, чьи успехи в области электромобильности покуда менее очевидны.
Осень 2018. Глава Daimler Дитер Цетше представляет в Стокгольме первый электрический Mercedes EQC
Для достижения своей амбициозной цели новое шведское правительство собирается в ближайшие годы усиленно заниматься созданием по всей стране разветвленной инфраструктуры для подзарядки электрического автотранспорта.
Для России опыт Швеции и Норвегии в области электромобильности особенно ценен по двум причинам: у обеих стран сопоставимый с российским холодный климат с длинными зимами, к тому же обе имеют огромные слабозаселенные территории, что делает повсеместную установку зарядных станций весьма сложным и дорогостоящим делом.
Шведские автостроители настроились на электромобильность
Зато новому шведскому правительству не придется убеждать отечественных автостроителей переориентироваться на выпуск электромобилей. Производитель легковых машин Volvo Cars, купленный в 2010 году китайской автомобилестроительной компанией Geely, еще два с половиной года назад, летом 2017-го, первым среди крупных европейских представителей отрасли объявил, что с 2019 года будет выпускать автомобили только с электрическими или гибридными двигателями.
На электрическую тягу все больше переключается и Volvo Group, второй по величине в мире производитель тяжелых грузовиков и автобусов. В этих сегментах рынка процесс отказа от двигателей внутреннего сгорания идет значительно медленнее, однако шведский концерн уже вошел в группу мировых лидеров по выпуску электрических автобусов.
Пока, правда, их производят в незначительных количествах. Однако Феликс Кибарт (Felix Kybart), возглавляющий подразделение альтернативных двигателей в немецкой компании MAN Bus & Truck, исходит из того, что с 2021 года издержки на приобретение и эксплуатацию электрических автобусов со сроком службы 12 лет сравняются с соответствующими расходами на дизельные автобусы. И тогда их использование станет для предприятий общественного транспорта экономически целесообразным.
Во всяком случае, MAN Bus & Truck планирует начать выпуск электрических автобусов в 2020 году и за десять лет довести их долю в общем объеме выпускаемых компанией автобусов до 60 процентов.Так что конкурент Volvo Group наверняка сумеет до 2030 года обеспечить родной шведский рынок достаточным количеством автобусов на электрической тяге.
Немецкие электромобили: что можно уже купить и что нас ждет?
Скромная доля электромобилей на рынке Германии
Почти 17 200 электромобилей было продано в Германии в первом полугодии 2018 года — и еще 16 700 машин с гибридным приводом. Это хотя и означает рост по сравнению с аналогичным периодом прошлого года на 51%, но в сравнении с продажами новых бензиновых и дизельных машин составляет лишь 1,8%. Ничтожно мало — по сравнению с почти 40% в Норвегии, являющейся мировым лидером по этому показателю.
Немецкие электромобили: что можно уже купить и что нас ждет?
Отставание по электромобильности
Причин отставания две. Немецкий автопром слишком долго не верил в приход новой эры электромобильности, делая ставку на двигатели внутреннего сгорания, в производстве которых немцы были в числе мировых лидеров. В итоге, многие электромобили сегодня существуют в основном на бумаге (см. фото). Другая причина — предоставление властями льгот покупателям электромобилей началось в ФРГ лишь недавно.
Немецкие электромобили: что можно уже купить и что нас ждет?
Перелом с сентября 2018 года?
Но сентябрь 2018 года может стать поворотным моментом. Прежде всего благодаря презентации электрического внедорожника e-tron. Это первая модель Audi, работающая полностью на электромоторе — и, как признают в самой компании-производителе, ее первая «вызревшая» серийная модель электромобиля. Поставки первым покупателям начнутся уже в конце 2018 года, а зарезервировать машину можно уже сейчас.
Немецкие электромобили: что можно уже купить и что нас ждет?
E-tron на троне?
Презентация Audi e-tron состоялась 17 сентября в США, что можно истолковать как готовность потягаться силами с мировым лидером в производстве элитных электромобилей, американской компанией Tesla. Так, e-tron будет иметь запас хода в 400 км, что сравнимо с Model 3 от Tesla.
Немецкие электромобили: что можно уже купить и что нас ждет?
Volkswagen пока не впечатляет
У электромобилей других марок, которые, как и Audi, принадлежат концерну Volkswagen, цифры менее впечатляющие. Так, под брендом Volkswagen концерн сейчас продает клиентам только 2 электрические модели — E-Golf (с начала 2014 года) и E-Up (с конца 2013). Технические характеристики таковы: запас хода у E-Golf — 300 км (и это по старым, менее экологичным нормам), у E-Up — 160 км.
Немецкие электромобили: что можно уже купить и что нас ждет?
Будущее называется I.D.
В этом году премьер электромобилей от VW не ожидается. Концерн сейчас перестраивает свой завод в немецком Цвикау, где в 2019 году начнется производство совершенно новой линейки электромобилей под общим брендом I.D. Среди прочего — и изображенного на фото микроавтобуса I.D. Buzz.
Немецкие электромобили: что можно уже купить и что нас ждет?
Другое будущее под названием EQC
Пытаются наверстать упущенное и в концерне Daimler. Сайт автопроизводителя, оттенив прошлые эксперименты с электромобильностью, уже вовсю рекламирует новую линейку электромобилей марки Mercedes — EQC. Но в серию первая машина EQC — внедорожник — выйдет в середине 2019 года. Следом за внедорожником компания обещает полную линейку на новой технологии, от компакт-класса до премиум-сегмента.
Немецкие электромобили: что можно уже купить и что нас ждет?
Smart только электрический
А вот принадлежащая Daimler марка Smart будет полностью переориентирована на электромобильность. С 2020 года машины Smart будут продаваться во всей Западной Европе только с электрическим двигателем. А в США, Канаде и Норвегии от бензиновых Smart отказались еще 2017 году.
Немецкие электромобили: что можно уже купить и что нас ждет?
BMW удивит в 2020 году
BMW уделяла внимание электромобильности больше других немецких автопроизводителей — так что уже имеет в активе две серийные модели машин с электрическими двигателями: i3 (на фото) и i8. Но с запасом хода в 200 км (i3) и у баварских автопроизводителей есть куда расти — поэтому с 2020 года BMW обещает вывести на рынок новые серийные модели электромобилей.
Немецкие электромобили: что можно уже купить и что нас ждет?
Porsche нужно еще время
Миллиарды евро инвестирует сейчас в разработки и другая дочерняя фирма Volkswagen — Porsche. Полностью электрическая модель этого бренда ожидается в 2020 году. Предварительное название модели — Taycan.
Немецкие электромобили: что можно уже купить и что нас ждет?
Opel ждут перемены
Поклонники выпускающейся в ФРГ марки Opel могли уже с 2012 года купить электромобиль Ampera. Но на самом деле он производился в США. Поэтому после приобретения компании Opel в 2017 году французским концерном PSA новый владелец объявил о планах по выпуску новых электромобилей: в 2020 году на рынок должна выйти новая Corsa с электрическим приводом, а к 2022 — еще четыре модели электромобилей.
Немецкие электромобили: что можно уже купить и что нас ждет?
Стартапы в эру электромобильности
Перспективы электромобильности увлекли не только гигантов немецкого автопрома, но и небольшие стартапы. Например, ахенская фирма e.GO Mobile AG, созданная всего лишь в 2015 году, уже к концу 2018 года собирается выпустить на рынок свою первую серийную модель e.GO Life (на фото).
Немецкие электромобили: что можно уже купить и что нас ждет?
Почтальон приезжает на электромобиле
А немецкая почта — Deutsche Post, так и не найдя в 2014 года ни одного автопроизводителя, готового поставить небольшие автофургоны для развоза почты, сама приобрела никому не известную тогда фирму StreetScooter. Фирма прекрасно справилась с заданием, и сейчас по дорогам Германии разъезжает уже более 6 тысяч выпущенных ею желтых электромобилей.