2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что за подшипник под двигателем

Подшипники для электродвигателей: назначение, применение и виды

В 21 веке электродвигатели становятся все более и более эффективными, но и требования к ним соответственно ужесточаются. Каждому, кто следует нормативам, известно, что важно иметь ввиду качество и надежность всех комплектующих электродвигателя, особенно касаемо подшипников. Конструктивные особенности подшипников сильно влияют на то, насколько надежно работает двигатель, как быстро он изнашивается, и высока ли его производительность.

Подшипник — один из главных узлов любого электродвигателя, ведь именно через него давит на корпус и передает ему нагрузки вал ротора. И только благодаря подшипникам существует ровный и правильный постоянный воздушный зазор между статором и ротором во время работы двигателя под нагрузкой.

По этой причине очень важно правильно выбрать подшипники: они должны быть подходящего размера, типа и исполнения, чтобы обеспечить наивысший из возможных КПД путем сведения к минимуму потерь на трение.

Неопытному работнику может показаться, что при выходе подшипника из строя никакой серьезной проблемы нет, и ни ремонта, ни обслуживания делать не нужно, ведь повреждения не так уж критичны. Зачем в таком случае тратить деньги на ремонт?

Для маломощных двигателей это может быть и так. Но для любых двигателей справедливым будет утверждение, что лучше сразу установить хорошие подшипники наиболее подходящего типа и по возможности достаточно высокого качества, которые смогут выдержать все рабочие нагрузки в обычных для данного двигателя рабочих условиях.

Что и говорить о больших мощных двигателях, где даже незначительная неисправность в подшипнике способна потянуть за собой, как снежный ком, целый ряд проблем и нарушений в работе сопряженного оборудования. Это может привести к сбою производственного процесса и к экономически вредному простою сложных и дорогостоящих станков и машин.

Поэтому в мощных электродвигателях критически важно и необходимо применять надежные подшипники высокого качества, простые в установке и демонтаже, и крайне желательно — с возможностью контроля состояния и легкого обслуживания.

Допустим имеется электродвигатель, работающий в установке с прямым приводом через муфту. Конфигурация передачи здесь продольная, поэтому радиальная нагрузка на подшипник и через подшипник на корпус двигателя не так велика, поскольку приводимая двигателем система имеет собственную опору.

Но что если принято решение переустановить данный двигатель на оборудование с ременной передачей, когда на вал двигателя будет установлен шкив? В этом случае радиальные нагрузки на подшипники значительно возрастут, и в подобных условиях не предназначенные для такой нагрузки подшипники легко могут выйти из строя. Система не сможет нормально и устойчиво работать.

В последние годы сферу разработки и производства подшипников прогресс не обошел стороной. Особенно заметны успехи в прецизионной обработке подшипниковых материалов и технологии производства подшипников, а также в направлении смазки: дорожки качения на кольцах, ролики и шарики имеют сегодня лучшие поверхности, что приводит к снижению трения и соответственно шума и к уменьшению энергетических потерь.

Лучшие смазки делают подшипники по-настоящему долговечными, а двигатели — более надежными и стойкими к преждевременному износу. Яркий пример — тяговые двигатели новейших скоростных электропоездов.

Электропоезда последнего поколения по своей сути обуславливают высокие требования к качеству и надежности тяговых электродвигателей переменного тока. И новейшие подшипники проявляют себя здесь исключительно.

Тяжелые условия работы, значительные ударные и радиальные нагрузки при высочайшей скорости вращения вала. Поезда движутся с большой скоростью, обслуживание производится редко. Налицо факт высокого качества современных подшипников.

Более всего подшипники, особенно в высокоскоростных двигателях, страдают от электрической эрозии. Причина этого разрушительного явления в том, что через подшипник текут блуждающие токи. Чем больше ток и чем длительнее его воздействие — тем сильнее повреждение подшипника.

Возникающие время от времени электрические дуги вызывают эрозию, в результате чего на дорожках качения и телах качения формируются маленькие кратеры, приводящие к выходу подшипника из строя раньше времени.

