Электронная регулировка оборотов двигателя постоянного тока - Авто журнал "Гараж"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электронная регулировка оборотов двигателя постоянного тока

ОБОРУДОВАНИЕ
ТЕХНОЛОГИИ
РАЗРАБОТКИ

Блог технической поддержки моих разработок

Урок 73. ПИД-регулятор скорости вращения двигателя постоянного тока. Разработка аппаратной части.

Первый из серии уроков, посвященных разработке регулятора скорости вращения коллекторного двигателя постоянного тока. Рассматривается аппаратное подключение двигателя к плате Ардуино.

Игорь из Москвы заказал мне разработку контроллера- регулятора скорости вращения двигателя постоянного тока.

Это продолжение бесконечной разработки интеллектуального сверлильного станка. Сначала я написал для него общую управляющую программу. Затем мы создали электронный прицел для станка на OSD-генераторе. Пришла очередь до двигателя, который вращает шпиндель.

Используется коллекторный двигатель постоянного тока мощностью 500 Вт и номинальным напряжением 100 В. Необходимо задавать и стабилизировать его скорость вращения.

Тема показалась мне очень интересной, и я решил в качестве уроков описать последовательность своих действий по разработке контроллера двигателя. Тем более в интернете эта тема ограничивается теоретическими рассуждениями.

Должен получиться учебный материал на несколько разных тем:

  • аппаратное подключение двигателя постоянного тока к Ардуино;
  • измерение частоты и периода сигнала ;
  • управление нагрузкой с помощью ШИМ;
  • ПИД-регулятор;
  • этапы разработки подобных устройств.

Кроме того, я надеюсь, что получится законченный аппаратно-программный блок – ПИД-регулятор скорости вращения двигателя постоянного тока. Его можно будет использовать в различных приложениях.

У Игоря используется достаточно мощный мотор 500 Вт, с номинальным напряжением питания 100 В. У меня такого двигателя нет. Поэтому я проведу разработку и испытания на компьютерном вентиляторе с номинальным напряжением 12 В. Не сомневаюсь, что все написанное и разработанное будет справедливо и для гораздо более мощных устройств. По крайней мере, Игорь проверит контроллер на 500 ваттном моторе.

Аппаратное подключение двигателя постоянного тока к Ардуино.

Существуют две основные задачи:

  • Необходимо управлять двигателем, изменяя на нем напряжение, а значит и мощность. Т.е. нужно создать регулирующий элемент, с помощью которого регулятор будет изменять состояние двигателя, увеличивать или уменьшать его скорость вращения.
  • Надо измерять скорость вращения двигателя, чтобы регулятор мог ее контролировать.

Сошлюсь на Урок 39, раздел ”Общие сведения о регуляторах”. Там написано, что необходимо выделить:

  • регулируемый параметр – что мы регулируем;
  • регулирующий элемент – с помощью чего мы регулируем.

Аппаратную часть этих компонентов регулятора и будем разрабатывать в этом уроке.

Подключение двигателя к ШИМ Arduino.

Естественно для управления двигателем будем использовать ШИМ. Это значительно упростит схему, повысит КПД. Практически, независимо от мощности и напряжения мотора, для управления им достаточно одного ключа. Конечно, передельно-допустимые параметры ключа должны соответствовать двигателю. Для моего двигателя-вентилятора я выбрал такие элементы.

ШИМ с выхода Ардуино открывает и закрывает ключ, собранный на MOSFET-транзисторе. Можно, конечно, использовать и биполярный транзистор, но:

  • полевым проще управлять;
  • у него меньше падение напряжения в открытом состоянии, а значит он меньше греется;
  • в отличие от биполярного транзистора, он работает на высоких частотах 100 кГц и выше.

Я выбрал MOSFET-транзистор IRF7341: N-канал, 55 В, 4 А. Кроме предельно-допустимых параметров необходимо учитывать то, что транзистор должен быть низкопороговым, т.е. открываться при небольшом напряжении (не более 5 В). Иначе необходимо использовать дополнительный элемент – драйвер.

Диод в схеме абсолютно необходим. Двигатель – это индуктивная нагрузка, а иногда и электрогенератор. Поэтому при закрытии транзистора на выводах двигателя могут возникать броски высокого напряжения. Они должны замыкаться через диод, чтобы не сжечь транзистор.

В некоторых подобных схемах используют низкочастотные выпрямительные диоды, например, 1N4007. Это допустимо только для дискретного управления двигателем: включить или выключить. При управлении с помощью ШИМ, особенно с высокой частотой, диод должен быть высокочастотным, лучше с барьером Шоттки.

При закрытом транзисторе диод находится в открытом состоянии, через него течет ток размагничивания обмотки двигателя. Затем транзистор открывается. А диод закрывается только через время восстановления обратного сопротивления. Даже у “быстрых” (FR307) диодов это время составляет 150-500 нс, у “супербыстрых” 35 нс, а у выпрямительных 1N4007 этот параметр не нормируется. Представьте себе, что при частоте ШИМ 100 кГц 100000 раз в секунду будет происходить короткое замыкание. Это приведет к жутким помехам, уменьшению КПД и нагреву диода и транзистора.

При высоком напряжении все значительно усугубиться. В общем рекомендации по выбору диода:

  • Лучше всего диод Шоттки.
  • Если высокое напряжение (более 150 В) не позволяет использовать диод Шоттки, то лучшим вариантом будет карбидокремиевые диоды Шоттки.
  • Следующим приемлемым вариантом могут быть HEXFRED-диоды с ограничением обратного тока обратного восстановления;
  • На крайний случай остаются супербыстрые и ультрабыстрые диоды.

У меня напряжение всего 12 В. Я выбрал диод Шоттки SS16.

Наверное, понятно, что меняя коэффициент заполнения ШИМ, мы будем изменять среднее напряжения на двигателе, я значит, и его мощность. Частоту ШИМ определим экспериментально.

Измерение скорости вращения.

Традиционным компонентом для измерения числа оборотов мотора служит датчик Холла. Это датчик, который показывает наличие магнитного поля, например, присутствие рядом с ним постоянного магнита. Для наших целей необходимы цифровые или дискретные датчики Холла. В отличие от аналоговых они срабатывают при превышении магнитным полем определенного порога и имеют гистерезис.

Читать еще:  Высокая температура двигателя на ходу ваз

Конструкции измерителей скорости могут быть самыми разными. Можно закрепить на валу двигателя металлический диск с радиальными прорезями и использовать автомобильный датчик Холла.

Диск будет прерывать магнитное поле между датчиком Холла и постоянным магнитом. На прорезях магнитное поле будет проходить к датчику и таким образом, при вращении, будут формироваться импульсы.

Я поступил проще. Использовал дешевый, миниатюрный датчик Холла TLE4905L. В самых дорогих магазинах он стоит до 50 руб, а на АлиЭкспресс от 25 руб.

Это цифровой датчик Холла, настроенный на определенный порог магнитного поля. Он прекрасно срабатывает на расстоянии 8 мм от миниатюрного магнита диаметром 5 мм и толщиной 1 мм.

Конструкция измерителя очевидна. Я приклеил 2 магнита к диску вентилятора и над линией, по которой они двигаются при вращении, расположил датчик Холла.

Когда магниты проходят под датчиком, на его выходе формируются импульсы. Измерив частоту этих импульсов можно определить скорость вращения двигателя. На один оборот вырабатываются 2 импульса. Я использовал 2 магнита для того чтобы не нарушить балансировку вентилятора. Возможно, хватило бы и одного.

Как у датчика, так и у магнитов есть полярности. Поэтому перед тем, как устанавливать эти компоненты надо проверить в каком положении срабатывает датчик.

Датчик TLE4905L имеет выход с открытым коллектором. Он не формирует напряжение на выходе, а только замыкает или размыкает выход на землю. Со стороны приемника необходим внешний подтягивающий резистор.

Подключение датчика необходимо производить отдельными проводами. Все связи должны соединяться непосредственно на плате Ардуино. С точки зрения помехозащищенности это самое узкое место в системе.

Для задания скорости будем использовать переменный резистор. Подключим его к аналоговому входу платы Ардуино. Добавим еще сигнал включения/выключения двигателя и выход для тестовых импульсов. С помощью него будем проверять работу устройства без мотора.

С учетом всего вышесказанного окончательная схема контроллера-регулятора оборотов двигателя будет выглядеть так.

В реальных приложениях обороты можно задавать напряжением на аналоговом входе A0. Получится стандартный аналоговый интерфейс 0…5 В. Если необходим диапазон 0…10 В, то достаточно добавить резисторный делитель напряжения.

Состояние контроллера для отладки ПИД-регулятора будем передавать на компьютер через последовательный порт. Я разработаю программу верхнего уровня с регистрацией данных и отображением их в графическом виде. Регистратор значительно облегчает настройку любого ПИД-регулятора.

В следующем уроке начнем “оживлять” контроллер.

Простая схема управления двигателем постоянного тока

Простейшая схема управления двигателем постоянного тока состоит из полевого транзистора, на затвор которого подается ШИМ сигнал. Транзистор в данной схеме выполняет роль электронного ключа, коммутирующего один из выводов двигателя на землю. Транзистор открывается на момент длительности импульса.

Как будет вести себя двигатель в таком включении? Если частота ШИМ сигнала будет низкой (единицы Гц), то двигатель будет поворачиваться рывками. Это будет особенно заметно при маленьком коэффициенте заполнения ШИМ сигнала.
При частоте в сотни Гц мотор будет вращаться непрерывно и его скорость вращения будет изменяться пропорционально коэффициенту заполнения. Грубо говоря, двигатель будет «воспринимать» среднее значение подводимой к нему энергии.

Схема для генерации ШИМ сигнала

Существует много схем для генерации ШИМ сигнала. Одна из самых простых — это схема на основе 555-го таймера. Она требует минимум компонентов, не нуждается в настройке и собирается за один час.

Напряжение питания схемы VCC может быть в диапазоне 5 — 16 Вольт. В качестве диодов VD1 — VD3 можно взять практически любые диоды.

Если интересно разобраться, как работает эта схема, нужно обратиться к блок схеме 555-го таймера. Таймер состоит из делителя напряжения, двух компараторов, триггера, ключа с открытым коллектором и выходного буфера.

Вывод питания (VCC) и сброса (Reset) у нас заведены на плюс питания, допустим, +5 В, а земляной (GND) на минус. Открытый коллектор транзистора (вывод DISCH) подтянут к плюсу питания через резистор и с него снимается ШИМ сигнал. Вывод CONT не используется, к нему подключен конденсатор. Выводы компараторов THRES и TRIG объединены и подключены к RC цепочке, состоящей из переменного резистора, двух диодов и конденсатора. Средний вывод переменного резистора подключен к выводу OUT. Крайние выводы резистора подключены через диоды к конденсатору, который вторым выводом подключен к земле. Благодаря такому включению диодов, конденсатор заряжается через одну часть переменного резистора, а разряжается через другую.

В момент включения питания на выводе OUT низкий логический уровень, тогда на выводах THRES и TRIG, благодаря диоду VD2, тоже будет низкий уровень. Верхний компаратор переключит выход в ноль, а нижний в единицу. На выходе триггера установится нулевой уровень (потому что у него инвертор на выходе), транзисторный ключ закроется, а на выводе OUT установиться высокий уровень (потому что у него на инвертор на входе). Далее конденсатор С3 начнет заряжаться через диод VD1. Когда она зарядится до определенного уровня, нижний компаратор переключится в ноль, а затем верхний компаратор переключит выход в единицу. На выходе триггера установится единичный уровень, транзисторный ключ откроется, а на выводе OUT установится низкий уровень. Конденсатор C3 начнет разряжаться через диод VD2, до тех пор, пока полностью не разрядится и компараторы не переключат триггер в другое состояние. Далее цикл будет повторяться.

Читать еще:  Что такое плановый ресурс двигателя

Приблизительную частоту ШИМ сигнала, формируемого этой схемой, можно рассчитать по следующей формуле:

где R1 в омах, C1 в фарадах.

При номиналах указанных на схеме выше, частота ШИМ сигнала будет равна:

F = 1.44/(50000*0.0000001) = 288 Гц.

ШИМ регулятор оборотов двигателя постоянного тока

Объединим две представленные выше схемы, и мы получим простую схему регулятора оборотов двигателя постоянного тока, которую можно применить для управления оборотами двигателя игрушки, робота, микродрели и т.д.

VT1 — полевой транзистор n-типа, способный выдерживать максимальный ток двигателя при заданном напряжении и нагрузке на валу. VCC1 от 5 до 16 В, VCC2 больше или равно VCC1.

Вместо полевого транзистора можно использовать биполярный n-p-n транзистор, транзистор дарлингтона, оптореле соответствующей мощности.

Электронная регулировка оборотов двигателя постоянного тока

Электронный регулятор скорости вращения

коллекторного двигателя постоянного тока на основе

1. Конструкция 1:

Реостатные схемы регулирования скорости вращения коллекторных двигателей постоянного тока, в том числе с применением силовых транзисторов, на которых падает часть напряжения, обладают низким КПД при малых и

средних оборотах. На балластных транзисторных ключах рассеивается значительная тепловая мощность, что ужесточяет требования к системе их охлаждения. Поэтому разработка системы регули- рования скорости вращения от нулевой до максимальной была проведена на основе импульсной схемы с изменением ширины прямоугольных импульсов напряжения, подаваемых на обмотку двигателя (широтно-импульсная модуляция — ШИМ).

На рис. 1 приведена принципиальная схема регулятора, на рис. 2 показан внешний вид печатной платы.

Рис.1. Схема принциапиальная регулятора скорости вращения двигателя постоянного тока

На операционных усилителях (ОУ) DA1, DA2 собран генератор треугольного напряжения частотой около 5 кГц. ОУ DA3 включен по схеме компаратора, сравнивающего треугольное напряжение с опорным напряжением, снимаемым с движка потенциометра R7, служащего в качестве задатчика скорости вращения. В момент, когда треугольное напряжение становится меньше опорного, положительный сигнал с выхода компаратора открывает ключ VT1VT2, и на обмотки коллекторного двигателя подается полное напряжение питания (в данном случае 27 вольт). Когда треугольное напряжение больше опорного, ключ VT1VT2 закрыт, и напряжение на двигатель не поступает. При этом диод VD1 выполняет роль демпфирующего, поддерживая ток в обмотках двигателя. Цепочка стабилитронов VS1VS2, подключенная через балластный резистор R1 к источнику питания, служит для обеспечения питания ОУ двухполярным напряжением со средней точкой. По аналогичной схеме могут быть построены ШИМ-регуляторы на другие напряжения питания.

Рис. 2. Внешний вид печатной платы регулятора скорости вращения двигателя постоянного тока. Размер платы 70 х 100 мм2.

2. Конструкция 2:

Не менее простая схема приведена на втором рисунке. Она содержит в основе очень широко распространённый интегральный таймер NE555N (КР1006ВИ1), нагруженный на затвор полевого транзистора.

Схема содержат микросхему с большим выходным током, что позволяет использовать практически любые полевые транзисторы с любой паразитной ёмкостью затвора. При токе нагрузки до 0,1А нагрузку можно включать непосредственно на выходы микросхем, не используя полевые транзисторы. Как было указано на предыдущих страницах, для полного открытия канала силового полевого транзистора на его затворе должно быть напряжение не менее 12 . 15 В, поэтому напряжение питания всех ранее рассмотренных схем не должно быть меньше 12 . 15 В. Если требуется регулировать меньшее напряжение, например 0 . 6 В для регулировки яркости переносных фонарей, вместо полевых транзисторов можно использовать биполярные NPN транзисторы, предназначенные для работы в ключевых схемах и имеющие очень малое падение напряжения в открытом состоянии. При токах нагрузки до 1А хорошо подходит транзистор КТ630А, а при больших токах ( до 10А, 30В) просто идеален КТ863А, В. В цепь базы транзисторов необходимо включить токоограничительный резистор сопротивлением 150 . 510 Ом. Все схемы , описанные в разделе, позволяют регулировать напряжение значительно большее 12 В. Для этого требуется обеспечить напряжение 12 . 15 В для питания ШИМ схемы регулирования, а полевой транзистор выбрать соответственно требуемому напряжению и току нагрузки.

3. Конструкция 3:

Простая схема на операционном усилителе и однопереходном транзисторе:

1.Титце У., Шенк К. Полупроводниковая схемотехника: Справочное руководство. Пер. с нем. — М.: Мир, 1982. — 512 с., ил.

1.»Широтно-импульсные регуляторы постоянного тока», http://kravitnik.narod.ru/switch/switch4.html

ПРИМЕЧАНИЕ: Приведенные схемы годятся (практически) только для слабосильных

Для более мощных требуется отдельная разработка схемы управления.

Электронная регулировка оборотов двигателя постоянного тока

Широкое применение таймер 555 находит в устройствах регулирования, например, в ШИМ — регуляторах оборотов двигателей постоянного тока.

Все, кто когда – либо пользовался аккумуляторным шуруповертом, наверняка слышали писк, исходящий изнутри. Это свистят обмотки двигателя под воздействием импульсного напряжения, порождаемого системой ШИМ.

Другим способом регулировать обороты двигателя, подключенного к аккумулятору, просто неприлично, хотя вполне возможно. Например, просто последовательно с двигателем подключить мощный реостат, или использовать регулируемый линейный стабилизатор напряжения с большим радиатором.

Вариант ШИМ — регулятора на основе таймера 555 показан на рисунке 1.

Читать еще:  Газель соболь технические характеристики 405 двигатель

Схема достаточно проста и базируется все на мультивибраторе, правда переделанном в генератор импульсов с регулируемой скважностью, которая зависит от соотношения скорости заряда и разряда конденсатора C1.

Заряд конденсатора происходит по цепи: +12V, R1, D1, левая часть резистора P1, C1, GND. А разряжается конденсатор по цепи: верхняя обкладка C1, правая часть резистора P1, диод D2, вывод 7 таймера, нижняя обкладка C1. Вращением движка резистора P1 можно изменять соотношение сопротивлений его левой и правой части, а следовательно время заряда и разряда конденсатора C1, и как следствие скважность импульсов.

Рисунок 1. Схема ШИМ — регулятора на таймере 555

Схема эта настолько популярна, что выпускается уже в виде набора, что и показано на последующих рисунках.

Рисунок 2. Принципиальная схема набора ШИМ — регулятора.

Здесь же показаны временные диаграммы, но, к сожалению, не показаны номиналы деталей. Их можно подсмотреть на рисунке 1, для чего он, собственно, здесь и показан. Вместо биполярного транзистора TR1 без переделки схемы можно применить мощный полевой, что позволит увеличить мощность нагрузки.

Кстати, на этой схеме появился еще один элемент – диод D4. Его назначение в том, чтобы предотвратить разряд времязадающего конденсатора C1 через источник питания и нагрузку — двигатель. Тем самым достигается стабилизация работы частоты ШИМ.

Кстати, с помощью подобных схем можно управлять не только оборотами двигателя постоянного тока, но и просто активной нагрузкой – лампой накаливания или каким-либо нагревательным элементом.

Рисунок 3. Печатная плата набора ШИМ — регулятора.

Если приложить немного труда, то вполне возможно такую воссоздать, используя одну из программ для рисования печатных плат. Хотя, учитывая немногочисленность деталей, один экземпляр будет проще собрать навесным монтажом.

Рисунок 4. Внешний вид набора ШИМ — регулятора.

Правда, уже собранный фирменный набор, смотрится достаточно симпатично.

Вот тут, возможно, кто-то задаст вопрос: «Нагрузка в этих регуляторах подключена между +12В и коллектором выходного транзистора. А как быть, например, в автомобиле, ведь там все уже подключено к массе, корпусу, автомобиля?»

Да, против массы не попрешь, тут можно только рекомендовать переместить транзисторный ключ в разрыв «плюсового» провода. Возможный вариант подобной схемы показан на рисунке 5.

На рисунке 6 показан отдельно выходной каскад на транзисторе MOSFET. Сток транзистора подключен к +12В аккумулятора, затвор просто «висит» в воздухе (что не рекомендуется), в цепь истока включена нагрузка, в нашем случае лампочка. Такой рисунок показан просто для объяснения, как работает MOSFET транзистор.

Для того, чтобы MOSFET транзистор открыть, достаточно относительно истока подать на затвор положительное напряжение. В этом случае лампочка зажжется в полный накал и будет светить до тех пор, пока транзистор не будет закрыт.

На этом рисунке проще всего закрыть транзистор, замкнув накоротко затвор с истоком. И такое вот замыкание вручную для проверки транзистора вполне пригодно, но в реальной схеме, тем более импульсной придется добавить еще несколько деталей, как показано на рисунке 5.

Как было сказано выше, для открывания MOSFET транзистора необходим дополнительный источник напряжения. В нашей схеме его роль выполняет конденсатор C1, который заряжается по цепи +12В, R2, VD1, C1, LA1, GND.

Чтобы открыть транзистор VT1, на его затвор необходимо подать положительное напряжение от заряженного конденсатора C2. Совершенно очевидно, что это произойдет только при открытом транзисторе VT2. А это возможно лишь в том случае, если закрыт транзистор оптрона OP1. Тогда положительное напряжение с плюсовой обкладки конденсатора C2 через резисторы R4 и R1 откроет транзистор VT2.

В этот момент входной сигнал ШИМ должен иметь низкий уровень и шунтировать светодиод оптрона (такое включение светодиодов часто называют инверсным), следовательно, светодиод оптрона погашен, а транзистор закрыт.

Чтобы закрыть выходной транзистор, надо соединить его затвор с истоком. В нашей схеме это произойдет, когда откроется транзистор VT3, а для этого требуется, чтобы был открыт выходной транзистор оптрона OP1.

Сигнал ШИМ в это время имеет высокий уровень, поэтому светодиод не шунтируется и излучает положенные ему инфракрасные лучи, транзистор оптрона OP1 открыт, что в результате приводит к отключению нагрузки – лампочки.

Как один из вариантов применения подобной схемы в автомобиле, это дневные ходовые огни. В этом случае автомобилисты претендуют на пользование лампами дальнего свете, включенными вполнакала. Чаще всего эти конструкции на микроконтроллере, в интернете их полно, но проще сделать на таймере NE555.

Ранее ЭлектроВести писали, что израильский стартап REE Automotive обещает переизобрести процесс разработки электромобилей с помощью нового набора модульных платформ, подходящих практически для любого транспортного средства. Инженеры компании создали плоское модульное шасси и угловые блоки REEcorner, в которых спрятаны все функции рулевого управления, подвеска, двигатель, система торможения. Потенциальные клиенты REE должны будут определиться лишь с двумя опциями — выбрать уровень мощности электромобиля и дизайн кузова.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты