Что такое рекуперативное торможение асинхронного двигателя
Рекуперативное торможение в электромобилях: что это и как работает
Сам по себе термин «рекуперация» известен достаточно давно и подразумевает возможность частичного возврата использованной энергии (тепла, воды, газов) с целью ее повторного применения. В этом смысле рекуперативное торможение также подразумевает процесс возврата части затраченной энергии.
Что это такое рекуперативное торможение
При выборе электромобиля одним из важнейших его параметров является дальность пробега на одной зарядке. Производители электрокаров проводят активные исследования и внедряют все новые разработки, которые позволяют увеличить дальность пробега электрокара на одной зарядке. Рекуперативное торможение, как одна из возможностей частичного восстановления заряда батареи, является важным нюансом при выборе электрокара.
В нескольких словах рекуперативное торможение электромобилях можно описать как процесс получения энергии в ходе торможения авто, т.е. фактически это подзарядка аккумулятора электрокара прямо по ходу движения.
Принцип работы
Что бы понять, как работает система рекуперативного торможения, необходимо вспомнить, что каждое движущееся тело обладает кинетической энергией. При торможении машины с ДВС эта энергия расходуется в ходе контакта тормозных колодок и тормозных дисков, стирая их, т.е. просто «в никуда». В электромобилях применяется более внимательный подход к использованию энергии. Рекуперационный процесс здесь представлен следующим образом:
- При начале торможения электрический мотор меняет режим работы: вместо питания от аккумулятора он начинает работать как генератор, вырабатывая энергию. В этот момент в обмотке ротора и статора возникают токи противоположной направленности.
- Снижение скорости транспортного средства происходит за счет того, что на валу электромотора появляется тормозной момент.
- Имевшаяся до начала торможения кинетическая энергия трансформируется в электрическую и тепловую.
- Появляющаяся дополнительная электроэнергия поступает в аккумулятор, тем самым повышая его заряд.
Эффективность рекуперации
Рекуперация электродвигателя с точки зрения физического процесса является достаточно эффективной, поскольку его КПД составляет порядка 70%. Т.е. около 70% затрачиваемой на торможение энергии преобразуется в электроэнергию. Однако эффективность рекуперативного торможения с точки зрения увеличения дальности пробега машины не такая большая, поскольку увеличение пробега составляет всего в пределах 10-20% в зависимости от условий: тип авто и асинхронного двигателя, размер транспортного средства, скорость движения, характеристики батареи, дорожные условия и т.п.
Условия, при которых рекуперативное торможение двигателя постоянного тока наиболее эффективно:
- загородные трассы, позволяющие развивать хорошую скорость;
- холмистая местность и крутые спуски;
- в городских условиях при передвижении в режиме «старт-стоп»;
- большие размеры и вес авто;
В данном случае верно правило: чем чаще тормозит электрокар, тем его батарея больше заряжается.
Когда не эффективно
Ситуации, когда рекуперативное торможение электродвигателя не эффективно:
- движение по ровной поверхности с одной скоростью (в таком режиме движения тормоз машины задействуется редко);
- низкая температура АКБ (при низкой температуре аккумулятора рекуперативная электроэнергия будет вырабатываться в ограниченном объеме);
- 100% заряд батареи (невозможно зарядить батарею, если она уже заряжена на 100%).
Перспективы
В ситуации, когда пробег электрокара ограничивается зарядом батареи, важен любой источник, помимо зарядной станции, который может вырабатывать дополнительную энергию. Поэтому рекуперативное торможение дпт – хороший и перспективный способ увеличения пробега. А 70% сохраненной энергии – хороший показатель с учетом того, что еще буквально 10-15 лет назад на такие потери вообще не обращали внимание.
Дополнительная информация! Более того, процесс модернизации и оптимизации рекуперации не останавливается. Сейчас ведутся разработки по усовершенствованию рекуперативных систем для того, чтобы повысить их эффективность, а также обеспечить возможность рекуперации не только в режиме торможения. В частности, активно разрабатывается особая подвеска, устройство которой позволяет использовать рекуперацию и при обычном движении. В этом случае эффективность рекуперации возрастет почти в два раза, а увеличение пробега электрокара за счет такой дополнительной подзарядки составит до 40-50%. Однако пока непонятно, когда такая схема будет реализована на серийных машинах.
Отдельные производители шагнули чуть дальше остальных и уже достаточно давно выпускают авто с опцией рекуперации: Nissan Leaf, BMWi3, Hyndai Loniq, Chevrolet Bolt. Другие только планируют это сделать. Тем не менее можно с уверенностью утверждать, что сегодня рекуперация как вид восполнения заряда батареи уже является одним из конкурентных преимуществ электромобиля.
Обратите внимание! Конечно, такой рекуператор не сравнится с зарядной станцией, однако, возможно, именно этот небольшой дополнительный заряд позволит автомобилю доехать до места зарядки и не остановиться где-нибудь на дороге с нулевым уровнем энергии.
Большая Энциклопедия Нефти и Газа
Рекуперативное торможение
Классическое рекуперативное торможение возможно только при независимом или смешанном возбуждении, так как при последовательном не обеспечивается электрическая устойчивость тормоза. При подключении якорей ТМ непосредственно к КС ( рис. 62.66, а) рекуперируемый ток / ( Ет м — С / к С) / 2Я, где в 2Л входят Лт м, RK c на участке до приемника энергии рекуперации и J. [46]
Рекуперативное торможение асинхронного двигателя возможно, если угловая скорость его оказывается выше синхронной. Этот способ торможения может быть осуществлен при управлении, например, двух — или многоскоростными двигателями в случае переключения обмоток статора работающего двигателя с меньшего числа полюсов на большее. [47]
Рекуперативное торможение двигателей параллельного возбуждения выполняется в подъемных механизмах при спуске груза и при регулировании скорости вращения изменением тока возбуждения. В промышленных приводах возможности его использования обычно ограниченны. [48]
Когда рекуперативное торможение прекратится, селективную рукоятку переводят в положение, соответствующее режиму тяги. [49]
Применение рекуперативного торможения на спаренных электровозах производится по тем же правилам, что и для одиночной тяги. [50]
Выключение рекуперативного торможения производят перемещением тормозной рукоятки в сторону 1 — й позиции. Когда ток рекуперации будет близким нулю, переводят главную рукоятку в нулевую позицию, а затем окончательно переводят тормозную рукоятку в нулевую позицию и выключают возбудитель. Далее по условиям ведения поезда с целью его остановки или регулирования скорости могут быть применены или автотормоза поезда, или вспомогательный тормоз локомотива. [51]
Применение рекуперативного торможения на двух электровозах в составе допускается только при исправной радиосвязи на них. [52]
Использование рекуперативного торможения также позволяет уменьшить расход электрической энергии. Тяговые двигатели параллельного возбуждения переходят в режим рекуперативного торможения автоматически при повышении скорости. Электродвигатели последовательного возбуждения не могут работать в режиме рекуперации, поэтому их переводят на независимое возбуждение от специального преобразователя. [53]
Для рекуперативного торможения асинхронный двигатель переводится из двигательного в генераторный режим. Для этого необходимо, чтобы скорость вращения ротора стала выше синхронной. В многоскоростном двигателе перевод в генераторный режим происходит при увеличении числа пар полюсов для уменьшения скорости вращения. За время работы машины в генераторном режиме, пока скорость ротора сравняется с синхронной, часть кинетической энергии движущихся масс преобразуется в электрическую и возвращается в сеть, что является достоинством этого метода торможения. Недостаток состоит в том, что его нельзя применить при скорости вращения ротора меньше синхронной. [54]
Процесс рекуперативного торможения происходит без подмагничивания дросселя насыщения, поскольку по его обмоткам 1ОДН и ЗОДН ток не протекает. При таких условиях обеспечивается значительная величина замедления. [55]
Особенностью рекуперативного торможения является то, что двигатель становится генератором, работающим на сеть. [57]
Характеристики рекуперативного торможения показаны на фиг. [58]
Режим рекуперативного торможения при работе машины как асинхронного генератора выше синхронной скорости применяется главным образом в короткозамкнутых двигателях с переключением полюсов. [59]
Применение рекуперативного торможения па некоторых горных участках позволяет на 15 — 20.6 снизить расход электроэнергии на тягу поездов. Безопасность движения при использовании электрического торможения возрастает благодаря повышению гибкости управления движением поезда на спусках, так как появляется возможность не применять воздушное торможение или увеличивать время зарядки автотормозов после его применения. [60]
23. Режимы торможения асинхронных двигателей. Рекуперативное торможение ад.
24. Режимы торможения асинхронных двигателей. Электродинамическое торможение ад.
25. Режимы торможения асинхронных двигателей. Торможение ад противовключением.
Рекуперативное торможение осуществляется при вращении ротора активным моментом со скоростью ω>ω (рисунок 6.1). Этот же режим будет иметь место, если при вращении ротора со скоростью ω уменьшить частоту вращения поля статора ω(участок характеристики bc на рисунке 6.2). Роль активного момента здесь будет выполнять момент инерционных сил вращающегося ротора. Процесс аналогичен рекуперативному торможению ДПТ, изученному ранее.
Рисунок 6.3 – Торможение АД противовключением
Для осуществления торможения противовключением необходимо поменять местами две любые фазы статора (рисунок 6.3,а). При этом меняется направление вращения поля, машина тормозится в режиме противовключения, а затем реверсируется (рисунок 3,b).
В подъемных механизмах используется система реостатного противовключения (силовой спуск – рисунок 6.4). В цепь ротора АД с фазным ротором вводится добавочное сопротивление, достаточно большое для того, чтобы перевести режим работы АД в IV квадрант (точка b).
Специфическим является режим динамического торможения, которое представляет собой генераторный режим отключенного от сети переменного тока АД, к статору которого подведен постоянный ток, а ротор замкнут на сопротивление (рисунок 6.5). Этот режим применяется в ряде случаев, когда после отключения АД от сети требуется быстрая остановка без реверса. Постоянный ток, подводимый к обмотке статора, образует неподвижное в пространстве поле. При вращении ротора в его обмотке наводится переменная ЭДС, под действием которой протекает переменный ток. Этот ток создает также неподвижное поле. Складываясь, поля статора и ротора образуют результирующее поле, в результате взаимодействия с которым тока ротора возникает тормозной момент. Энергия, поступающая с вала двигателя, рассеивается при этом в сопротивлениях роторной цепи. Величина намагничивающей силы (НС) поля статора зависит от схемы соединения обмотки статора и величины постоянного тока. Наиболее распространены две схемы питания цепи статора постоянным током, показанные на рисунке 6.6. Для удобства расчетов заменим постоянный ток эквивалентным по величине намагничивающей силы переменным трехфазным током. В симметричной трехфазной системе с действующим значением переменного тока I амплитуда намагничивающей силы составит
Обозначая переменный ток IЭКВ и приравнивая значения НС, создаваемых постоянным и эквивалентным переменным током для схемы «звезда» получаем (рисунок 6.7)
,
откуда .
Для схемы «треугольник» , и
.
Таким образом, выбрав схему торможения и задавшись величиной постоянного тока, можно подсчитать эквивалентный по НС переменный ток.
Торможение асинхронного двигателя: рекуперативное (генераторное) и при самовозбуждении. Тормозные характеристики.
Генераторное торможение асинхронного двигателя
Асинхронные двигатели используются с такими производственными механизмами, под действием которых их скорость вращения не может стать больше ω, другими словами, двигатель не может перейти в генераторный режим под действием производственного механизма . Генераторный режим возникает в асинхронных двигателях, скорость которых регулируется изменением числа пар полюсов. В момент переключения с одного числа пар полюсов на другое в цепи статора двигателя происходит бросок тока, и он переходит в генераторный режим работы.
Характеристика асинхронного двигателя при рекуперативном (генераторном) торможении.
Торможение асинхронного двигателя при самовозбуждении
Торможение при самовозбуждении основано на том, что после отключения асинхронного двигателя от сети в воздушном зазоре магнитное поле будет затухать не мгновенно, а в течение какого-то промежутка времени. За счет энергии этого затухающего поля и использования специальных схем создается тормозной момент.
Одним из таких способов возбуждения является конденсаторное торможение. В момент отключения КМ1 конденсаторы C разражаются на обмотку статора.
Схема включения асинхронного двигателя при конденсаторном торможении.
Характеристика асинхронного двигателя при конденсаторном торможении, C1
Схема включения асинхронного двигателя при магнитном торможении.
В этом случае за счет остаточного магнитного поля по обмотке статора протекает ток короткого замыкания, который создает тормозной момент.
Особенностью торможения с самовозбуждением является то, что это очень быстрое торможение при значительных тормозных моментах.
Возможности торможения асинхронного двигателя с короткозамкнутым ротором существенно расширились за счет использования тиристорных регуляторов напряжения, которые позволяют осуществлять плавный пуск и быстрое торможение.
Для остановки двигателя используется комбинированное торможение: динамическое с магнитным. Динамическое торможение осуществляется с помощью встречно включенных тиристоров VS1-VS4, а магнитное с помощью тиристора VS5.
Схема включения асинхронного двигателя при комбинированном торможении с помощью тиристорных регуляторов напряжения.
Устройства плавного пуска и торможения состоят из двух пар тиристоров VS1-VS2, VS3-VS4, включенных встречно-параллельно. Они служат при пуске для отключения и подключения двигателя к источнику питания, за счет односторонней проводимости тиристоров в цепь статора поступает выпрямленный ток и происходит динамическое торможение. Дополнительный тиристор VS5 замыкает накоротко две фазы статора, когда интенсивность динамического торможения снижается и с его помощью создается короткое замыкание между двумя фазами.