Керамические тела качения в подшипниках, а также диэлектрическое покрытие наносимое путем плазменного напыления, — помогают решить проблему эрозии. На слой керамики наносят герметизирующую акриловую смолу. Для тяговых двигателей высокоскоростных поездов это важно. Смола защищает подшипник от пагубного действия пара и щелочных моющих средств, которые применяют при мытье составов.

Важным фактором для продления срока службы любого подшипника является адекватный режим его смазывания. Смазка должна в достаточном количестве проникнуть к телам качения.

Анализ методами вычислительной гидродинамики и конечных элементов помогает оптимизировать распределение смазки и сохранить прочность подшипника. Разумеется, это поможет продлить жизнь узлу лишь в том случае, если подшипник подобран правильно, в соответствии с условиями рабочих нагрузок двигателя в котором он установлен.

Обычно для оптимизации экономических затрат на обслуживание подшипников, плановое техобслуживание всего оборудования согласуют с графиком обслуживания других его частей. Для этого по возможности продлевают межсмазочные интервалы непосредственно подшипников электродвигателей, применяя эффективные уплотнители и лучшие способы их смазывания.

Подшипники двигателя

В данной статье освещается общая теория о провороте вкладышей двигателя.
Что такое вкладыши двигателя?

Прежде, чем приступить к теме заметки, уточним понятия, с которыми мы собираемся оперировать, что бы даже человек далёкий от техники мог представить, о чём идёт речь. Все сталкивались в быту с вращающимися валами, колёсами тех или иных механизмов и знают, что лёгкость вращения этих механизмов обеспечивается наличием в них подшипников.
В двигателях внутреннего сгорания есть вращающаяся, тяжело нагруженная деталь — коленчатый вал. Он тоже устанавливается на подшипники. Из конструктивных соображений чаще всего используются подшипники скольжения. Конструкция подшипником может быть весьма разнообразной, но совершенствование конструкций двигателей привело к тому, что в настоящее время практически повсеместно в качестве подшипников применяется стальной лист с нанесённым на него антифрикционным покрытием определённого размера и формы. Такие детали называются вкладышами.
Вкладыши устанавливаются в специально подготовленные для них места, называемые постелями, в строго фиксированном состоянии. Необходимость фиксации вкладышей связана во первых с тем, что на вкладышах имеются отверстия для прохода смазочного масла и они должны совпадать со сверлениями в постелях. А во вторых — что бы обеспечить трение по специально подготовленным для этого поверхностям.

Читать еще:  Бензиновый двигатель работает как дизельный сузуки

Чтобы понять причины проворачивания вкладышей, разберем два основных вопроса:

— что заставляет вкладыши проворачиваться

— что удерживает вкладыши от проворота

1. Из курса физики мы знаем, что сила трения возникает при скольжении двух тел относительно друг друга при наличии нагрузки. Величина сил трения зависит от величины нагрузки на пару трения и от величины коэффициента трения. Для снижения сил трения используются антифрикционные материалы, обладающие низким коэффициентом трения.

В двигателях конструктивно этот вопрос решён нанесением антифрикционного материала на поверхность вкладыша. Коленчатый вал двигателя совершает относительно вкладышей вращательное движение и в результате действия сил трения возникает момент трения, пытающийся провернуть вкладыши относительно посадочных мест.

2. От проворачивания и от смещения в посадочных местах вкладыши удерживаются «усиком» на каждом вкладыше. Все вкладыши в «постели» удерживаются за счёт натяга, с которым устанавливается вкладыш. Величина натяга задаётся конструктивно.

Для обеспечения нужного натяга вкладыш

и разбиваются на размерные группы. Размерная группа вкладыша, присутствующая в маркировке, выбирается исходя из конкретного значения диаметра «постели» под вкладыш

Причины проворачивания вкладышей двигателя

Первая — повышенный момент трения, который стремится провернуть вкладыши и пониженное усилие, удерживающее вкладыши на месте (вкладыш установлен с недостаточным натягом). Как правило, на машинах серийного производства случаи с нарушением натяга встречаются очень редко. Обычно нарушение натяга возникает после неквалифицированного ремонта двигателя, когда неправильно выполнялся подбор вкладышей. Под действием неравномерных нагрузок ослабленная посадка вкладыша приводит к его вибрации, нарушению смазочной плёнки и к местным прихватываниям. В результате вкладыш начинает проворачиваться, а удерживающий усик не в состоянии противостоять проворачивающему моменту на вкладыше.

Вторая причина проворачивания вкладышей двигателя это повышенный момент трения, связанный с режимом работы подшипников. При работе двигателя на расчётных режимах вкладыши работают в условиях жидкостного трения. Между рабочей поверхностью вкладыша и шейкой вала возникает масляная плёнка, предотвращающая прямое взаимодействие деталей. Момент трения в подшипнике минимальный. Для двигателей мощность до 200 л. с. окружные усилия на вкладыш составляют примерно 0,1кгс – 1кгс. Величина силы трения пропорциональна нагрузке, и это при постоянном коэффициенте трения. Иногда целостность масляной плёнки может нарушаться и коэффициент трения начинает расти. Тогда, даже при постоянной нагрузке, увеличивается проворачивающий момент и создаются условия для проворачивания вкладышей. Повышенная нагрузка уменьшает толщину масляной плёнки, увеличивая риск её разрушения. При этом выделяется больше тепла, что ведёт к росту локальных температур в зоне трения. Происходит разжижение смазки, что приводит к дальнейшему снижению толщины масляной плёнки и увеличению вероятности появления прихватов в трущейся паре.

Процесс образования масляной пленки между двумя контактирующими и движущимися относительно друг друга деталями зависит от скорости взаимного перемещения. В таких случаях говорят о гидродинамическом режиме трения, когда масляная плёнка затягивается в зазор между трущимися деталями, разъединяя детали. С увеличением скорости плёнка затягивается в зазор эффективней (плёнка становится более толстой). Но рост скорости приводит к росту величины количества тепла, выделяющегося при трении. Температура масла повышается, и оно становится более жидким. Это приводит к снижению толщина плёнки, вследствие разжижения масла.

Коэффициент трения зависит от шероховатости и точности геометрии контактирующих поверхностей и наличия посторонних частиц в масле (неровности поверхности, посторонние частицы, нарушают целостность плёнки, приводя к появлению зон работающих в режиме полусухого трения). Эти факторы особенно сильно сказываются на начальном периоде эксплуатации машины, во время приработки деталей. За этот период эксплуатации происходит срабатывание микронеровностей, разрушающих масляную плёнку. В этот момент трущиеся пары наиболее чувствительны к перегрузкам.

На проворачивающем моменте сказывается вязкость масла. Чем она больше, тем больше сила (момент) трения. В тоже время с увеличением вязкости, растёт толщина масляного клина в трущейся паре. С другой стороны вязкое масло не может поступать в нужных объёмах в зону трения, и это приводит к снижению толщины масляного клина вплоть до его местного разрушения. Совокупность разно направленных процессов, связанных с вязкостью масла, затрудняет однозначную трактовку влияния масла на проворачивание вкладышей. В этом случае определяющим становится такое индивидуальное свойство марки масла как смазывающая способность (прочность сцепления масла с металлом).

Теперь, зная причины проворачивания вкладышей двигателя, Вы сможете представить факторы риска появления задира и проворота вкладышей при использовании техники при длительной нагрузке на малых скоростях, непрогретом масле или недавно вышедшей из ремонта.
всем удачи!

Подшипник

Подши́пник (от «под шип») — сборочный узел, являющийся частью опоры или упора и поддерживающий вал, ось или иную подвижную конструкцию с заданной жёсткостью. Фиксирует положение в пространстве, обеспечивает вращение, качение с наименьшим сопротивлением, воспринимает и передаёт нагрузку от подвижного узла на другие части конструкции [1] .

Опора с упорным подшипником называется подпятником.

Основные параметры подшипников:

  • Максимальная динамическая и статическая нагрузка (радиальная и осевая).
  • Максимальная скорость (оборотов в минуту для радиальных подшипников).
  • Посадочные размеры.
  • Класс точности подшипников.
  • Требования к смазке[2] .
  • Ресурс подшипника до появления признаков усталости, в оборотах.
  • Шумы подшипника
  • Вибрации подшипника

Нагружающие подшипник силы подразделяют на:

  • радиальную, действующую в направлении, перпендикулярном оси подшипника;
  • осевую, действующую в направлении, параллельном оси подшипника.

Содержание

  • 1 Основные типы подшипников
  • 2 Подшипники качения
    • 2.1 Классификация
    • 2.2 Механическая теория
    • 2.3 Условное обозначение подшипников качения в СССР и России
  • 3 Подшипники скольжения
    • 3.1 Определение
      • 3.1.1 PV-фактор
    • 3.2 Классификация
    • 3.3 Достоинства
    • 3.4 Недостатки
  • 4 См. также
  • 5 Примечания
  • 6 Литература
  • 7 Ссылки

Основные типы подшипников [ править | править код ]

По принципу работы все подшипники можно разделить на несколько типов:

  • подшипники качения;
  • подшипники скольжения;

К подшипникам скольжения также относят:

Основные типы, которые применяются в машиностроении, — это подшипники качения и подшипники скольжения.

Подшипники качения [ править | править код ]

Подшипники качения состоят из двух колец, тел качения (различной формы) и сепаратора (некоторые типы подшипников могут быть без сепаратора), отделяющего тела качения друг от друга, удерживающего на равном расстоянии и направляющего их движение. По наружной поверхности внутреннего кольца и внутренней поверхности наружного кольца (на торцевых поверхностях колец упорных подшипников качения) выполняют желоба — дорожки качения, по которым при работе подшипника катятся тела качения.

Читать еще:  Двигатель hyundai solaris где что

Также существуют насыпные подшипники, состоящие из сепаратора и вставленных в него шариков (см. рис. ниже), которые можно вытаскивать.

Имеются подшипники качения, изготовленные без сепаратора. Такие подшипники имеют большее число тел качения и большую грузоподъёмность. Однако предельные частоты вращения бессепараторных подшипников значительно ниже вследствие повышенных моментов сопротивления вращению.

В подшипниках качения возникает преимущественно трение качения (имеются только небольшие потери на трение скольжения между сепаратором и телами качения), поэтому по сравнению с подшипниками скольжения снижаются потери энергии на трение и уменьшается износ. Закрытые подшипники качения (имеющие защитные крышки) практически не требуют обслуживания (замены смазки), открытые — чувствительны к попаданию инородных тел, что может привести к быстрому разрушению подшипника.

Классификация [ править | править код ]

Классификация подшипников качения осуществляется на основе следующих признаков:

  • По виду тел качения
    • Шариковые,
    • Роликовые (игольчатые, если ролики тонкие и длинные);
  • По типу воспринимаемой нагрузки
    • Радиальные (нагрузка вдоль оси вала не допускается).
    • Радиально-упорные, упорно-радиальные. Воспринимают нагрузки как вдоль, так и поперёк оси вала. Часто нагрузка вдоль оси только одного направления.
    • Упорные (нагрузка поперёк оси вала не допускается).
      • Шариковые винтовые передачи. Обеспечивают сопряжение винт-гайка через тела качения.
  • По числу рядов тел качения
    • Однорядные,
    • Двухрядные,
    • Многорядные;
    • Самоустанавливающиеся.
    • Несамоустанавливающиеся.
  • По материалу тел качений:
    • Полностью стальные;
    • Гибридные: стальные кольца, тела качения неметаллические, как правило, керамические, применяются в быстровращающихся механизмах, чаще всего — в газотурбинных двигателях;

    Повреждения подшипников скольжения под действием частиц

    Что происходит, когда в подшипник скольжения попадают посторонние предметы? Когда требуется замена подшипника? И что следует учитывать при монтаже подшипника? Описание возможных причин повреждений подшипников скольжения под действием посторонних частиц и порядок их замены вы найдете здесь.

    1 Стальная основа
    2 Масляная пленка
    3 Вал
    4 Частица

    При попадании инородных частиц в смазочный зазор между подшипником и шейкой вала велика вероятность повреждения подшипника. Из-за очень малой толщины масляной пленки даже мелкие частицы могут нарушить работу и привести к полусухому трению. Возможны их внедрение в антифрикционный или рабочий слой и тем самым «обезвреживание». В результате контакта с валом происходит сглаживание кромок с наслоенным материалом. Частицы, размеры которых превышают толщину антифрикционного или рабочего слоя, не внедряются полностью. Выступающие части приводят к износу шейки вала в виде бороздок. Глубокие бороздки снижают предполагаемый срок службы и могут способствовать образованию задиров на подшипнике. Еще при изготовлении двигателя или же при его ремонте возможны попадание и закрепление частиц в блоке цилиндров двигателя. Это может произойти, например, при песко- или стеклоструйной обработке блока цилиндров двигателя. Во время работы также «образуются» или заносятся частицы грязи (напр., сажа или масляный нагар). Недостаточное техническое обслуживание системы смазки или экстремальные внешние воздействия дополнительно способствуют занесению грязи в смазочный контур. Поврежденные соседние подшипники или другие поврежденные компоненты двигателя также могут стать причиной попадания частиц в масляный контур. Как правило, риск повреждения под действием частиц у коренного подшипника выше, чем у шатунного. Шатунные подшипники снабжаются маслом, поступающим из коренных подшипников, через отверстия в коленчатом валу, т. е. сначала масло проходит через коренные подшипники (см. рис.). Более крупные частицы внедряются в коренные подшипники, не достигая, как правило, шатунных подшипников.

    Для определения происхождения частиц целесообразно проанализировать подшипник и взять пробу масла.

    Возможныe причины
    • несоблюдение чистоты при монтаже: из-за невнимательности или недостаточной очистки компонентов двигателя в блок цилиндров может попасть грязь
    • остаточные продукты, например, металлические опилки или остатки после струйной обработки при изготовлении или ремонте, могут отложиться в блоке цилиндров двигателя; во время работы эти отложения отслаиваются – часто также от навесных агрегатов, например, масляного радиатора, которые в недостаточной степени очищаются при ремонте двигателя
    • повреждения уплотнений в двигателе: если уплотнение испытывает чрезмерную нагрузку или повреждается при установке, то оно больше не выполняет свою функцию, и возможно проникновение частиц
    • недостаточное техническое обслуживание системы смазки: несоблюдение периодичности осмотров или засоренные масляные фильтры могут привести к накоплению грязи в масле
    • кавитация: выкрошенные частицы подшипникового материала, передаваемые дальше за счет масла, могут привести, в зависимости от размеров, к образованию бороздок или незначительных мест внедрения на самом подшипнике или на соседнем подшипнике
    • задиры: поврежденные задирами компоненты двигателя (поршни, вкладыши подшипников) заносят в смазочный контур большое количество частиц, которые, в свою очередь, могут привести к повреждению других компонентов
    • усталостные повреждения: выкрошенные частицы материалов компонентов двигателя могут попасть вместе с маслом в подшипники и вызвать их повреждения
    Меры по устранению

    Как правило, подшипники можно по-прежнему использовать, несмотря на образование бороздок или мест внедрения частиц. Однако, это зависит от степени повреждения. Если, например, уже образовалось много крупных отпечатков частиц и следов от полусухого трения из-за наслоения материала, то подшипник рекомендуется заменить. Мелкие отпечатки частиц не ухудшают работу подшипника. Однако, в обоих случаях следует выявить причину:

    • очистка всех компонентов перед монтажом: важно промыть все отверстия для смазки на валу и корпусе перед эксплуатацией и очистить посадочные поверхности под подшипники, чтобы удалить мелкие опилки и частицы, попавшие при изготовлении или ремонте; масляные каналы навесных агрегатов, например, масляного радиатора и турбонагнетателя, также должны быть тщательно очищены
    • проверить функционирование уплотнений
    • замену масляного фильтра и масла всегда выполнять согласно данным изготовителя: следить за тем, чтобы соблюдалась периодичность осмотров и используемые масло и масляный фильтр всегда имели достаточное качество
    • фильтрование впускаемого воздуха: регулярно обслуживать фильтры, при необходимости заменять их
    • проверить другие компоненты двигателя на такие виды повреждений, как кавитация, усталость или образование задиров – часто повреждения подшипников скольжения под действием частиц являются косвенными • при необнаружении влияния частиц могут помочь анализ поврежденных вкладышей подшипника и проба масла: при наличии внедрившихся в подшипник или попавших в масло частиц можно определить их химический состав – если выявится, например, материал коленчатого вала, то именно вал следует целенаправленно проверить на повреждения

    Вкладыш шатунного подшипника со стороны шатуна, композит стальлатунь с ионно-плазменным напылением

    Бороздки достигли слоя латуни. Рядом с бороздками образовались светлые следы износа в виде сглаженных мест наслоения.

    Нижний вкладыш коренного подшипника, композит стальалюминий с полимерным покрытием

    Бороздки достигли слоя сплава алюминия.

    Образование бороздок

    Описание
    • углубления в виде полос в направлении скольжения с наслоением материала по кромкам
    • места наслоения частично снова сглажены от износа и имеют светлый, блестящий оттенок
    • часто наблюдается также образование бороздок или мест внедрения частиц на коленчатом валу или соседних подшипниках
    Оценка

    Частицы, попавшие в зазор для смазочного материала и не внедрившиеся в подшипниковый материал, многократно проносятся по всему зазору, образуя бороздки. В зависимости от толщины материала, наслоенного при этом на кромки, невозможно сглаживание кромок в процессе дальнейшей работы. Вследствие повышенного полусухого трения происходит увеличение температуры при контакте с валом. Это часто приводит к образованию мест трения и задиров. Бороздки могут образоваться также под действием полусухого трения. Однако при этом образуются мелкие бороздки, которые занимают большую площадь и наблюдаются у обоих сопряженных скользящих частей.

    Меры по устранению

    При наличии бороздок со значительными наслоениями по кромкам подшипник необходимо заменить. Но если наслоения по кромкам бороздок сглажены и больше не ожидается дополнительного воздействия частиц, то возможно дальнейшее использование подшипников.

    Вкладыш шатунного подшипника со стороны крышки, композит сталь-алюминий

    Видны мелкие отпечатки частиц и отдельные бороздки.

    Нижний вкладыш коренного подшипника, композит сталь-алюминий

    Видны крупные отпечатки без внедрившихся частиц. Частицы привели к наслоению материала, из-за которого по
    центру вкладыша образовалось место трения.

    Внедрение частиц

    Описание
    • покрытая ямками поверхность
    • отпечатки (некоторые с частицами внутри), по краям с наслоенным материалом, имеющим вид светлой, блестящей точки в результате износа
    • часто сопровождается образованием бороздок на шейке и подшипнике
    • в экстремальных случаях от мест внедрения частиц отходят места трения
    Оценка

    Частицы, попавшие в зазор для смазочного материала, могут внедриться в подшипниковый материал. В зависимости от толщины антифрикционного/ рабочего слоя, различают глубокое и мелкое внедрение. При глубоком внедрении частицы полностью интегрируются в антифрикционный или рабочий слой. Это возможно только тогда, когда размеры частиц меньше значения толщины слоя. Подшипниковый материал, наслоенный при внедрении частиц, сглаживается от износа в результате последующего контакта с валом. Мелкое внедрение имеет место тогда, когда размеры частиц превышают значение толщины слоя. Такие частицы внедряются неполностью и выступают за поверхность подшипника. Они вызывают износ и образование бороздок на поверхности шейки. Из-за кромочного наслоения материала или выступа неполностью внедрившихся частиц нарушается процесс создания масляной пленки, что может привести к полусухому трению. Вследствие этого возможно также образование так называемой шерсти от износа. При этом внедрившиеся частицы врезаются в поверхность вала и снимают материал (металлическая шерсть). Отделившиеся частицы, которые снова внедряются, усиливают повреждение подшипника, и часто невозможно избежать полного повреждения шейки и подшипника. Таким образом, внедрение частиц может привести к образованию мест трения и задиров.

    Меры по устранению

    При наличии крупных мест внедрения частиц в связи с начинающимся износом шейки и подшипника требуется замена подшипника. Если имеются мелкие места внедрения частиц, у которых наслоенный по кромкам материал сглажен, и больше не ожидается дополнительного воздействия частиц, то функция подшипника не нарушена.

    Нижний вкладыш коренного подшипника, композит сталь-алюминий

    Начиная от поверхности разъема, проходит неравномерный грязевой след. Видны ногочисленные крупные отпечатки частиц, расположенные друг за другом под наклоном. В некоторых местах еще имеются внедрившиеся частицы.

    Неравномерный грязевой след

    Описание
    • следы в виде отдельных, расположенных друг за другом отпечатков, на концах следов еще могут находиться внедрившиеся частицы
    • как правило, проходят под наклоном к кромке подшипника
    • отходят от масляных канавок или отверстий для смазки
    • часто сопровождаются образованием бороздок на шейке и образованием бороздок/внедрением частиц на подшипнике
    Оценка

    Очень крупные и твердые частицы, попавшие в зазор для смазочного материала, не могут внедриться в подшипниковый материал. Они проносятся по всему зазору для смазочного материала, время от времени зацепляясь при этом. Часто повреждение начинает проявляться у масляных канавок или отверстий для смазки, так как частицы проникли именно сюда. Значительные наслоения материала вдоль неравномерного следа приводят к образованию мест трения и задиров.

    Меры по устранению

    При наличии значительных наслоений материала вдоль неравномерного следа или признаков образования места трения подшипник необходимо заменить. Однако дальнейшее использование подшипников возможно, если наслоения материала сглажены и больше не придется опасаться дополнительного воздействия частиц.

    Нижний вкладыш коренного подшипника, композит сталь-алюминий

    Заметны значительное отклонение пятна контакта и точечный износ на рабочей поверхности. Под действием частиц на обратной стороне вкладыша подшипника образовалось место нажима.

    Рисунок на обратной стороне вкладыша подшипника

    1 Корпус
    2 Вал
    3 Частица

    Частицы на обратной стороне вкладыша подшипника

    Описание
    • локально ограниченное отклонение пятна контакта
    • светлая точка износа на рабочей поверхности
    • часто имеются остатки/отпечатки частиц на стальной основе подшипника
    • в экстремальных случаях на рабочей поверхности подшипника видны сильные следы от полусухого трения в виде мест трения и усталостные явления
    Оценка

    Под действием грязи или остатков масла (масляный нагар) на обратной стороне вкладыша подшипника образовались точечные места нажима, которые видны на рабочей поверхности. В результате нажима износ внутри подшипника выше, чем в остальной его части. Этот износ представляет собой броское отклонение от пятна контакта, часто со светлым, блестящим оттенком. Вследствие этого возможно появление мест трения, задиров и усталостных повреждений, в зависимости от размеров мест нажима.

    Меры по устранению

    Возможность дальнейшего использования подшипника зависит от степени износа рабочего слоя. Как только в области места нажима появятся места трения или усталостные явления, например, трещины или выкрашивание, подшипник следует заменить, так как иначе существует риск полного повреждения. Вследствие выкрашивания материала возможно повреждение того же самого или соседнего подшипника.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector