3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что является рабочим телом в паровом двигателе

Перспективы применения энергетических установок с низкокипящими рабочими телами

Гринман М.И. к.т.н., Фомин В.А. к.т.н,
ООО «Комтек-Энергосервис», г. Санкт-Петербург

1. Общие положения

В условиях быстрого роста цен на органическое топливо энергосбережение во всех отраслях промышленности является важнейшим фактором снижения себестоимости производства продукции и повышения её конкурентоспособности. Основные направления энергосбережения:

-утилизация низкопотенциальной энергии промышленных предприятий ;

— создание простых и надёжных энергетических установок для производства тепловой и электрической энергии, работающих на местных видах топлива;

— повышение коэффициента использования теплоты топлива в энергетических установках, работающих на мини-ТЭЦ и магистральных газопроводах.

Решение перечисленных проблем сдерживается отсутствием на энергетическом рынке установок, позволяющих утилизировать тепловую энергию с низкими параметрами теплоносителей.

Для энергетических установок, утилизирующих низкопотенциальную энергию, применяют низкокипящие рабочие тела (НРТ), которые имеют достаточно высокие давления насыщенных паров при низких температурах. и поэтому давно привлекают внимание разработчиков в различных областях энергетики и, в частности, в геотермальной энергетике. В качестве НРТ применяют фреоны, водный раствор аммиака, пентан, изопентан, бутан, изобутан и др.

При выборе НРТ необходимо выполнять ряд требований:

• дешевизна рабочего тела;

• хорошие теплофизические свойства (максимум работы при минимальных параметрах);

• отсутствие экологического воздействия на окружающую среду (озоновый слой, парниковый эффект);

• замерзание при достаточно низких отрицательных температурах, что важно для климатических условий северных регионов.

Область применения таких установок с НРТ достаточно широка.

В различных отраслях промышленности применяются сотни промышленных печей со сбросом горячих газов в атмосферу. В таких промышленных установках можно использовать теплоту уходящих газов в водогрейных или паровых котлах, из которых нагретую воду или пар подавать в контур с НРТ для выработки электроэнергии.

На магистральных газопроводах установлены сотни газотурбинных компрессорных станций со сбросом горячих газов в атмосферу. Такие ГТУ можно перевести в режим парогазовых установок (ПГУ) с применением контуров с НРТ. Такую же схему можно применить для энергетических ПГУ малой мощности.

Дешёвые местные виды топлива можно сжигать в водогрейных котлах, а горячую воду из них использовать в качестве греющего теплоносителя в контуре с НРТ.

В газопоршневых машинах контуры с НРТ можно использовать для утилизации теплоты выхлопных газов и теплоту системы охлаждения двигателя.

2. Комбинированная энергетическая установка

Для повышения тепловой экономичности энергетических установок и оптимизации режимных характеристик в ООО «Комтек-Энергосервис» разработана комбинированная энергетическая установка, состоящая из противодавленческой паровой турбины, к выхлопу которой параллельно подключены теплофикационная установка и контур с низкокипящим рабочим телом. В установке реализованы паровой и органический циклы Ренкина.

Выполненный авторами анализ показал, что для значений температур греющих теплоносителей в диапазоне 140-190 0 С целесообразно применять в утилизационном контуре пентан, а в диапазоне 100-130 0 С — бутан.

Преобразование низкопотенциальной тепловой энергии в механическую и далее в электрическую происходит в замкнутом бутановом контуре, который включает в свой состав парогенератор (испаритель) бутана, бутановую турбину с электрогенератором, конденсатор бутана, насосное и вспомогательное оборудование (рисунок 1). Для уменьшения затрат электроэнергии на сжатие жидкого бутана применено многоступенчатое сжатие: в конденсатном насосе и в одном или двух струйных термонасосах ( инжекторах).

Области применения предлагаемого бутанового контура в промышленном и коммунальном тепло- и электроснабжении многообразны и определяются источником низкопотенциальной теплоты, подводимой к парогенератору бутана.

3. Конструкция агрегатов бутанового контура

3.1.Конструкция бутановой турбины.

Применение бутана в качестве рабочего тела позволяет создать компактную малогабаритную турбину, так как объемный расход пара через последнюю ступень в случае применения бутана уменьшается на два порядка. Так при температуре конденсации 30 0 С, удельный объем водяного пара составляет 32,89 м3/кг при давлении 0,0425 бар, в то время как у бутана (R 600) – 0,141 м3/кг при давлении 2,81 бар. В результате в бутановом контуре отсутствует вакуумная система удаления воздуха из конденсатора со всеми ее

Рис.1. Принципиальная тепловая схема бутанового контура .

Обозначения: ИБ – испаритель бутана; ЭкБ – экономайзер бутана; ТБ – турбина бутановая; Конд. – конденсатор; ВПБ – водяной подогреватель бутана; КНБ – конденсатный насос бутановый; ИВД – инжектор высокого давления (острого пара); ИНД – инжектор низкого давления.

эксплуатационными проблемами. Это позволяет создавать конструкции минимальных габаритов из обычных материалов (низкий уровень температур, минимальные окружные скорости и напряжения). Турбинная часть установок на бутане или пентане представляет собой газовую турбину, работающую с низкими параметрами газа и поэтому достаточно надёжную. Аналогом таких турбин являются турбодетандеры, преобразующие энергию в процессе понижения давления природного газа при его подаче из магистрального газопровода к потребителю.

3.2. Конструкция теплообменного оборудования.

Производство пара НРТ происходит в парогенераторе. Он представляет собой кожухотрубный теплообменник, в котором греющий теплоноситель проходит внутри трубной системы, расположенной в объёме НРТ (рис.1). Пар, полученный в процессе испарения, сепарируется и направляется в турбину.

Конденсация пара НРТ после турбины производится в конденсаторе. Если в районе расположения мини-ТЭЦ имеется достаточное количество воды, то можно применять конденсатор с водяным охлаждением, в противном случае – с воздушным охлаждением.

Потери НРТ в установке при нормальных эксплуатационных режимах практически отсутствуют, так как протечки через концевые уплотнения турбины невелики и составляют 2-3 л/мин. Эти протечки улавливаются системой сбора НРТ и возвращаются в контур. При ремонтах производится закрытый слив жидкого НРТ из контура в специальные ёмкости с последующей продувкой контура водяным паром. Потери НРТ в процессе эксплуатации восполняются из баллонов.

Агрегаты бутанового контура скомпонованы в герметичном контейнере. В соответствии с правилами обслуживания помещений с взрывоопасными газами кратность принудительной циркуляции воздуха в контейнере с оборудованием равна пяти.

Масса бутана в контуре составляет приблизительно 1500 кг. Бутан не токсичен и не является коррозионно – активным рабочим телом, поэтому турбина, трубопроводы, арматура и вспомогательное оборудование выполняются из углеродистых сталей.

4. Варианты тепловых схем энергетических установок с применением НРТ .

4.1. Совмещение контура с НРТ с противодавленческими турбинами малой мощности.

Выработка электроэнергии на тепловом потреблении наиболее эффективна, поэтому на многих промышленных и муниципальных паровых котельных устанавливают противодавленческне турбины, имеющие минимальные габариты, простые в эксплуатации, дешевые и не требующие сложного сервиса.

Основной недостаток варианта надстройки котельных паровыми противодавленческими турбинами состоит в том, что они могут работать только при наличии тепловой нагрузки.

Летом, когда тепловая нагрузка горячего водоснабжения составляет только 15% от номинальной, турбина не сможет работать, если не будет дополнительной нагрузки, связанной с потреблением пара низких параметров на технологические нужды.. В результате коэффициент использования установленной мощности в среднем за год может составлять 0,5 и ниже.

Наиболее эффективно подстраивать к выхлопу противодавленческих турбин контур, работающий на бутане, так как уровень температур греющего пара составляет 130-150 0 С . В этом случае любая недогрузка противодавленческой турбины по тепловой мощности передаётся в дополнительный контур (рис.2).

Читать еще:  Электрическая схема газель 3302 двигатель 405

Рис.2. Тепловая схема энергетической установки с противодавленческой турбиной и бутановым контуром

Обозначения: 1 – стопорный и регулирующий клапаны с пневмоприводом; 2 – бутановая турбина; 3 – «сухие» бутановые уплотнения; 4 – воздушный конденсатор; 5 – конденсатный насос; 6 – инжектор; 7 – испаритель бутана; 8 – паровая турбина типа Р-6-3,4/0,5; 9 – подогреватель бутана смешивающий струйного типа; 10 – БРОУ.

Совместная работа парового и бутанового контуров может обеспечить коэффициент использования установленной мощности паровой турбины, равный 1, независимо от тепловой нагрузки.

При создании комбинированной установки, состоящей из противодавленческой турбины и бутанового контура, годовая выработка электроэнергии удваивается. Это происходит за счёт того, что даже в периоды отсутствия тепловых нагрузок противодавленческая турбина работает на номинальной мощности, и, кроме того, в эти периоды электроэнергия дополнительно вырабатывается в бутановом контуре.

Параметры комбинированной установки представлены в таблице 1.

Параметры комбинированной установки для мини-ТЭЦ, состоящей из котлов ДКВр

и ДЕ, противодавленческой турбины и бутанового контура

Аммиачно паровой двигатель

Касим
Я люблю самолеты!

В аммиачно паровом двигателе рабочим телом является аммиачный пар. Удельная теплота парообразования указанного рабочего тела в 539 раз меньше, чем у воды. Поэтому упрощается процесс утилизации тепла отработанного пара. А КПД аммиачно парового двигателя на 24 % выше, чем у традиционной паровой машины.

Аммиачно паровой процесс хорошо освоен в промышленности. Уже более 80 лет работают холодильники на аммиачных парах (бытовые холодильники выпускаются с 1928 г, именно этого типа, как наиболее простые). Но, как известно, в холодильниках процесс идет без преобразования тепловой энергии в механическую. В аммиачно паровом двигателе использован процесс, основанный на особенностях сжатия и расширения парообразного аммиака.

Аммиачно паровой двигатель имеет малый удельный вес, вместе с парообразователем не более 1,2 кг/л.с., т.е. такой же, как и у карбюраторных автомобильных моторов.

Удельный расход топлива у аммиачно парового двигателя ниже, чем у дизельного мотора и составляет всего 1,6 кг/л.с.

Аммиачно паровой двигатель может использоваться для транспортных средств, а так же как стационарный для привода электрогенераторов различной мощности.

«Снова пар?» — статью под таким названием «ТМ» опубликовала почти 30 лет назад. И вот, оказывается, тема эта не только не устарела, но даже приобрела еще большую актуальность.
— Как же, помню блистательную статью Германа Смирнова, — оживился мой собеседник. — Она и послужила затравкой, вызвавшей кристаллизацию собственной идеи.
И далее в разговоре с Юрием Васильевичем Макаровым, ныне кандидатом технических наук, старшим научным сотрудником МАИ и изобретателем с многолетним стажем, прояснилась вот какая история.
Почему, по вашему, паромобили, столь успешно конкурировавшие на заре века с электромобилями и автомобилями, бившие мировые рекорды скорости, затем были вынуждены сойди с арены? Правильно, они потребляли в 2-3 раза больше топлива, чем машины с двигателями внутреннего сгорания. Потому, кстати, и на железной дороге на смену паровозам пришли тепловозы и электровозы.
Эта известная со школьных лет истина ничуть не обескуражила изобретателя, решившего использовать паровую машину в. авиации! «Не забывайте, — напоминает Макаров, — самолет Можайского был оснащен именно ею.

Рис, 1. Аммиачно-паровой двигатель. Цифрами обозначены: 1 — корпус паро-генератора(нагревателя); 2 — насыщенный раствор аммиака; 3 — теплоизоляция парогенератора; 4 — тепловой экран; 5 — воздушный промежуток; 6 — зеркальный экран; 7 — термоизоляция; 8 — горелка; 9 — змеевик; 10 — входной патрубок; 11 —

тракт воздухозаборника; 12 — воздухозаборник; 13 — лопасти вентилятора; 14 — радиатор; 15 — патрубок вентилятора; 16 — выхлопная труба; 17 — прямой канал выхлопной трубы; 18 — изогнутое колено выхлопной трубы; 19 — трубопровод перегретого аммиака; 20 — блок цилиндров; 21 — корпус двигателя; 22 — золотник; 23 — ось пропеллера; 24 — пропеллер;25 — выходной аммиакопровод; 26 — расширитель; 27 — корпус расширителя и абсорбера; 28 — термоизоляция; 29 — абсорбер; 30 — разделительная стенка между расширителем и абсорбером; 31 — патрубки расширителя; 32 — грубо -провод, подающий аммиачный раствор в радиатор; 33 — трубопровод; 34 — насосы; 35 — помпа подачи топлива; 36— шкив вентилятора; 37 — заслонка. 38,39 — тяги заслонки; 40 — двигатель управления заслонкой; 41 — электродвигатель помпы; 42 — электрогенератор; 43,44 — датчики системы регулирования; 45 — свеча зажигания; 46 -аккумулятор; 47 — клапан, через который добавляют аммиак в случае егс аварийной утечки; 48 — топливный бак.

Вложения

Касим
Я люблю самолеты!

И сказав первое слово в авиации, паровая машина еще не сказала последнего».
Такой ход мысли, согласитесь, граничит если нес абсурдом, то, по крайней мере, с парадоксом. Впрочем, Макаров все разъяснил достаточно логично.Не удивительно, что бывший мор ской офицер Можайский ислользова в своей конструкции паровую машину -других в то время, по существу, еще и было. И тот факт, что она дольше всег продержалась на флоте, вполне закс номерен. Ведь наилучшим образо) она проявляет свои достоинства пр повышении выходной мощности, а судоходстве нередко требуются мош ности в десятки, а то и сотни тысяч лс шадиных сил и киловатт. По той ж причине весьма неплохо чувствуют се бя паровые турбины и на тепловы электростанциях, на АЭС. Кроме то го, такая силовая установка «всеядна> может использовать практически лю бое топливо — от дров до термо яда.А ее тяговые характеристики во обще уникальны. На паромобилях, примеру, не было коробки передач -такого «обкорнания» не выдержит т один двигатель внутреннего сгорания а паровому все нипочем.
Конечно, сказанное вовсе не значт что претензий ни к судовым, ни к ста ционарным паровым установкам ни ‘ кого нет. Их еще предостаточно. И одн; из основных — значительное количе ство тепла по-прежнему «вылетает I трубу».
Повысить КПД можно двумя путями Во-первых, все больше увеличива5 температуру и давление пара, прибе гают к разного рода утилизаторам тепла. Но тут, похоже, уже подошли к технологическому пределу: применение закритического давления пара (240 — 250 атм.) с температурами свыше 500°С требует, помимо прочего, использования специальных сталей и сплавов, включая титановые. Что заметно удорожает саму установку. Оттого-то в последние десятилетия делается заметный акцент на второй путь — замену воды в паровых котлах на более подходящие жидкости.
А список их, таких жидкостей, достаточно обширен. Здесь и этиловый эфир, и хлороформ, и сернистый углерод, и аммиак. Иногда используют даже низкотемпературные расплавы на основе лития.
Макаров остановил свой выбор на аммиаке. «У него есть одна интересная особенность, — пояснил изобретатель. — Он легко растворяется в воде — о нашатырном спирте, видимо, все знают». И набросал график, из которого следовало, что, скажем, при нуле градусов в одном объеме воды растворяется аж 1176 объемов аммиака. С ростом температуры, правда, такая способность падает. Но это, как вы вскоре убедитесь, даже к лучшему.
Итак, каким же образом работает аммиачно-паровой двигатель? Взгляните на рис. 1. С помощью свечи зажигания воспламеняется горелка, топливо в которую поступает из бака. Причем, если используется жидкое горючее, скажем, мазут, его предварительно подкачивают ручным насосом (на схеме не показан). При использовании же сжижженного или сжатого природного газа, такая подкачка не требуется — он будет подаваться из бака избыточным давлением. Ну а в принципе

Читать еще:  Что такое диагностика дизельного двигателя по алгоритму

нагреватель(парогенератор) может работать на любом топливе (угле, торфе, дровах или ядерном горючем) — для этого потребуется лишь соответствующая его доработка.
Перед запуском двигателя специальной заслонкой перекрывается прямой канал выхлопной трубы: горячие газы от горелки идут по колену трубопровода, который погружен в насыщенный водный раствор аммиака; он с помощью насоса подается из абсорбера в корпус парогенератора. Температура жидкости, понятное дело, начинает повышаться.При этом аммиак, содержащийся в ней, выделяется и через трубку заборника поступает в змеевик нагревателя, обогреваемый той же горелкой. Если в растворе, при подогреве его, аммиак имел температуру 45 — 50° С, то в змеевике — 650° С.
Этот перегретый пар устремляется через золотник в цилиндры, и двигатель начинает работать на холостых оборотах, приводя в действие вентилятор, который нагнетает воздух в нагреватель.
Температура воды в парогенераторе постепенно повышается до 90 — 95°С, что обеспечивает давление паров аммиака порядка 40 атм. Двигатель выходит на рабочий режим и далее автоматически поддерживает его. Этому в немалой степени способствует тепловой экран сферической формы и дополнительный зеркальный экран, отставленный от него на некоторый воздушный промежуток. Кроме того, установленные датчики температуры воды и пара выдают периодические сигналы в систему автоматического управления, регулирующую тепловой режим. При перегреве сокращается подача топлива в горелку и приоткрывается створка прямого канала выхлопной трубы, сбрасывающей излишек тепла в атмосферу; при недостатке же тепла, наоборот, увеличивается подача топлива, а заслонка закрывается.
В общем, согласно расчетам Макарова, уже через 1,5 — 3 мин двигатель должен быть готов к работе при максимальной нагрузке.
Прошедший через его цилиндры пар, совершив полезную работу, охлаждается до 20 — 30° С и давление его снижается до 5 атм. Затем он попадает в расширитель, где давление его уменьшается до 1,8 атм., а температура, согласно законам физики, соответственно падает до -18° С.
Переохлажденный аммиак отбирает тепло у стенок расширителя и накапливается в абсорбере. Происходит типичный процесс, как, скажем, у абсорбционного холодильника типа «Север-6», «Иней», «Морозко» и т.д. И в абсорбере устанавливается порядка -6° С.
Естественно, при понижении температуры растворимость аммиака в воде резко возрастает. Поэтому поступающий из двигателя газ тут же поглощается жидкостью. По мере того, как беднеет аммиаком смесь в парогенераторе, часть его откачивается насосом из абсорбера в парогенератор. Цикл таким образом замыкается.
Проведенные Ю.В.Макаровым расчеты показывают, что такой двигатель обладает рядом преимуществ, по сравнению и с традиционной паровой машиной, и с двигателем внутреннего сгорания. При той же мощности, он компактнее на 40 — 60%, имеет более высокий КПД ( порядка 43,5% экономический и около 85% механический), расходует меньше соляра, чем, скажем, дизель. Даже на моторном масле, которого новый двигатель требует значительно меньше обычного, можно получить многомиллионную экономию. И это в ценах еще 1978 г., когда Макаров «пробивал» свое изобретение. Ныне же, наверное, надо говорить о триллионах рублей, расходуемых понапрасну.
Итак, получено авторское свидетельство № 1455114. Ну а что было дальше? Тут наша история приобретает настолько тривиальный характер, что даже рассказывать не хочется — тома переписки со всевозможными государственными, полугосударственными и частными оранизациями, фондами, институтами и предприятиями, в попытках если уж не внедрить, то хотя бы довести изобретение до испытаний. Но воз, как говорится, и ныне там.
В общем, ситуация вполне типичная для нашей страны. И о том, возможно, не стоило бы писать отдельно, если бы не один нюанс, зависящий, как говорится, от человеческого фактора. Вот типичный пример. Как донесли зарубежные средства массовой информации, в мире бизнеса недавно произошел из ряда вон выходящий случай. Всемогущая Сепега! Е1ест.пс — фирма, организованная 105 лет назад самим Эдисоном и с той поры считавшая, что нигде нет ничего такого, чего не могли бы изобрести ее сотрудники, — сделала первое исключение из собственных правил. Она купила лицензию на чужое изобретение, отвалив за нее. 250 млн долларов!
Новоявленного мультимиллионера зовут Александр Калина, он бывший наш соотечественник, выпускник Института холодильной промышленности в Одессе. А предложенный им «цикл Калины» позволяет сразу на 25% повысить КПД любой тепловой электростанции. Причем это изобретение было сделано давно, еще в СССР, где, кроме того, он получил около 90 авторских свидетельств.
Для реализации одного из его изобретений — капсульного трубопровода — инстанции решили создать даже целый НИИ. Подыскали помещение, назначили директора, заместителей и т.п., а про самого автора как-то «забыли», И вспомнили лишь тогда, когда он заскандалил, обнаружив, что в ходе переписки с патентным ведомством количество соавторов изобретения, неожиданно для него, пополнилось пятью фамилиями.Разумеется, руководителей того самого НИИ.
Изобретатель обиделся и эмигрировал. А институт пришлось вскоре прикрыть, ввиду полной бесполезности его сотрудников.
За границей Калина начал все сначала. Там, впрочем, ему было отнюдь не легче, чем тут. Но у него уже был опыт. И за 15 лет, объездив полмира, он все-таки сумел найти людей, поверивших в перспективность его давнишней идеи, одолживших деньги на ее реализацию. В декабре 1992 г. Калина закончил неподалеку от Лос-Анджелеса строительство опытной станции. По проводам от нее пошло самое дешевое в мире электричество, а изобретатель, как уже говорилось, стал богачом.Убытки же России составили при этом сотни миллиардов. И не рублей, а долларов.
Не произойдет ли нечто подобное и с «циклом Макарова»? И пока такого не случилось, быть может, стоит повторить опыт Калины на отечественной почве? Создать акционерное общество, дать изобретателю возможность доказать перспективность его разработки на практике, а потом торговать лицензиями по всему миру, не особенно стесняясь в цене.
Рис. 2. Газотурбинный двигатель с аммиачно-паровым циклом. Цифрами обозначены: 1 — парогенератор; 2 — насыщенный раствор аммиака; 3 — корпус парогенератора; 4 — газовая камера турбины; 5 — форсунка; 6 — воздухозаборник; 7 — сопло; 8 — змеевик; 9 — свеча зажигания; 10 — аккумулятор; 11— заборный патрубок; 12 — ам-миакопровод; 13 — радиатор; 14 — ось пропеллера; 15 — пропеллер; 16 — золотник; 17 — трубопровод; 18 — расширитель;19 — корпус расширителя и абсорбера; 20 — термоизоляция; 21 — абсорбер; 22 — перегородка между расширителем и абсорбером; 23 — патрубки расширителя; 24,25 — трубопроводы; 26 — радиатор; 27 — насосы; 28 —помпа;29 — топливный бак; 30 — топливопровод; 31 — система автоматического регулирования; 32,33 — датчики системы автоматического регулирования; 34 — клапан для восполнения аммиака при аварийной утечке.

Читать еще:  Горит неисправность двигателя опель омега

Газотурбинная установка с парогазовым рабочим телом (контактные ГПТУ)

Комбинированная ГПТУ (газо-паротурбинная установка) может быть осуществлена и другими способами. Во всех случаях основой установки остается ГТУ (газотурбинная установка), различие состоит в способах увязки газовой и паровой частей установки в общем термодинамическом цикле. В отличие от ранее рассмотренных схем термодинамически комбинированных ГПТУ, в установках с парогазовым рабочим телом по иному организована паровая часть цикла: пар подается не в отдельную утилизационную паровую турбину, а непосредственно в проточную часть газовой турбины. Такой тип двигателя называется парогазовой турбиной. Выработка пара в контактных ГПТУ может осуществляться в утилизационных паровых котлах, либо в расширительных камерах. Примерная схема ГТУ с парогазовым рабочим телом и расширительной камерой показана на рис. 15.

Основным элементом установки является ГТД (газотурбинный двигатель). Его конструкция обычно выполняется прямоточной с блокированным компрессором или со свободной пропульсивной турбиной. В камеры сгорания ГТД подается воздух, сжатый в компрессоре, топливо, и насыщенный пар из расширительной камеры. Образовавшаяся на выходе камеры сгорания парогазовая смесь поступает в проточные части парогазовых турбин, расширяется, совершая полезную работу, и направляется в водоподогреватель. В водоподогревателе теплота парогазового рабочего тела передается питательной воде, после чего охлажденная парогазовая смесь поступает в парогазовый конденсатор. В конденсаторе происходит отделение паровой фазы от продуктов сгорания топлива. Теплота парогазовой смеси уходит в охлаждающую забортную воду, при этом водяной пар конденсируется и его конденсат скапливается в нижней части конденсатора, а дымовые газы удаляются в атмосферу. Конденсат из конденсатора забирается конденсатным насосом и подается для повторного использования на всасывание циркуляционного насоса. Циркуляционный насос подает воду через водоподогреватель в расширительную камеру. В расширительной камере при дросселировании воды до давления в камерах сгорания двигателя происходит ее частичное испарение, и образовавшийся насыщенный пар поступает в камеры сгорания, а скопившаяся в нижней части расширительной камеры неиспарившаяся вода возвращается обратно в цикл на всасывание циркуляционного насоса. Функцией циркуляционного насоса в данной установке является поддержание циркуляции воды в контуре РК − ЦН − ВП − РК .

В установках с расширительными камерами параметры сгенерированного пара ниже, чем в установках с утилизационными котлами, но при этом они имеют более высокую паропроизводительность и, соответственно, более высокие значения расходов рабочего тела через проточную часть парогазовой турбины.

Термодинамический цикл ГПТУ с парогазовым рабочим телом состоит из циклов газовой и паровой частей установки, которые включают в себя следующие процессы (рис. 16):

С целью увеличения КПД цикла и степени расширения парогазового рабочего тела в проточной части турбин возможно применение специальных устройств – эксгаустеров, позволяющих снизить давление за последней ступенью турбины до значения ниже атмосферного.

Применение контактных схем ГПТУ позволяет повысить КПД газотурбинного и паротурбинного циклов по сравнению с исходными циклами ГТД и КТЭУ. Дальнейшее усложнение схемы контактной ГПТУ заметного выигрыша в повышении КПД не дает. Использование парогазового рабочего тела всегда связано с некоторой утечкой в атмосферу питательной воды, так как осуществить полное отделение паровой фазы рабочего тела от газовой в парогазовом конденсаторе достаточно сложно. Этот недостаток парогазовой установки приводит к необходимости постоянного пополнения запасов питательной воды на судне.

Литература

Судовые энергетические установки. Комбинированные и ядерные установки. Болдырев О.Н. [2007]

Паровой двигатель, ДВС, цикл Аткинсона

Пар костей не ломит

Паровая машина – самый известный двигатель внешнего сгорания. Здесь рабочим телом служит вода, которая нагревается топливом за пределами двигателя. Первые проекты паровых автомобилей относятся еще к Исааку Ньютону, однако реально работающие прототипы были созданы только в 1698 году англичанином Томасом Севери. Сначала машину в действие приводила мощная струя пара, бившая из сопла. Но впоследствии Джеймс Уатт значительно усовершенствовал эту модель и в итоге подарил миру не только более эффективный паровой двигатель, но и промышленную революцию.

В 1769 году Николя-Жозеф Конью задался целью создать тягач для артиллерии, так появилась на свет огромная неуклюжая повозка с гигантским котлом спереди. Это самый известный из предков автомобиля – повозка Кюнью считается первым самодвижущимся экипажем в мире. Она была довольно медленной и неповоротливой, и уже в первой испытательной поездке врезалась в здание Арсенала.

Паровые машины разрабатывались и в нашей стране. Так, небезызвестный Иван Кулибин, чье имя впоследствии станет нарицательным, именно в ходе работы над паровым двигателем изобрел маховик, коробку передач и тормоза.

Автомобили на паровом ходу активно использовались вплоть до середины XX века, более того, именно на паровом автомобиле в 1906 году была преодолена отметка в 200 км/ч.

Паровой машине безразлично, что будет гореть в ее топке, ей не нужна коробка передач, что упрощает конструкцию. Но чтобы добиться достаточно высокого КПД, конструкцию приходится усложнять, и она становится довольно тяжелой

Имена нарицательные

«Автомобиль на топливе» – вот так незамысловато в патенте было описано изобретение, которое официально признано первым автомобилем в мире. Патент был зарегистрирован Карлом Бенцем в 1886 году.

Бенц использовал двигатель внутреннего сгорания, который придумал и создал его соотечественник Николаус Август Отто. В 1946 году немецкий институт по стандартизации DIN сделал Отто нарицательным именем для бензиновых двигателей, как имя Дизеля было присвоено моторам с воспламенением от сжатия. И сейчас в характеристиках немецких автомобилей вы можете увидеть Ottomotor.

Именем Отто назван четырехтактный цикл работы ДВС. Да, те самые, известные каждому мужчине с детства «Впуск – Сжатие – Рабочий ход – Выпуск»

Аткинсон, но не мистер Бин

Англичанин Джеймс Аткинсон пошел на ухищрения, чтобы производить ДВС, не попадая под патент Отто, и изменил поведение поршней во время рабочего хода, усложнив конструкцию.

Его технические решения нашли применение только много позже, в начале XXI века, когда компания Toyota начнет ставить двигатели с циклом Аткинсона на свои гибридные модели.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector