Что такое противо эдс двигателя постоянного тока - Авто журнал "Гараж"
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое противо эдс двигателя постоянного тока

Пуск, реверсирование и торможение двигателей постоянного тока

Пуск двигателя постоянного тока прямым включением его на напряжение сети допустим только для двигателей небольшой мощности. При этом пик тока в начале пуска может быть порядка 4 — 6-кратного номинального. Прямой пуск двигателей постоянного тока значительной мощности совершенно недопустим, потому что начальный пик тока здесь будет равен 15 — 50-кратному номинальному. Поэтому пуск двигателей средних и больших мощностей производят при помощи пускового реостата, который ограничивает ток при пуске до допустимых по коммутации и механической прочности значений.

Пусковой реостат выполняется из провода или ленты с высоким удельным сопротивлением, разделенных на секции. Провода присоединяются к медным кнопочным или плоским контактам в местах перехода от одной секции к другой. По контактам перемещается медная щетка поворотного рычага реостата. Реостаты могут иметь и другое выполнение. Ток возбуждения при пуске двигателя с параллельным возбуждением устанавливается соответствующим нормальной работе, цепь возбуждения включается прямо на напряжение сети, чтобы не было уменьшения напряжения, обусловленного падением напряжения в реостате (см. рис. 1).

Необходимость иметь нормальный ток возбуждения связана с тем, что при пуске двигатель должен развивать возможно больший допустимый момент Мэм, необходимый для обеспечения быстрого разгона. Пуск двигателя постоянного тока производится при последовательном уменьшении сопротивления реостата, обычно — путем перевода рычага реостата с одного неподвижного контакта реостата на другой и выключения секций; уменьшение сопротивления может производиться и путем замыкания накоротко секций контакторами, срабатывающими по заданной программе.

При пуске вручную или автоматически ток изменяется от максимального значения, равного 1,8 —2,5-кратному номинальному в начале работы при данном сопротивлении реостата, до минимального значения, равного 1,1 — 1,5-кратному номинальному в конце работы и перед переключением на другое положение пускового реостата. Ток якоря после включения двигателя при сопротивлении реостата rп составляет

где Uс — напряжение сети.

После включения начинается разгон двигателя, при этом возникает противо-ЭДС Е и уменьшается ток якоря. Если учесть, что механические характеристики n = f1(M н) и n = f2 (I я ) практически линейны, то при разгоне увеличение скорости вращения будет происходить по линейному закону в зависимости от тока якоря (рис. 1).

Рис. 1. Диаграмма пуска двигателя постоянного тока

Пусковая диаграмма (рис. 1) для различных сопротивлений в цепи якоря представляет собой отрезки линейных механических характеристик. При уменьшении тока якоря IЯ до значения Imin выключается секция реостата с сопротивлением r1 и ток возрастает до значения

где E1 — ЭДС в точке А характеристики; r1—сопротивление выключаемой секции.

Затем снова происходит разгон двигателя до точки В, и так далее вплоть до выхода на естественную характеристику, когда двигатель будет включен прямо на напряжение Uc. Пусковые реостаты рассчитаны по нагреву на 4 —6 пусков подряд, поэтому нужно следить, чтобы в конце пуска пусковой реостат был полностью выведен.

При остановке двигатель отключается от источника энергии, а пусковой реостат полностью включается — двигатель готов к следующему пуску. Для устранения возможности появления больших ЭДС самоиндукции при разрыве цепи возбуждения и при ее отключении цепь может замыкаться на разрядное сопротивление.

В регулируемых приводах пуск двигателей постоянного тока производится путем постепенного повышения напряжения источника питания так, чтобы ток при пуске поддерживался в требуемых пределах или сохранялся в течение большей части времени пуска примерно неизменным. Последнее можно осуществить путем автоматического управления процессом изменения напряжения источника питания в системах с обратными связями.

Пуск двигателей постоянного тока с последовательным возбуждением производится также при помощи пусковых устройств. Пусковая диаграмма представляет собой отрезки нелинейной механической характеристики для различных сопротивлений цепи якоря. Пуск при относительно небольших мощностях может выполняться вручную, а при больших — путем замыкания накоротко секций пускового реостата контакторами, которые срабатывают при управлении вручную или автоматически.

Реверсирование — изменение направления вращения двигателя — производится путем изменения направления действия вращающего момента. Для этого требуется изменить направление магнитного потока двигателя постоянного тока, т. е. переключить обмотку возбуждения или якорь, при этом в якоре будет протекать ток другого направления. При переключении и цепи возбуждения, и якоря направление вращения останется прежним.

Обмотка возбуждения двигателя параллельного возбуждения имеет значительный запас энергии: постоянная времени обмотки составляет секунды для двигателей больших мощностей. Значительно меньше постоянная времени обмотки якоря. Поэтому для того чтобы реверсирование проходило возможно быстрее, производится переключение якоря. Только там, где не требуется быстродействия, можно выполнять реверсирование путем переключения цепи возбуждения.

Реверсирование двигателей последовательного возбуждения можно производить переключением или обмотки возбуждения, или обмотки якоря, так как запасы энергии в обмотках возбуждения и якоря невелики и их постоянные времени относительно малы.

При реверсировании двигателя с параллельным возбуждением якорь сперва отключается от источника питания и двигатель механически тормозится или переключается для торможения. После окончания торможения якорь переключается, если он не был переключен в процессе торможения, и выполняется пуск при другом направлении вращения.

В такой же последовательности производится и реверсирование двигателя последовательного возбуждения: отключение — торможение — переключение — пуск в другом направлении. У двигателей со смешанным возбуждением при реверсировании следует переключить якорь либо последовательную обмотку вместе с параллельной.

Торможение необходимо для того, чтобы уменьшить время выбега двигателей, которое при отсутствии торможения может быть недопустимо велико, а также для фиксации приводимых механизмов в определенном положении. Механическое торможение двигателей постоянного тока обычно производится при наложении тормозных колодок на тормозной шкив. Недостатком механических тормозов является то, что тормозной момент и время торможения зависят от случайных факторов: попадания масла или влаги на тормозной шкив и других. Поэтому такое торможение применяется, когда не ограничены время и тормозной путь.

Читать еще:  Что происходит когда стучит двигатель

В ряде случаев после предварительного электрического торможения при малой скорости можно достаточно точно произвести остановку механизма (например, подъемника) в заданном положении и зафиксировать его положение в определенном месте. Такое торможение применяется и в аварийных случаях.

Электрическое торможение обеспечивает достаточно точное получение требуемого тормозящего момента, но не может обеспечить фиксацию механизма в заданном месте. Поэтому электрическое торможение при необходимости дополняется механическим, которое входит в действие после окончания электрического.

Электрическое торможение происходит, когда ток протекает согласно с ЭДС двигателя. Возможны три способа торможения.

Торможение двигателей постоянного тока с возвратом энергии в сеть. При этом ЭДС Е должна быть больше напряжения источника питания UС и ток будет протекать в направлении ЭДС, являясь током генераторного режима. Запасенная кинетическая энергия будет преобразовываться в электрическую и частично возвращаться в сеть. Схема включения показана на рис. 2, а.

Рис. 2. Схемы электрического торможения двигателей постоянного тока: я — с возвратом энергии в сеть; б — при противовключении; в — динамическое торможение

Торможение двигателя постоянного тока может быть выполнено, когда уменьшается напряжение источника питания так, что Uc

Торможение при противовключении выполняется путем переключения вращающегося двигателя на обратное направление вращения. При этом ЭДС Е и напряжение Uc в якоре складываются, и для ограничения тока I следует включать резистор с начальным сопротивлением

где Imах — наибольший допустимый ток.

Торможение связано с большими потерями энергии.

Динамическое торможение двигателей постоянного тока выполняется при включении на зажимы вращающегося возбужденного двигателя резистора rт (рис. 2, в). Запасенная кинетическая энергия преобразуется в электрическую и рассеивается в цепи якоря как тепловая. Это наиболее распространенный способ торможения.

Схемы включения двигателя постоянного тока параллельного (независимого) возбуждения: а — схема включения двигателя, б — схема включения при динамическом торможении, в — схема для противовключения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Ранее на эту тему: Электропривод

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Что такое противо эдс двигателя постоянного тока

Ни для кого не является секретом что в современных электродвигателях львиная доля энергии расходуется на преодоление так называемой противоЭДС, то есть просто выбрасывается в никуда.

Таким образом мы видим что:

где Uп — напряжение подведенное к двигателю

Uг — напряжение выработанное двигателем при вращении ротора

Uд — напряжение которое необходимо подать чтоб двигатель вращался на номинальных оборотах

Чтобы увидеть наличие этой противоЭДС вспомним, как в двигателях постоянного тока осуществляется регулировка частоты вращения. Необходимо помнить что, двигатели постоянного тока разделяются по принципу возбуждения, — на двигатели с последовательным возбуждение, двигатели с параллельным возбуждением (независимым) и двигатели со смешанным возбуждением. Для начала рассмотрим двигатель с параллельным или независимым возбуждением. При номинальном напряжении на зажимах электродвигателя мы имеем номинальную частоту вращения якоря, теперь чтобы уменьшить частоту вращения двигателя нам необходимо снизить напряжение питания якоря, таким образом, уменьшая Uп ротора мы уменьшаем разницу между подводимым напряжением и наведенным в роторе Uг, в итоге напряжение Uд снижается и двигатель уменьшает обороты до номинальных на данном напряжении. Теперь чтобы увеличить частоту вращения ротора выше номинальных нам необходимо уменьшать ток возбуждения, т.е. снизить напряжение подаваемое на возбуждение электродвигателя. Таким образом мы уменьшаем Uг напряжение генерируемое в двигателе, в итоге двигательное напряжение Uд увеличивается и ротор набирает обороты до номинальных при данном двигательном напряжении. В двигателях постоянного тока с последовательным возбуждением протекают аналогичные процессы, поэтому их нельзя включать на холостом ходу, в виду того что при малых токах двигателя, наводится незначительный магнитный поток возбуждения, что приводит к вырабатыванию малой величины генераторного напряжения и соответственно увеличению двигательного напряжения и росту оборотов до величины ограниченной только сопротивлением трения в подшипниках.

Если же рассматривать двигатели переменного тока синхронного (асинхронного), то здесь все видно еще нагляднее.

Есть такое понятие как пусковой ток, это ток который протекает через обмотки двигателя в момент пуска, пока двигатель не наберет номинальные обороты, то есть это ток который протекает через двигатель в тот момент, когда ротор не вращается и соответственно генераторная ЭДС U г у него равна «НУЛЮ», двигательное напряжение равно напряжению питания, ток ограничен только активным сопротивлением обмоток статора. Отсюда можно сделать вывод что для того чтоб по обмоткам двигателя протекал номинальный ток, необходимо приложить гораздо меньшее напряжение, при условии отсутствия противоЭДС.

Помня о том что было сказано выше начнем конструирование электродвигателя без так называемой генераторной ЭДС, которая наводиться в двигателе при его вращении.

Для начала, конечно же, вспомним самый простейший случай вращения рамки в магнитном поле.

Итак если вращать рамку в магнитном поле то по правилу правой руки в ней наводиться ЭДС, величина которой определяется по формуле:

Ея = vBlsinα = vBl

Где l – длина проводника

v – скорость движения проводника

B – величина магнитной индукции

при замыкании рамки на нагрузку по ней протекает ток.

Зайдем с другой стороны, если рамку с током поместить в магнитное поле, то по правилу

левой руки она начнет вращаться под действием силы:

F эм = IBlsinα = IBl

Где l – длина проводника

B – величина магнитной индукции

Тогда получается замкнутый круг, если по рамке течет ток, она вращается, в тоже время, если рамка вращается в ней наводиться ЭДС, и вся проблема в том, что оба эти процесса протекают одновременно и встречно друг другу.

Читать еще:  Датчик температуры двигателя понтиак вайб

Есть ли способ как то обойти этот закон физики? Надо попробовать. Начнем с того что попробуем избавиться от наведения ЭДС в рамке, чтоб такое проделать с вращающейся рамкой необходимо что бы оба плеча рамки проходили мимо одинакового полюса.

Но тогда скажете вы и обе силы F эм , будут направлены в одну сторону и соответственно общий момент на валу будет равен 0. Верно. Как быть?

Будем думать дальше. Вспомним все существующие на сегодняшний момент электродвигатели и сравним их принцип работы. Выясняется что обычный синхронный двигатель работает немного на другом принципе, а именно там вращающееся поле статора тянет за собой постоянное магнитное поле ротора, т.е. вращает обычный магнит. Тогда почему бы не попробовать просто намагничивать ротор, и тогда во внешнем магнитном поле ротор провернется на некоторый угол, с определенным моментом.

Теперь остается вопрос в том как все это совместить. Оказывается и эта проблема легко решаема. Если статор выполнить из шести полюсов а обмотку ротора распределить таким образом что бы каждая простейшая рамка обоими полуплечами одновременно находилась под одноименным полюсом мы получим как раз то что доктор прописал.

Таким образом получаем распределенную обмотку ротора и пропуская ток по обмоткам как показано на рисунке мы имеем необходимое нам намагничивание ротора.

Осталось только немного привести все в надлежащий вид и мы имеем конструкцию двигателя без противоЭДС.

Автор сего опуса Чибирев Алексей Вячеславович.

A «ПРОТИВО-ЭДС» уменьшает ток якоря двигателя

Реостатный пуск двигателя.

При пуске двигателя в начальный момент скорость вращения равна нулю, значит и «противо ЭДС» равна нулю. Поэтому сила тока при пуске двигателя будет равна частному от деления приложенного напряжения на величину внутреннего сопротивления якоря двигателя. Поскольку внутреннее сопротивление якоря крайне мало, то величина пускового тока будет большой.

Для предотвращения токовых перегрузок, в цепь обмотки якоря последовательно включают дополнительное сопротивление, или так назывпаемый пусковой реостат, что даёт возможность уменьшить величину пускового тока.

Скорость вращения двигателя.

Из формулы можно вывести скорость вращения вала двигателя.

Из формулы вытекает, что скорость вращения вала двигателя можно изменять тремя способами:

· Изменением напряжения на двигатель.

· Изменением сопротивления в цепи якоря двигателя.

· Изменением величины магнитного потока.

На вагоне установлено четыре тяговых электродвигателя смешанного возбуждения. Они соединены в две группы, причем, двигатели в группе соединены последовательно, а группы между собой – параллельно.

Соединение тяговых двигателей остается неизменным, поэтому напряжение на двигателях постоянно (275В).

Скорость вращения якорей двигателей, а значит и скорость движения вагона можно изменять только 2-мя способами:

  • Способом реостатного регулирования т.е. изменением сопротивления в цепи якоря. При пуске электродвигателей полностью вводиться пусковой реостат, а затем постепенно (ступенями) осуществляется его выведение, что приводит к увеличению силы протекающего тока в цепи якорей. Реостат – электрический аппарат, сопротивление которого можно изменять за счёт выведения его частей, т.е. уменьшения длинны проводника. Реостаты служат для регулирования тока в цепи.
  • Изменением величины магнитного потока. В двигателях смешанного возбуждения магнитное поле создается шунтовыми и сериесными обмотками. Для получения наименьшей скорости при пускевключаются обе обмотки возбуждения. Для увеличения скорости вращения двигателя – необходимо ослабить магнитное поле. Ослабление магнитного поля двигателя осуществляется путем отключения шунтовых обмоток возбуждения двигателя, а затем подключением в цепь последовательных обмоток возбуждения двигателей реостатов ослабления поля.При этом ток в цепи якоря разделяется на две цепи: часть поступает на реостат ослабления поля и только часть попадает в последовательную обмотку возбуждения, тока в обмотке возбуждения станет меньше чем в якоре. Эти действия приводит к процессу ослаблением магнитного поля и за счёт этого скорость вагона в итоге увеличивается в два раза.

Торможение двигателей постоянного тока.

Для остановки вращения валов якорей тяговых электродвигателей применяется принцип электродинамического реостатного торможения. При электродинамическом реостатном торможении тормозное усилие реализуется самими тяговыми двигателями, работающими в режиме генератора. При этом производится преобразование кинетической энергии движения вагона в электрическую энергию, которая гасится на тормозных реостатах.

Для перевода двигателя в генераторный режим работы необходимо сделать следующие переключения:

1). Вращающийся по инерции якорь, за счет запасённой кинетической энергии отключить от контактной сети ( V ≥ 10 км/час.) .

2). Замкнуть цепь якоря на тормозной реостат, создав тормозной контур.

3) Цепь шунтовых обмоток возбуждения подключить к контактной сети.

Противо эдс двигателя постоянного тока

Артикул/код товара: противо эдс двигателя постоянного тока

Описание товара

Здравствуйте! Вы попали на доску объявлений. Сотрудники Promelectrica.com разместили тут товары, которые Вам могут быть интересны. Информация о наличии по телефону (495)640-04-53

Подробное описание

Коллекторный электродвигатель постоянного тока с электромагнитным возбуждением Д-16Б предназначен для привода специального механизма, а также может быть использован в различных областях техники. Структура условного обозначения Д-16Б: Д — двигатель; 16 — порядковый номер разработки; Б — модификация исполнения двигателя. Условия эксплуатации Температура окружающего воздуха при эксплуатации от минус 60 до 50°С. Пониженное атмосферное давление однократно в течение 5 мин при номинальном вращающем моменте — не ниже 667 Па (5 мм рт.ст). Верхнее значение относительной влажности воздуха в течение 48ч — 98% при температуре (35±5)°С. Электродвигатель стоек к воздействию: Вибрационных нагрузок с диапазоном частот от 5 до 35 Гц и амплитудой не более 1 мм в течение 3 мин. Вибрационных нагрузок с диапазоном частот от 35 до 2000 Гц и ускорением от 39,2 до 147,2 мс-2 (от 4 до 15 g) в течение 23 мин. Линейных (центробежных) нагрузок с ускорением 98,1 мс-2 (10 g) в течение 5 мин. Механические нагрузки воздействуют на места крепления двигателя в любом направлении. Двигатель выдерживает воздействие: Вибрационных нагрузок с частотой вибрации от 10 до 2000 Гц и ускорением, действующим вдоль и перпендикулярно оси двигателя, от 20 до 40 мс-2 (от 2 до 4 g) в течение 46 ч в обесточенном состоянии и 2,8 ч при электрической нагрузке. Ударных многократных нагрузок с ускорением 50 мс-2 (5 g) при количестве ударов 5000 с частотой от 40 до 100 ударов в час и длительностью удара от 5 до 10 мс. Номинальный режим работы двигателя кратковременный при напряжении питания 27 В: 15 мин при вращающем моменте 1,47 Нм. 5 мин при вращающем моменте 1,76 Нм. 1 с при вращающем моменте 3,43 Нм. Конструктивное исполнение по способу монтажа в соответствии с ГОСТ 2479-79 IМ3081. Направление вращения вала левое со стороны выхода вала. Сопротивление изоляции электрических цепей относительно корпуса двигателя в нормальных климатических условиях при практически холодном состоянии двигателя до ввода в эксплуатацию — не менее 20 МОм. В течение срока службы и минимальной наработки сопротивление изоляции при практически холодном состоянии двигателя — не менее 1 МОм. Изоляция электрических цепей относительно корпуса двигателя в нормальных климатических условиях выдерживает без пробоя и перекрытия воздействие испытательного напряжения 500 В (действующее значение) переменного тока частотой 50 Гц. Степень искрения на коллекторе двигателя при номинальном вращающем моменте и номинальном напряжении питания в нормальных климатических условиях не превышает 2 по ГОСТ 183-74. Двигатель соответствует требованиям технических условий ОДС.515.151 и комплекта конструкторской документации согласно 1ДС.599.112 СД. Условия транспортирования двигателя в упаковке предприятия-изготовителя в части воздействия механических факторов соответствуют условиям Л по ГОСТ 23216-78; в части воздействия климатических факторов внешней среды — таким же, как условия хранения 5 по ГОСТ 15150 — 69. Условия хранения двигателя соответствуют условиям I (отапливаемое хранилище), условиям 3 (неотапливаемое хранилище) и условиям 5 (навесы в макроклиматических районах с умеренным и холодным климатом) по ГОСТ 15150-69. Эксплуатацию двигателей следует проводить в соответствии с техническим описанием и инструкцией по эксплуатации 1ДС.599.112 ТО. В процессе хранения двигатель, вмонтированный в аппаратуру изделия, должен подвергаться проверке на функционирование не реже одного раза в год. При проверке на функционирование двигатель работает при напряжении питания 27 В на холостом ходу или при номинальном вращающем моменте в течение одной минуты. Изготовитель гарантирует качество двигателя при соблюдении режимов работы и условий эксплуатации. ОДС.515.151 Технические характеристики Номинальное напряжение питания, В — 27 Номинальный вращающий момент, Нм — 1,76 Номинальная частота вращения, мин-1 — 8000 Потребляемый ток при номинальном вращающем моменте, А, не более — 78 Потребляемый ток при холостом ходе, А, не более — 17 Частота вращения при холостом ходе, мин-1, не более — 10900 КПД, % — 70 Момент инерции якоря, кгм2 — 8,310-4 Масса двигателя, кг, не более — 7 Двигатель в течение 5 мин допускает работу при номинальном вращающем моменте и напряжении питания, лежащем в пределах от 22 до 30 В. При этом в нормальных климатических условиях: частота вращения изменяется в пределах от 6100 до 9000 мин-1; потребляемый ток — не более 88 А. Двигатель в течение 5 мин работы в выше указанном режиме допускает в течение 30 с работу при вращающем моменте 3,43 Нм. Параметры двигателя при этом не оговариваются. Двигатель в течение 10 мин допускает работу при вращающем моменте 0,49 Нм, температуре 50°С и напряжении питания, лежащем в пределах от 22 до 30 В с последующей работой при пониженном атмосферном давлении; в течение 20 мин в нормальных климатических условиях с последующим охлаждением. Частота вращения после работы в указанном режиме с последующим охлаждением и при последующей работе в течение 5 мин при номинальном вращающем моменте и напряжении питания 27 В — не менее 7000 мин-1. Потребляемый ток в этих же условиях — не более 84 А. Напряжение трогания при нижнем значении температуры и вращающем моменте 1,47 Нм — не более 8 В. Напряжение трогания в нормальных климатических условиях при холостом ходе — не более 7 В. Минимальная наработка двигателя при номинальном напряжении питания 60 ч, в том числе: 20 ч непрерывно при вращающем моменте 0,98 Нм; 40 ч в номинальном режиме, из них 6 ч при верхнем значении температуры и 6 ч при нижнем значении температуры. Перерыв между включениями двигателя до полного охлаждения. Минимальный срок службы двигателя — 10,5 лет. Минимальный срок сохраняемости двигателя в отапливаемом хранилище — 10,5 лет, в том числе: не более 1 года в упаковке предприятия-изготовителя; не более 10,5 лет вмонтированным в аппаратуру изделия. В пределах срока сохраняемости допускается хранение двигателя вмонтированным в аппаратуру защищенного изделия: не более 5 лет в неотапливаемом хранилище; не более 1 года под навесом. Гарантийная наработка в пределах гарантийного срока эксплуатации — 60 ч. Гарантийный срок эксплуатации — 10,5 лет. Гарантийный срок хранения — 10,5 лет.

Читать еще:  Адсорбер повлиял на работу двигателя

Точную информацию о товарах, ценах и наличии вы можете получить по запросу через электронную почту. Выставленный счет-договор является единственным информационным обязательством, все другие сведения могут содержать неточности. Мы затрачиваем все возможные силы для улучшения сервиса и благодарны тысячам юридических и частных лиц, воспользовавшимся нашими услугами, и сотням постоянных клиентов, которые продолжают с нами работать.

Каталог:

  • Выключатели, концевики, джойстики
  • Бесконтактные датчики
  • Реле, контакторы, автоматы
  • Маячки, колонны, сирены
  • Приводная техника
  • Разъемы и кабели
  • Трансформаторы, источники питания
  • Энкодеры, муфты
  • Автоматизация и измерение
  • Тиристоры, диоды, предохранители

Видео «Как добраться»:

Товарное предложение обновлено 16 сентября 2021 г. в 15:36

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector