0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Формула частоты вращения холостого хода двигателя

Расчетные формулы основных параметров асинхронных двигателей

В таблице 1 представлены расчетные формулы для определения основных параметров асинхронных двигателей.

В данной таблице собраны все формулы, которые касаются расчета параметров асинхронных двигателей.

Используя формулы из данной таблицы, вам больше не придется искать нужную формулу в различных справочниках.

Таблица 1 — Расчетные формулы для определения основных параметров асинхронных двигателей

1. Справочная книга электрика. В.И. Григорьева, 2004 г.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» и «PayPal» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

В данной статье будет рассматриваться пример определения индуктивного сопротивления воздушной линии 10.

Доброго времени суток. В данной статье речь пойдет о расчете активных и индуктивных сопротивлений для.

Доброго времени суток. В данной статье я буду рассматривать выбор догрузочных резисторов во вторичной.

Требуется рассчитать сопротивления обмоток трехобмоточного автотрансформатора типа АТДЦТН-125000/220/110.

В таблице 1 представлены расчетные формулы для определения основных параметров машин постоянного.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Технические характеристики ГАЗель Бизнес

ГАЗель БИЗНЕС БОРТ

ГАЗель БИЗНЕС ЦМФ

ГАЗель БИЗНЕС АВТОБУС

ГАЗЕЛЬ БИЗНЕС БОРТ

ОБЩИЕ ДАННЫЕ

*** Параметры данного показателя меняются в зависимости от двигателя.
Данные показатели относятся к автомобилям с двигателем УМЗ-42164 (бензиновый)

Все технические характеристики носят информативный характер, точные данные уточняйте по телефонам, указанным в разделе «Контакты».Все технические характеристики носят информативный характер, точные данные уточняйте по телефонам, указанным в разделе «Контакты».Все технические характеристики носят информативный характер, точные данные уточняйте по телефонам, указанным в разделе «Контакты».Все технические характеристики носят информативный характер, точные данные уточняйте по телефонам, указанным в разделе «Контакты».

Двигатели

ПАРАМЕТРЫCUMMINS ISF2.8S4129PEVOTECH A 275
ПАРАМЕТРЫCUMMINS ISF2.8S4129PEVOTECH A 275
Тип двигателяДизельный, с турбонаддувом и охладителем наддувочного воздухаБензиновый, 4-тактный, впрысковый
Количество цилиндров и их расположение4, рядное4, рядное
Диаметр цилиндров и ход поршня,мм94×10096,5х92
Рабочий объем цилиндров, л2,82,69
Степень сжатия16,510
Номинальная мощность, нетто кВт (л.с.)
при частоте вращения коленчатого вала, об/мин
88,3 (120)
3600
78,5 (106,8)
4000
Максимальный крутящий момент, нетто, Н*м (кгсм)
при частоте вращения коленчатого вала, об/мин
270 (27,5)
1400-3000
220,5 (22,5)
2350±150
Порядок работы цилиндров1-3-4-21-2-4-3
Частота вращения коленчатого вала в режиме холостого хода, об/мин
минимальная
повышенная
750±50
4500
800±50
3000
Направление вращения коленчатого вала (наблюдая со стороны вентилятора)правоеправое
Запас хода от одной заправки при движении на всех типах топлива475
ЭБУодин
Контрольный расход основного топлива при движении со скоростью:
60 км/ч, л/100км
80 км/ч, л/100км
8,5
10,3
9,8
12,1

Все технические характеристики носят информативный характер, точные данные уточняйте по телефонам, указанным в разделе «Контакты».

Определение мощности электродвигателя без бирки

Общепромышленные асинхронные электродвигатели имеют срок службы и подлежат периодичной замене, ремонту. Дефекты электрической части, замыкание, обрывы, износ подшипников, перемотка, нарушение центровки, сырая обмотка. При отсутствии паспорта, бирки на двигателе возникает вопрос: как узнать мощность электродвигателя без таблички или технических характеристик?

Параметры для определения мощности электродвигателя:

Определение мощности двигателя по диаметру вала и длине

Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. Габариты электродвигателей АИР:

  • АИР 56
  • АИР 63
  • АИР 71
  • АИР 80
  • АИР 90
  • АИР 100
  • АИР 112
  • АИР 132
  • АИР 160
  • АИР 180
  • АИР 200
  • АИР 225
  • АИР 250
  • АИР 280
  • АИР 315
  • АИР 355

Мощность, (Р) кВт3000 об/мин1500 об/мин1000 об/мин750 об/мин
D1, ммL1, ммD1, ммL1, мм>D1, ммL1, ммD1, ммL1, мм
1,52250225024502860
2,22428603280
3243280
42860286038
5,5328038
7,532803848110
113848110
15421104811055
18,55560140
22485560>140
3065
3755>601406575
457575
556580170
75651407580170
9090
110708017090
132100210
1607590100210
200
25085170100210
315

Расчет мощности электродвигателя по габаритам и крепежным размерам

Таблица подбора мощности двигателя по крепежным отверстиям на лапах (L10 и B10):

Асинхронный генератор. Частота

Частота асинхронного генератора при холостом ходе и нагрузке

Разница между частотой вращения магнитного поля и ротора в асинхронных генераторах определяется коэффициентом s, называемым скольжением, который выражается соотношением:

Здесь:
n — частота вращения магнитного поля.
nr — частота вращения ротора.

Связь между угловой частотой вращения магнитного поля ω и угловой частотой вращения ротора ωr асинхронной машины можно выразить следующим образом:

что следует из определения скольжения.
В общем случае угловая частота вращения магнитного поля

Так как частота генерируемых колебаний

где р — число пар полюсов, то

Аналогично угловая частота вращения ротора

где fr = pnr — электрическая частота вращения ротора.
Электрическая угловая частота вращения ротора

В режиме автономного асинхронного генератора частота вращения магнитного поля, определяющая частоту генерируемых колебаний, зависит от частоты вращения ротора и от нагрузки, характеризуемой скольжением. Если нагрузка отсутствует, а включенная емкость и частота вращения ротора остаются постоянными, т.е. C = cоnst и ωr = cоnst, то частоту генерируемых колебаний можно выразить через параметры колебательного контура, который образуется собственной индуктивностью статорной обмотки и емкостью конденсатора.

При отмеченных условиях уравнение электрического равновесия, выраженное через мгновенные значения напряжений на синхронном индуктивном сопротивлении XL = ωL и на конденсаторе XC = ωC, принимает вид:

uL = Ldi/dt и di/dt = C d 2 u/dt 2

и преобразований, уравнение примет вид

Примем, что напряжение на конденсаторе изменяется по синусоидальному закону:

d 2 uC /dt 2 = -ω 2 UC sinωt ,

С учетом последних соотношений из дифференциального уравнения находим:

ω = 1/√LC ,

f = 1/2π√LC

Таким образом, частота генерируемых колебаний при холостом ходе автономного асинхронного генератора определяется из условия резонанса емкости конденсатора и собственной индуктивности обмотки статора.
Если принять, что при холостом ходе скольжение s = 0, то получим

Последнее выражение можно представить в виде

Следовательно, при холостом ходе асинхронного самовозбуждающегося генератора параметры колебательного контура автоматически настраиваются на частоту, равную электрической частоте вращения ротора.

Изменение значения включенной емкости при ωr = cоnst или частоты вращения ротора при С = cоnst не нарушает вышеописанных равенств, если генератор остается в области устойчивой работы. В первом случае мы имеем одну характеристику намагничивания машины, соответствующую данному значению частоты вращения и семейство вольтамперных характеристик возбуждающей емкости, причем каждая из характеристик составляет с положительным направлением оси абсцисс угол

где k = 1, 2, 3 . Произведение собственных индуктивностей статорной обмотки и емкости конденсаторов остается практически постоянным, т.е.

так как вследствие нелинейности кривой намагничивания происходит соответствующее изменение индуктивности. Так с увеличением емкости ток холостого хода и степень насыщения магнитной цепи возрастают, а индуктивность уменьшается. Значение установившегося напряжения определяется точкой пересечения кривой намагничивания и вольтамперной характеристики конденсаторов.

Во втором случае, т.е. при переходе к новым значениям установившихся частот вращения с емкостью С = cоnst, мы имеем семейство кривых намагничивания и семейство вольтамперных характеристик возбуждающей емкости. Углы наклона последних к положительному направлению оси абсцисс находятся теперь по соотношению

Значение установившегося напряжения в каждом случае определяется точкой пересечения кривой намагничивания и вольтампер ной характеристики конденсаторов для данной угловой частоты ωk .

Получим теперь выражение для частоты генерируемых колебаний при нагрузке, полагая, что емкость конденсаторов и частота вращения ротора не изменяются. Выполнив необходимые преобразования из вышеописанных формул, получим:

f = pnr /(1 — s ) ,

Заметим, что частота вращения ротора в большинстве случаев выражается в об/мин а не в сек/мин, тогда запишем

f = pnr /60(1 — s ) ,

Частота генерируемых колебаний при постоянной частоте вращения ротора и возрастающей нагрузке несколько уменьшается, так как на устойчивой части механической характеристики асинхронной машины скольжение пропорционально нагрузке. С другой стороны, уменьшение частоты f при С = cоnst объясняется увеличением собственной индуктивности фазы статора вследствие возрастания коэффициента взаимоиндукции. Последнее вызывается размагничивающим действием тока ротора.

Замечания и предложения принимаются и приветствуются!

Читать еще:  Давление масло в двигателе ниже нормы
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector