Давление воздуха в цилиндре дизельного двигателя - Авто журнал "Гараж"
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Давление воздуха в цилиндре дизельного двигателя

Давление воздуха в цилиндре дизельного двигателя

Оценка герметичности камеры сгорания при помощи пневмотестера

Одним из условий работы двигателя внутреннего сгорания является обеспечение необходимой компрессии — давления топливовоздушной смеси (в бензиновых двигателях) или воздуха (в дизельных двигателях) в конце такта сжатия. Давление в конце такта сжатия зависит от:

— наполнения цилиндра перед началом сжатия — зависит от оборотов двигателя и пропускной способности впускных каналов;

— степени сжатия — соотношения объема цилиндра непосредственно перед сжатием (когда поршень в нижней мертвой точке) и объема в конце такта сжатия (когда поршень в верхней мертвой точке). Степень сжатия является расчетной величиной и закладывается при конструировании двигателя, в процессе эксплуатации она не меняется;

— герметичности надпоршневого пространства. Герметичность надпоршневого пространства определяется механическим состоянием двигателя. Основные места негерметичности — клапана, поршневые кольца, прокладка головки блока.

Одним из методов проверки текущего технического состояния является непосредственное измерение компрессии при помощи компрессометра. Кратко процедура выглядит так:

— из двигателя выкручиваются свечи и отключается топливоподача и зажигание (возможны варианты). Также рекомендуется демонтаж воздушного фильтра и полное открытие дроссельной заслонки;

— поочередно к свечному отверстию каждого из цилиндров подключается компрессометр (представляет из себя манометр с обратным клапаном);

— после подключения к каждому из цилиндров двигатель прокручивается стартером и определяется максимальное давление в цилиндре;

— анализируется давление в каждом из цилиндров и их разброс.

У этого метода есть свои преимущества и недостатки. Тремя основными недостатками являются:

— зависимость показаний от оборотов двигателя. При этом обороты при прокрутке стартером (250-350 об/мин) существенно отличаются даже от оборотов в режиме холостого хода (700-900 об/мин), не говоря уже о режимах частичных и полных нагрузок.

— недостаточная информативность теста для выявления не только проблемных цилиндров, но и первопричины недостаточного давления. Определенные методики для локализации мест неисправностей с помощью компрессометра существуют, но это тема отдельного материала;

— невозможность проведения теста на демонтированном двигателе, частично разобранном двигателе или двигателе с неработающим стартером.

Для того, чтобы устранить эти недостатки существует методика использования пневмотестеров — при этом, во-первых, анализируется непосредственно герметичность надпоршневого пространства (обороты не оказывают никакого влияния на измерения, так как коленчатый вал при проведении теста неподвижен), во-вторых, имеется возможность локализации неисправностей, в-третьих, имеется возможность проведения теста на снятом или частично разобранном двигателе или на двигателе с неработающим стартером, в-четвертых, показания пневмотестера более наглядны и, соответственно, понятны не только диагносту, но и владельцу автомобиля.

Герметичность надпоршневого пространства (один из основных показателей механического состояния двигателя) определяется по падению давления сжатого воздуха, подаваемого в цилиндр через свечное отверстие (на бензиновом двигателе) или отверстие для форсунки (на дизельном двигателе).

Для использования методики требуется наличие специального прибора — пневмотестера, который состоит из:

1 — входного штуцера, в который подается сжатый воздух с давлением 6-10 Атм;

2 — манометра для измерения давления подаваемого воздуха;

3 — регулятора давления подаваемого воздуха;

4 — обратного клапана;

5 — манометра для измерения давления в надпоршневом пространстве цилиндра, равного давлению подаваемого воздуха за минусом утечек (манометра контроля утечек);

6 — выходного штуцера;

7 — шлангов и адаптеров для подключения к свечному отверстию.

Типичная процедура выполнения теста

1. Прогрейте двигатель до рабочей температуры, заглушите и выключите зажигание.

2. Вывернете свечи.

3. Установите поршень проверяемого цилиндра в положение верхней мертвой точки в такте сжатия.

4. Зафиксируйте коленчатый вал — для автомобилей с механической коробкой передач включите высшую передачу и затяните ручной тормоз, для автомобилей с автоматической коробкой удерживайте коленчатый вал двигателя специальным стопором или ключом.

5. Подключите шланг пневмотестера (при необходимости с соответствующим адаптером) к свечному отверстию проверяемого цилиндра (на бензиновом двигателе) или к отверстию для форсунки (на дизеле), но не подключайте пока его к самому пневмотестеру.

6. Установите регулятор давления подаваемого воздуха (левый манометр) на минимальную величину (для избежания выхода из строя манометров при подаче воздуха).

7. Подключите пневмотестер через входной штуцер к источнику сжатого воздуха (компрессору или пневмосети) давлением 6-10 Атм.

8. С помощью регулятора давления плавно увеличивайте давление. Если рабочее давление прибора установлено в документации на прибор (как правило, 2-6 Атм) — установите рабочее давление. В общем случае надо повышать давление подаваемого воздуха до того момента, пока показания правого манометра не уменьшатся до нуля! Не увеличивайте давление подаваемого воздуха больше указанной величины — это может привести к выходу манометров из строя.

Читать еще:  Хлопок при запуске двигателя фольксваген

9. Подсоедините шланг пневмотестера, соединенный с тестируемым цилиндром, к певмотестеру и снимите показания давления в цилиндре по второму манометру. Его шкала может быть отградуирована как в единицах давления (Атм. и пр.), так и в процентах утечки от заданной величины давления подачи воздуха. Кроме того, зачастую на шкалу нанесены цветные сектора, показывающие области хорошего, удовлетворительного состояния цилиндра и область критической утечки.

10. При индикации критической утечки проведите дополнительные исследования для выявления места утечки (см. далее).

11. Перед отсоединением пневмотестера от цилиндра или от источника сжатого воздуха обязательно установите регулятор давления подаваемого воздуха на минимальную величину (для избежания выхода из строя манометров).

12. Отсоедините пневмотестер от свечного отверстия и повторите процедуру измерений для всех цилиндров.

Оценка показаний пневмотестера

Даже на новом автомобиле надпоршневое пространство не может быть полностью герметичным — из-за наличия конструктивных зазоров допускается падение давления подаваемого в цилиндр воздуха на 15-20%. В процессе эксплуатации этот величина утечки может увеличиться до 30-40%. Общая таблица для оценки показаний пневмотестера выглядит следующим образом:

Локализация мест утечки (для отдельного цилиндра)

Если величина утечки превышает 40-60% рекомендуется провести дополнительные исследования для выявления мест утечки. Для этого:

1. Откройте крышку радиатора и расширительного бачка, крышку маслозаливной горловины, выньте масляный щуп, снимите крышку воздушного фильтра (для карбюраторного двигателя) или отсоедините входной патрубок впускного коллектора.

2. Установите давление на входном манометре 2-6 Атм.

3. По шуму выходящего воздуха или визуально определите место или места выхода воздуха:

— выход воздуха из маслозаливного отверстия или гнезда масляного щупа свидетельствует о негерметичности пары цилиндр-поршень (проблема с поршневыми кольцами) или о разрушении поршня.

— выход воздуха из впускной системы свидетельствует о негерметичности в паре: впускной клапан — седло клапана (наиболее вероятная проблема — прогар или неправильная работа клапанного механизма).

— выход воздуха из глушителя свидетельствует о негерметичности в паре: выпускной клапан — седло клапана (наиболее вероятная проблема — прогар или неправильная работа клапанного механизма).

— выход воздуха из соседнего свечного отверстия свидетельствует о негерметичности прокладки головки блока цилиндров или трещине в блоке цилиндров.

— воздушные пузырьки (или резкое увеличение уровня жидкости) в расширительном бачке или радиаторе свидетельствуют о негерметичности или прогаре прокладки головки блока цилиндров или о трещине в головке блока цилиндров или самом блоке цилиндров.

Не исключена возможность сочетания двух и более неисправностей.

Может возникнуть вполне закономерный вопрос — зачем проводить дополнительные исследования, если при неудовлетворительных показаниях двигатель все равно подлежит капитальному ремонту? Дело в том, что:

— дополнительные исследования дополнительно подтверждают заключение данное при анализе показаний пневмотестера.

— дополнительные исследования дают мотористу важную информацию, на что обратить внимание при капитальном ремонте.

Кроме того, провести приведенные тесты можно и вообще не имею пневмотестера, просто поджав сжатый воздух в свечное отверстие, ведь при этих тестах точная величина подаваемого давления значения не имеет.

Вывод. Пневмотестер является одном из важнейших вспомогательных диагностических приборов. Использование его показаний позволяет избежать проведения неоправданного капитального ремонта. А в случае реальной необходимости капитального ремонта за счет максимальной наглядности показаний («стрелка в красной зоне») не возникает каких-либо сомнений в правильности поставленного диагноза со стороны владельца автомобиля.

© АРДИО РУ, Виснап К.Н. Размещение статьи 15.08.2006. Последнее обновление статьи 25.05.2009. Перепечатка только с согласия автора и с обязательной ссылкой.

Как работают турбины

Турбина может существенно увеличить мощность двигателя без значительного роста его веса

Когда говорят о гоночных или спортивных машинах, часто всплывает тема турбонаддува. Турбины неизменно сопровождают современные дизеля. Турбина может существенно увеличить мощность двигателя без значительного роста его веса. Это большое преимущество привело к популярности турбин!

Давайте разберемся, как турбина увеличивает мощность, выживая при этом в экстремальных условиях работы. Мы познакомимся с вестгейтами, керамическими лопастями турбин и подшипниками, которые помогают турбинам делать работу еще лучше. Турбины – системы принудительного нагнетания воздуха. Они сжимают воздух. Сжатый воздух дает преимущество по мощности: в двигатель поступает больше воздуха, а это значит, что больше топлива может быть добавлено. Следовательно, каждое сгорание смеси в цилиндре дает больше мощности. Турбированный двигатель в общем случае всегда мощнее аналогичного по объему атмосферного. Двигатель меньшей массы может выдавать больше мощности при наличии наддува.

Читать еще:  Что такое дми у двигателя

Чтобы создать давление воздуха, турбина использует поток выхлопных газов из двигателя для раскручивания своей крыльчатки, которая в свою очередь раскручивает воздушный насос. Турбина вращается с частотой до 150,000 об/мин – это в 30 раз быстрее среднего двигателя. Так как турбина работает с выхлопными газами, ей приходится выдерживать большие термические нагрузки.
Чтобы снять больше мощности с двигателя, необходимо увеличить количество топливно-воздушной смеси, которая сгорает в цилиндрах. Один из способов – добавить количество цилиндров или увеличить их объем. Часто эти изменения очень дороги. Турбина дешевле добавляет мощность, и именно поэтому она так популярна на вторичном рынке.


Расположение турбины в машине

Турбина позволяет сгорать большему количеству топлива, увеличивая количество топлива и воздуха в цилиндрах. Типичная прибавка к давлению от турбины – 0.3 – 0.5 бар. Поскольку атмосферное давление на уровне моря 1 бар, легко подсчитать, что в камеры сгорания попадает на 50 % больше воздуха, следовательно увеличение мощности должно доходить до 50%. В действительности, эффект получается 30- 40 %.

Одна из причин этой неэффективности – сила, раскручивающая турбину, не приходит извне. Наличие турбины увеличивает сопротивление выхлопа. Это означает, что на отводе отработавших газов двигатель вынужден преодолевать возросшее обратное сопротивление, что уменьшает отдачу с цилиндров, в которых в этот момент происходит сгорание.


Турбина и ее внешние компоненты

Турбина крепится на выхлопном коллекторе двигателя. Выхлопные газы двигателя раскручивают турбину. Турбина покоится на одном валу с компрессором, который располагается между воздушным фильтром и впускным коллектором. Компрессор накачивает воздух в цилиндры.


Внутри турбины

Выхлопной газ из цилиндров проходит через лопатки крыльчатки турбины, вызывая ее вращение. Чем больше выхлопных газов проходит, тем быстрее крутится турбина.

С другой стороны вала турбины устанавливают компрессор центробежного типа – он засасывает воздух в центре крыльчатки и разбрасывает его от центра из-за вращающегося вала.

Слишком много давления?
Воздух закачивается в цилиндры под давление и дальше сжимается поршнями. В этом кроится опасность – детонация. Детонация происходит из-за резкого увеличения температуры воздуха, при котором топливная смесь сгорает до воспламенения свечи. Поэтому турбированные машины обычно ездят на высокооктановом топливе, чтобы не доводить дело до детонации. Если давление наддува очень высоко, компрессию двигателя можно снизать, чтобы не переходить в детонацию.

Чтобы работать на скоростях до 150,000 об/мин, вал турбины требует серьезной защиты. Большинство подшипников взрываются при таких скоростях, поэтому турбины часто используют жидкие подшипники. Этот тип подшипников создает вокруг вала постоянный тонкий слой масла, которое постоянно накачивается насосом. Это служит двум целям: охлаждение и снижение трения.
В следующей главе рассмотрим компромиссы, на которые вынуждены идти инженеры при проектировании турбонаддува..

Давление воздуха в цилиндре дизельного двигателя

Увеличить степень сжатия в ДВС можно путем сжатия в цилиндре только воздуха с последующим впрыскиванием в него топлива. При сжатии воздуха отсутствует ограничение на температуру самовоспламенения топлива, а высокая температура воздуха в конце процесса сжатия позволяет осуществить самовоспламенение топлива, впрыскиваемого в цилиндр, без электрической свечи. Такой ДВС был предложен Дизелем (Германия) поэтому в настоящее время эти двигатели называют дизелями. Схема дизельного ДВС показана на рис. 11.5.

Воздух поступает в цилиндр двигателя и сжимается до 30 – 36 бар, в конце сжатия температура воздуха достигает 600 – 800 °С. Впрыск топлива осуществляется при достижении поршнем ВМТ. Для распыления топлива используется форсунка, куда компрессором подается сжатый воздух. Топливо самовоспламеняется, а процесс его горения идет одновременно с движением поршня в сторону НМТ. Условно такой процесс подвода теплоты к рабочему телу считается изобарным. После полного сгорания топлива расширение продуктов сгорания топлива приводит к перемещению поршня в НМТ. Далее осуществляется выхлоп продуктов сгорания и перемещение поршня в ВМТ.

Условный идеальный цикл ДВС с подводом теплоты при постоянном давлении показан на рис. 11.6.

Определяющими характеристиками данного цикла являются: степень сжатия ε=v1/v2 и степень предварительного расширения ρ=v3/v2. Используя эти характеристики и параметры первой точки, остальные параметры цикла определяются соотношениями:

Термический КПД цикла определяется выражением

Выразив температуры в выражении 11.7 через Т1 и характеристики цикла, получим выражение КПД в виде

Из уравнения 11.6 видно, что чем больше степень сжатия и меньше степень предварительного расширения, тем больше КПД. Снижение КПД за счет увеличения степени предварительного расширения объясняется тем, что изобара Р2 более пологая, чем изохора v1. При увеличении ρ точка 3 стремиться к точке 4, что приводит к большему возрастанию q2 по отношению к q1.

Зависимость КПД идеального цикла ДВС с подводом теплоты при постоянном давлении от степени сжатия и степени предварительного расширения показана на рис. 11.7.

Из рис. 11.7 видно, что не смотря на большую степень сжатия дизельный двигатель имеет практически такой же термический КПД как и цикл карбюраторного двигателя. Внутренний относительный КПД этих двигателей также практически одинаков. При этом необходимо отметить, что нулевые значения КПД дизельного двигателя соответствуют степеням сжатия больше единицы, возрастающим с увеличением значения ρ.

Основным преимуществом дизельного двигателя является отсутствие карбюратора и возможность использования низкосортного жидкого топлива.

Основным недостатком дизельного двигателя является необходимость больших затрат работы на привод топливного насоса и компрессора по сравнению с карбюраторным двигателем. Это вызвано большим давлением воздуха в цилиндре, куда впрыскивается топливо, и необходимостью его распыливания через форсунку (она имеет значительное гидравлическое сопротивление. К недостатку дизельного двигателя относится и его тихоходность (малые обороты коленчатого вала), что определяет медленный процесс сгорания топлива в двигателе.

Принцип работы турбокомпрессора

Смотрите видеоролики и анимационные фильмы на канале YouTube Cummins Turbo Technologies, в которых показано, как работает турбонагнетатель.

Важные моменты работы дизельных двигателей

Основное предназначение двигателя – сжигание топливовоздушной смеси с последующим преобразованием полученного тепла в механическую энергию. Механическая энергия используется для совершения возвратно-поступательного движения поршней, которое, в свою очередь, преобразуется во вращательное движение колес автомобиля. Чем больше получено механической энергии, тем выше мощность. Одно из важных отличий дизельных двигателей с турбонаддувом от традиционных безнаддувных двигателей заключается в том, что воздух в дизельном двигателе находится в сжатом состоянии еще до подачи топлива. Именно поэтому турбонагнетатель так важен для обеспечения выходной мощности и КПД дизельного двигателя. Сжимать воздух, поступающий в цилиндры двигателя, – работа турбонагнетателя. После сжатия воздуха молекулы кислорода располагаются компактнее. Это означает, что по сравнению с безнаддувным двигателем, в двигатель с турбонаддувом того же объема можно впрыскивать больше топлива, что приводит к повышению механической мощности и общего КПД двигателя. Поэтому при заданной мощности двигателя габариты двигателя с турбонаддувом меньше, чем у безнаддувного двигателя. Это способствует применению более компактной конструкции, снижению веса и общему повышению топливной экономичности. Хотя концепция турбонаддува относительно проста, турбонагнетатель играет важную роль в работе дизельного двигателя, поэтому для него требуются высокотехнологичные узлы и детали. Благодаря нашему богатому опыту в области технологий турбонаддува и знанию двигателей, мы производим и выпускаем турбонагнетатели мирового уровня, известные своей долговечностью, высоким уровнем безопасности и надежностью, которые необходимы для современных двигателей.

Принцип работы турбонагнетателя

Турбонагнетатель состоит из двух основных частей: турбины и компрессора. Турбина состоит из рабочего колеса (1) и корпуса (2). Среди прочего, назначение корпуса турбины – направлять отработавшие газы (3) на рабочее колесо турбины. Отработавшие газы приводят во вращение рабочее колесо, после чего покидают корпус турбины через зону выхода отработавших газов (4).

(1) Рабочее колесо турбины
(2) Корпус турбины
(3) Отработавшие газы
(4) Зона выхода отработавших газов
(5) Рабочее колесо компрессора
(6) Корпус компрессора
(7) Кованый стальной вал
(8) Сжатый воздух

Компрессор состоит из двух частей: рабочего колеса (5) и корпуса (6). Принцип работы компрессора противоположен принципу работы турбины. Рабочее колесо компрессора соединено с турбиной кованым стальным валом (7) и при вращении турбины на высоких оборотах захватывает и сжимает воздух. Затем в ходе процесса под названием «диффузия» в корпусе компрессора поток воздуха, имеющий низкое давление и высокую скорость, преобразуется в поток воздуха с высоким давлением и низкой скоростью. После этого сжатый воздух (8) подается в двигатель, что позволяет сжигать в двигателе больше топлива и вырабатывать больше мощности.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector