Формула работы газа в тепловом двигателе - Авто журнал "Гараж"
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Формула работы газа в тепловом двигателе

КПД теплового двигателя. КПД теплового двигателя — формула определения

В теоретической модели теплового двигателя рассматриваются три тела: нагреватель , рабочее тело и холодильник .

Нагреватель – тепловой резервуар (большое тело), температура которого постоянна.

В каждом цикле работы двигателя рабочее тело получает некоторое количество теплоты от нагревателя, расширяется и совершает механическую работу. Передача части энергии, полученной от нагревателя, холодильнику необходима для возвращения рабочего тела в исходное состояние.

Так как в модели предполагается, что температура нагревателя и холодильника не меняется в ходе работы теплового двигателя, то при завершении цикла: нагревание-расширение-остывание-сжатие рабочего тела считается, что машина возвращается в исходное состояние.

Для каждого цикла на основании первого закона термодинамики можно записать, что количество теплоты Q нагр, полученное от нагревателя, количество теплоты |Q хол|, отданное холодильнику, и совершенная рабочим телом работа А связаны между собой соотношением:

A = Q нагр – |Q хол|.

В реальных технических устройствах, которые называются тепловыми машинами, рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Так, в паровой турбине электростанции нагревателем является топка с горячим углем. В двигателе внутреннего сгорания (ДВС) продукты сгорания можно считать нагревателем, а избыток воздуха – рабочим телом. В качестве холодильника в них используется воздух атмосферы или вода природных источников.

КПД теплового двигателя (машины)

Коэффициентом полезного действия теплового двигателя (КПД) называется отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Коэффициент полезного действия любого теплового двигателя меньше единицы и выражается в процентах. Невозможность превращения всего количества теплоты, полученного от нагревателя, в механическую работу является платой за необходимость организации циклического процесса и следует из второго закона термодинамики.

В реальных тепловых двигателях КПД определяют по экспериментальной механической мощности N двигателя и сжигаемому за единицу времени количеству топлива. Так, если за время t сожжено топливо массой m и удельной теплотой сгорания q , то

Для транспортных средств справочной характеристикой часто является объем V сжигаемого топлива на пути s при механической мощности двигателя N и при скорости . В этом случае, учитывая плотность r топлива, можно записать формулу для расчета КПД:

Второй закон термодинамики

Существует несколько формулировок второго закона термодинамики . Одна из них гласит, что невозможен тепловой двигатель, который совершал бы работу только за счет источника теплоты, т.е. без холодильника. Мировой океан мог бы служить для него, практически, неисчерпаемым источником внутренней энергии (Вильгельм Фридрих Оствальд, 1901).

Другие формулировки второго закона термодинамики эквивалентны данной.

Формулировка Клаузиуса (1850): невозможен процесс, при котором тепло самопроизвольно переходило бы от тел менее нагретых к телам более нагретым.

Формулировка Томсона (1851): невозможен круговой процесс, единственным результатом которого было бы производство работы за счет уменьшения внутренней энергии теплового резервуара.

Формулировка Клаузиуса (1865): все самопроизвольные процессы в замкнутой неравновесной системе происходят в таком направлении, при котором энтропия системы возрастает; в состоянии теплового равновесия она максимальна и постоянна.

Формулировка Больцмана (1877): замкнутая система многих частиц самопроизвольно переходит из более упорядоченного состояния в менее упорядоченное. Невозможен самопроизвольный выход системы из положения равновесия. Больцман ввел количественную меру беспорядка в системе, состоящей из многих тел – энтропию .

КПД теплового двигателя с идеальным газом в качестве рабочего тела

Если задана модель рабочего тела в тепловом двигателе (например, идеальный газ), то можно рассчитать изменение термодинамических параметров рабочего тела в ходе расширения и сжатия. Это позволяет вычислить КПД теплового двигателя на основании законов термодинамики.

На рисунке показаны циклы, для которых можно рассчитать КПД, если рабочим телом является идеальный газ и заданы параметры в точках перехода одного термодинамического процесса в другой.

Изобарно-изохорный

Изохорно-адиабатный

Изобарно-адиабатный

Изобарно-изохорно-линейный

Цикл Карно. КПД идеального теплового двигателя

Наибольшим КПД при заданных температурах нагревателя T нагр и холодильника T хол обладает тепловой двигатель, где рабочее тело расширяется и сжимается по циклу Карно (рис. 2), график которого состоит из двух изотерм (2–3 и 4–1) и двух адиабат (3–4 и 1–2).

Теорема Карно доказывает, что КПД такого двигателя не зависит от используемого рабочего тела, поэтому его можно вычислить, используя соотношения термодинамики для идеального газа:

Экологические последствия работы тепловых двигателей

Интенсивное использование тепловых машин на транспорте и в энергетике (тепловые и атомные электростанции) ощутимо влияет на биосферу Земли. Хотя о механизмах влияния жизнедеятельности человека на климат Земли идут научные споры, многие ученые отмечают факторы, благодаря которым может происходить такое влияние:

  1. Парниковый эффект – повышение концентрации углекислого газа (продукт сгорания в нагревателях тепловых машин) в атмосфере. Углекислый газ пропускает видимое и ультрафиолетовое излучение Солнца, но поглощает инфракрасное излучение, идущее в космос от Земли. Это приводит к повышению температуры нижних слоев атмосферы, усилению ураганных ветров и глобальному таянию льдов.
  2. Прямое влияние ядовитых выхлопных газов на живую природу (канцерогены, смог, кислотные дожди от побочных продуктов сгорания).
  3. Разрушение озонового слоя при полетах самолетов и запусках ракет. Озон верхних слоев атмосферы защищает все живое на Земле от избыточного ультрафиолетового излучения Солнца.

Выход из создающегося экологического кризиса лежит в повышении КПД тепловых двигателей (КПД современных тепловых машин редко превышает 30%); использовании исправных двигателей и нейтрализаторов вредных выхлопных газов; использовании альтернативных источников энергии (солнечные батареи и обогреватели) и альтернативных средств транспорта (велосипеды и др.).

Коэффициент полезного действия (КПД) — это характеристика результативности системы в отношении преобразования или передачи энергии, который определяется отношением полезно использованной энергии к суммарной энергии, полученной системой.

КПД — величина безразмерная, обычно ее выражают в процентах:

Коэффициент полезного действия (КПД) теплового двигателя определяется по формуле: , где A = Q1Q2. КПД теплового двигателя всегда меньше 1.

Цикл Карно — это обратимый круговой газовый процесс, который состоит из последовательно стоящих двух изотермических и двух адиабатных процессов, выполняемых с рабочим телом.

Круговой цикл, включающий в себя две изотермы и две адиабаты, соответствует максимальному КПД.

Французский инженер Сади Карно в 1824 г. вывел формулу максимального КПД идеального теплового двигателя, где рабочее тело — это идеальный газ, цикл которого состоял из двух изотерм и двух адиабат, т. е. цикл Карно. Цикл Карно — реальный рабочий цикл теплового двигателя, свершающего работу за счет теплоты, подводимой рабочему телу в изотермическом процессе.

Формула КПД цикла Карно, т. е. максимального КПД теплового двигателя имеет вид: , где T1 — абсолютная температура нагревателя, Т2 — абсолютная температура холодильника.

Тепловые двигатели — это конструкции, в которых тепловая энергия превращается в механическую.

Тепловые двигатели многообразны как по конструкции, так и по назначению. К ним относятся паровые машины, паровые турбины, двигатели внутреннего сгорания, реактивные двигатели.

Однако, несмотря на многообразие, в принципе действия различных тепловых двигателей есть общие черты. Основные компоненты каждого теплового двигателя:

  • нагреватель;
  • рабочее тело;
  • холодильник.

Нагреватель выделяет тепловую энергию, при этом нагревает рабочее тело, которое находится в рабочей камере двигателя. Рабочим телом может быть пар или газ.

Приняв количество теплоты, газ расширяется, т.к. его давление больше внешнего давления, и двигает поршень, производя положительную работу. При этом его давление падает, а объем увеличивается.

Если сжимать газ, проходя те же состояния, но в обратном направлении, то совершим ту же по абсолютному значению, но отрицательную работу. В итоге вся работа за цикл будет равна нулю.

Читать еще:  Двигатель d12 volvo технические характеристики

Для того чтобы работа теплового двигателя была отлична от нуля, работа сжатия газа должна быть меньше работы расширения.

Чтобы работа сжатия стала меньше работы расширения, необходимо, чтобы процесс сжатия проходил при меньшей температуре, для этого рабочее тело нужно охладить, поэтому в конструкцию теплового двигателя входит холодильник. Холодильнику рабочее тело отдает при соприкосновении с ним количество теплоты.

Главное значение полученной Карно формулы (5.12.2) для КПД идеальной машины состоит в том, что она определяет максимально возможный КПД любой тепловой машины.

Карно доказал, основываясь на втором законе термодинамики*, следующую теорему: любая реальная тепловая машина, работающая с нагревателем температуры Т 1 и холодильником температуры Т 2 , не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины.

* Карно фактически установил второй закон термодинамики до Клаузиуса и Кельвина, когда еще первый закон термодинамики не был сформулирован строго.

Рассмотрим вначале тепловую машину, работающую по обратимому циклу с реальным газом. Цикл может быть любым, важно лишь, чтобы температуры нагревателя и холодильника были Т 1 и Т 2 .

Допустим, что КПД другой тепловой машины (не работающей по циклу Карно) η’ > η. Машины работают с общим нагревателем и общим холодильником. Пусть машина Карно работает по обратному циклу (как холодильная машина), а другая машина — по прямому циклу (рис. 5.18). Тепловая машина совершает работу, равную согласно формулам (5.12.3) и (5.12.5):

Холодильную машину всегда можно сконструировать так, чтобы она брала от холодильника количество теплоты Q 2 = ||

Тогда согласно формуле (5.12.7) над ней будет совершаться работа

(5.12.12)

Так как по условию η» > η, то А» > А. Поэтому тепловая машина может привести в действие холодильную машину, да еще останется избыток работы. Эта избыточная работа совершается за счет теплоты, взятой от одного источника. Ведь холодильнику при действии сразу двух машин теплота не передается. Но это противоречит второму закону термодинамики.

Если допустить, что η > η«, то можно другую машину заставить работать по обратному циклу, а машину Карно — по прямому. Мы опять придем к противоречию со вторым законом термодинамики. Следовательно, две машины, работающие по обратимым циклам, имеют одинаковые КПД: η» = η.

Иное дело, если вторая машина работает по необратимому циклу. Если допустить η» > η, то мы опять придем к противоречию со вторым законом термодинамики. Однако допущение т|»

Формула работы газа в тепловом двигателе

Тепловым двигателем называется устройство, способное превращать полученное количество теплоты в механическую работу. Механическая работа в тепловых двигателях производится в процессе расширения некоторого вещества, которое называется рабочим телом . В качестве рабочего тела обычно используются газообразные вещества (пары бензина, воздух, водяной пар). Рабочее тело получает (или отдает) тепловую энергию в процессе теплообмена с телами, имеющими большой запас внутренней энергии. Эти тела называются тепловыми резервуарами .

Как следует из первого закона термодинамики, полученное газом количество теплоты полностью превращается в работу при изотермическом процессе, при котором внутренняя энергия остается неизменной ():

.

Но такой однократный акт преобразования теплоты в работу не представляет интереса для техники. Реально существующие тепловые двигатели (паровые машины, двигатели внутреннего сгорания и т. д.) работают циклически . Процесс теплопередачи и преобразования полученного количества теплоты в работу периодически повторяется. Для этого рабочее тело должно совершать круговой процесс или термодинамический цикл , при котором периодически восстанавливается исходное состояние. Круговые процессы изображаются на диаграмме () газообразного рабочего тела с помощью замкнутых кривых (рис. 3.11.1). При расширении газ совершает положительную работу , равную площади под кривой , при сжатии газ совершает отрицательную работу , равную по модулю площади под кривой . Полная работа за цикл на диаграмме () равна площади цикла. Работа положительна, если цикл обходится по часовой стрелке, и отрицательна, если цикл обходится в противоположном направлении.

Общее свойство всех круговых процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем , а с более низкой – холодильником . Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты и отдает холодильнику количество теплоты . Полное количество теплоты , полученное рабочим телом за цикл, равно

.

При обходе цикла рабочее тело возвращается в первоначальное состояние, следовательно, изменение его внутренней энергии равно нулю (). Согласно первому закону термодинамики,

.

Отсюда следует:

.

Коэффициент полезного действия указывает, какая часть тепловой энергии, полученной рабочим телом от «горячего» теплового резервуара, превратилась в полезную работу. Остальная часть () была «бесполезно» передана холодильнику. Коэффициент полезного действия тепловой машины всегда меньше единицы (). Энергетическая схема тепловой машины изображена на рис. 3.11.2.

В двигателях, применяемых в технике, используются различные круговые процессы. На рис. 3.11.3 изображены циклы, используемые в бензиновом карбюраторном и в дизельном двигателях. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (, ) и двух адиабат (, ). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (, ), одной изобары () и одной изохоры (). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30 %, у дизельного двигателя – порядка 40 %.

В 1824 году французский инженер С. Карно рассмотрел круговой процесс, состоящий из двух изотерм и двух адиабат, который сыграл важную роль в развитии учения о тепловых процессах. Он называется циклом Карно (рис. 3.11.4).

Цикл Карно совершает газ, находящийся в цилиндре под поршнем. На изотермическом участке () газ приводится в тепловой контакт с горячим тепловым резервуаром (нагревателем), имеющим температуру . Газ изотермически расширяется, совершая работу , при этом к газу подводится некоторое количество теплоты . Далее на адиабатическом участке () газ помещается в адиабатическую оболочку и продолжает расширяться в отсутствие теплообмена. На этом участке газ совершает работу . Температура газа при адиабатическом расширении падает до значения . На следующем изотермическом участке () газ приводится в тепловой контакт с холодным тепловым резервуаром (холодильником) при температуре . Происходит процесс изотермического сжатия. Газ совершает работу и отдает тепло , равное произведенной работе . Внутренняя энергия газа не изменяется. Наконец, на последнем участке адиабатического сжатия газ вновь помещается в адиабатическую оболочку. При сжатии температура газа повышается до значения , газ совершает работу . Полная работа , совершаемая газом за цикл, равна сумме работ на отдельных участках:

.

На диаграмме () эта работа равна площади цикла.

Процессы на всех участках цикла Карно предполагаются квазистатическими. В частности, оба изотермических участка (1–2 и 3–4) проводятся при бесконечно малой разности температур между рабочим телом (газом) и тепловым резервуаром (нагревателем или холодильником).

Как следует из первого закона термодинамики, работа газа при адиабатическом расширении (или сжатии) равна убыли его внутренней энергии. Для 1 моля газа

,

где и – начальная и конечная температуры газа.

Отсюда следует, что работы, совершенные газом на двух адиабатических участках цикла Карно, одинаковы по модулю и противоположны по знакам

.

По определению, коэффициент полезного действия цикла Карно есть

Любой участок цикла Карно и весь цикл в целом может быть пройден в обоих направлениях. Обход цикла по часовой стрелке соответствует тепловому двигателю, когда полученное рабочим телом тепло частично превращается в полезную работу. Обход против часовой стрелки соответствует холодильной машине , когда некоторое количество теплоты отбирается от холодного резервуара и передается горячему резервуару за счет совершения внешней работы . Поэтому идеальное устройство, работающее по циклу Карно, называют обратимой тепловой машиной .

Читать еще:  Хендай акцент троит двигатель на холостых

В реальных холодильных машинах используются различные циклические процессы. Все холодильные циклы на диаграмме () обходятся против часовой стрелки. Энергетическая схема холодильной машины представлена на рис. 3.11.5.

Формула работы газа в тепловом двигателе

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c. Тогда количество теплоты (энергии) необходимое для изменения температуры некоторого тела массой m можно рассчитать по формуле:

При этом в этой формуле абсолютно не важно в каких единицах подставлена температура, так как нам важно не ее абсолютное значение, а изменение. Единица измерения удельной теплоемкости вещества: Дж/(кг∙К).

  • Если t2 >t1, то Q > 0 – тело нагревается (получает тепло).
  • Если t2 0 и отдает холодильнику количество теплоты Q2 3 воздуха (т.е. просто плотность водяных паров; из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):

где: р – парциальное давление водяного пара, М – молярная масса, R – универсальная газовая постоянная, Т – абсолютная температура. Единица измерения абсолютной влажности в СИ [ρ] = 1 кг/м 3 , хотя обычно используют 1 г/м 3 .

Относительной влажностью φ называется отношение абсолютной влажности ρ к тому количеству водяного пара ρ, которое необходимо для насыщения 1 м 3 воздуха при данной температуре:

Относительную влажность можно также определить как отношение давления водяного пара р к давлению насыщенного пара р при данной температуре:

Испарение может происходить не только с поверхности, но и в объеме жидкости. В жидкости всегда имеются мельчайшие пузырьки газа. Если давление насыщенного пара жидкости равно внешнему давлению (то есть давлению газа в пузырьках) или превышает его, жидкость будет испаряться внутрь пузырьков. Пузырьки, наполненные паром, расширяются и всплывают на поверхность. Этот процесс называется кипением. Таким образом, кипение жидкости начинается при такой температуре, при которой давление ее насыщенных паров становится равным внешнему давлению.

В частности, при нормальном атмосферном давлении вода кипит при температуре 100°С. Это значит, что при такой температуре давление насыщенных паров воды равно 1 атм. Важно знать, что температура кипения жидкости зависит от давления. В герметически закрытом сосуде жидкость кипеть не может, т.к. при каждом значении температуры устанавливается равновесие между жидкостью и ее насыщенным паром.

Поверхностное натяжение

Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако, время от времени любая молекула может скачком переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей.

Вследствие плотной упаковки молекул сжимаемость жидкостей, то есть изменение объема при изменении давления, очень мала; она в десятки и сотни тысяч раз меньше, чем в газах.

Наиболее интересной особенностью жидкостей является наличие свободной поверхности. Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости (силами, действующими на данную молекулу жидкости со стороны молекул газа (или пара) можно пренебречь). В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости. Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (то есть увеличить площадь поверхности жидкости), надо затратить положительную работу внешних сил ΔAвнеш, пропорциональную изменению ΔS площади поверхности.

Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальной энергией. Потенциальная энергия Ep поверхности жидкости пропорциональна ее площади:

Коэффициент σ называется коэффициентом поверхностного натяжения (σ > 0). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости на единицу при постоянной температуре. В СИ коэффициент поверхностного натяжения измеряется в джоулях на метр квадратный (Дж/м 2 ) или в ньютонах на метр (1 Н/м = 1 Дж/м 2 ).

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии (любое тело всегда стремится скатиться с горы, а не забраться на нее). Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения. Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку. Сила поверхностного натяжения, действующая на участок границы жидкости длиной L вычисляется по формуле:

Таким образом, коэффициент поверхностного натяжения σ может быть определен как модуль силы поверхностного натяжения, действующей на единицу длины линии, ограничивающей поверхность.

Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра – капиллярах. Смачивающие жидкости поднимаются по капиллярам, несмачивающие – опускаются. При этом высота столба жидкости в капилляре:

где: r – радиус капиляра (т.е. тонкой трубки). При полном смачивании θ = 0°, cos θ = 1. В этом случае высота столба жидкости в капилляре станет равной:

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.

КПД теплового двигателя с формулой

Вы будете перенаправлены на Автор24

Исторически появление термодинамики как науки было связано с практической задачей создания эффективного теплового двигателя (тепловой машины).

Тепловая машина

Тепловым двигателем называют устройство, которое совершает работу за счет поступающей к двигателю теплоты. Данная машина является периодической.

Тепловая машина включает в себя следующие обязательные элементы:

  • рабочее тело (обычно газ или пар);
  • нагреватель;
  • холодильник.

Рисунок 1. Цикл работы тепловой машины. Автор24 — интернет-биржа студенческих работ

На рис.1 изобразим цикл, по которому может работать тепловая машина. В этом цикле:

  • газ расширяется от объема $V_1$ до объема $V_2$;
  • газ сжимается от объема $V_2$ до объема $V_1$.

Для того чтобы получить работу, которую выполняет газ, большей чем ноль, давление (следовательно, температура) в процессе расширения должно быть больше, чем в процессе сжатия. С этой целью газ в процессе расширения теплоту получает, а при сжатии у рабочего тела тепло отбирают. Отсюда сделает вывод о том, что кроме рабочего тела в тепловом двигателе должны присутствовать еще два внешних тела:

  • нагреватель, отдающий рабочему телу теплоту;
  • холодильник, тело, которое забирает от рабочего тела тепло в ходе сжатия.

После выполнения цикла рабочее тело и все механизмы машины возвращаются в прежнее состояние. Это означает, что изменение внутренней энергии рабочего тела — ноль.

На рис.1 указано, что в процессе расширения рабочее тело получает количество теплоты, равное $Q_1$. В процессе сжатия рабочее тело отдает холодильнику количество теплоты, равное $Q_2$. Следовательно, за один цикл количество теплоты, полученное рабочим телом равно:

Готовые работы на аналогичную тему

$Delta Q=Q_1-Q_2 (1).$

Из первого начала термодинамики, учитывая то, что в замкнутом цикле $Delta U=0$, работа, совершаемая рабочим телом равна:

Для организации повторных циклов тепловой машины необходимо, чтобы она часть своей теплоты отдавала холодильнику. Данное требование находится в согласии со вторым началом термодинамики:

Невозможно создать вечный двигатель, который периодически трансформировал полностью теплоту, получаемую от некоего источника полностью в работу.

Так, даже у идеального теплового двигателя количество теплоты, передаваемое холодильнику, не может равняться нулю, существует нижний предел величины $Q_2$.

КПД тепловой машины

Понятно, что насколько эффективно работает тепловая машина, следует оценивать, учитывая полноту превращения теплоты, полученной от нагревателя в работу рабочего тела.

Параметром, который показывает эффективность теплового двигателя, является коэффициент полезного действия (КПД).

КПД теплового двигателя называют отношение работы, выполняемой рабочим телом ($A$) к количеству теплоты, которое это тело получает от нагревателя ($Q_1$):

Принимая во внимание выражение (2) КПД тепловой машины найдем как:

Соотношение (4) показывает, что КПД не может быть больше единицы.

КПД холодильной машины

Обратим цикл, который отображен на рис. 1.

Обратить цикл – это значит, изменить направление обхода контура.

В результате обращения цикла получим цикл холодильной машины. Эта машина получает от тела с низкой температурой теплоту $Q_2$ и передает ее нагревателю, имеющему более высокую температуру количество теплоты $Q_1$, причем $Q_1>Q_2$. Над рабочим телом совершается работа $A’$ за цикл.

Эффективность нашего холодильника определяется коэффициентом, который вычисляют как:

КПД обратимой и необратимой тепловой машины

КПД необратимого теплового двигателя всегда меньше, чем КПД обратимой машины, при работе машин с одинаковыми нагревателем и холодильником.

Рассмотрим тепловую машину, состоящую из:

  • цилиндрического сосуда, который закрыт поршнем;
  • газа под поршнем;
  • нагревателя;
  • холодильника.
  1. Газ получает некоторое количество теплоты $Q_1$ от нагревателя.
  2. Газ расширяется и толкает поршень, выполняет работу $A_+0$.
  3. Газ сжимают, холодильнику передается теплота $Q_2$.
  4. Работа совершается над рабочим телом $A_-

Работа, которую выполнят рабочее тело за цикл, равна:

Для выполнения условия обратимости процессов их надо проводить очень медленно. Кроме этого необходимо, чтобы отсутствовало трение поршня о стенки сосуда.

Обозначим работу, совершаемую за один цикл обратимым тепловым двигателем как $A_<+0>$.

Выполним тот же цикл с большой скоростью и при наличии трения. Если провести расширение газа быстро, давление его около поршня будет меньше, чем если газ расширяют медленно, поскольку возникающее под поршнем разрежение распространяется на весь объем с конечной скоростью. В этой связи, работа газа в необратимом увеличении объема меньше, чем в обратимом:

Если выполнить сжатие газа быстро давление около поршня больше, чем при медленном сжатии. Значит, величина отрицательной работы рабочего тела в необратимом сжатии больше, чем в обратимом:

Получим, что работа газа в цикле $A$ необратимой машины, вычисляемая по формуле (5), выполняемая за счет теплоты, полученной от нагревателя будет меньше, чем работа, выполненная в цикле обратимым тепловым двигателем:

Трение, имеющееся в необратимом тепловом двигателе, ведет к переходу части работы выполненной газом в теплоту, что уменьшает КПД двигателя.

Так, можно сделать вывод о том, что коэффициент полезного действия теплового двигателя обратимой машины больше, чем необратимой.

Тело, с которым обменивается теплом рабочее тело, станем называть тепловым резервуаром.

Обратимая тепловая машина совершает цикл, в котором имеются участки, где рабочее тело совершает обмен теплотой с нагревателем и холодильником. Процесс обмена теплом является обратимым, только если при получении теплоты и возвращении ее при обратном ходе, рабочее тело обладает одной и той же температурой, равной температуре теплового резервуара. Если говорить более точно, то температура тела, которое получает теплоту, должная быть на очень малую величину менее температуры резервуара.

Таким процессом может быть изотермический процесс, который происходит при температуре резервуара.

Для функционирования теплового двигателя у него должно быть два тепловых резервуара (нагреватель и холодильник).

Обратимый цикл, который выполняется в тепловом двигателе рабочим телом, должен быть составлен из двух изотерм (при температурах тепловых резервуаров) и двух адиабат.

Адиабатические процессы происходят без обмена теплом. В адиабатных процессах происходит расширение и сжатие газа (рабочего тела).

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector