Что такое производство авиационных двигателей
Авиационный двигатель и его производство
Главная > Контрольная работа >Авиация и космонавтика
Авиационный двигатель и его производство
Мировой опыт развития авиационного производства свидетельствует, что изготовление авиационных двигателей является наукоемким производством (НП).
Авиадвигателестроение является одной из наиболее наукоемких отраслей с высокой удельной стоимостью продукции. Известно, что стоимость одного килограмма газотурбинного двигателя в сотни раз превосходит стоимость одного килограмма автомобильного двигателя.
Авиационный двигатель можно рассматривать как сложную техническую систему ; непрерывно развивающуюся на протяжении всего жизненного цикла, который включает соответствующие основные этапы (рис. 1.1).
Конструктивно-технологическое совершенствование двигателей осуществляемое, на всех этапах жизненного цикла с целью повышения качества АД, приводит к необходимости непрерывного совершенствования технологических процессов производства.
Увеличение ресурса АД является следствием комплексного подхода к решению проблем повышения ресурса на всех этапах жизненного цикла. В основе комплексного подхода лежит принцип разработки конструктивно-технологических решений на основании стендовых и специальных испытаний по эквивалентно-цикловым программам двигателей, исчерпавших свой ресурс, а также принцип определения живучести отдельных деталей и узлов с эксплуатационными повреждениями. При этом осуществляется системный конструктивно-технологический анализ технического состояния деталей и узлов после отработки заданного ресурса двигателей, снимаемых досрочно, а также деталей и узлов двигателей, находящихся в эксплуатации. Увеличение, ресурса обеспечивается также внедрением метода эксплуатации по техническому состоянию, что приводит к необходимости разработки методов и средств диагностирования основных элементов проточной части двигателя, узлов и деталей, а также состояния его систем.
Например, реализация в производстве мероприятий, направленных на совершенствование конструкции двухконтурного двухвального двигателя НК-86, потребовала разработки 4049 новых технологических процессов, создания 90 единиц оборудования и 410 наименований технологической оснастки [6.8].
Характеристика наукоемкого объекта производства.
Авиационный двигатель как наукоемкий объект производства (НОП) характеризуется следующим признаками [6.2]:
Рис. 1.1. Этапы жизненного цикла АД
1. НОП имеет в своем составе целый ряд взаимосвязанных систем и узлов, обеспечивающих выполнение сложных функциональных задач разной физической природы и принципа действия (рис. 1.2).
В свою очередь системы и узлы состоят из большого количества конструктивно сложных деталей, изготавливаемых из различных материалов. В табл. 1.1 приведены данные о количестве деталей, входящих в конструкции различных двигателей семейства НК.
Количество наименовании деталей
Общее количество деталей
НК-8-2у НК-8-4 НК-86
70947 61228 56282
Эти данные свидетельствуют о больших технических, технологических и организационных сложностях, возникающих при изготовлении наукоемкого объекта производства.
2. НОП является технической системой, непрерывно развивающейся по этапам жизненного цикла, включающего проектирование, изготовление опытного образца, серийное производство, эксплуатацию, ремонт и утилизацию.
Конструктивное совершенствование двигателей осуществляется непрерывно в течение всего жизненного цикла. В основу этого совершенствования положены следующие принципы:
улучшение основных параметров двигателя (тяги, удельного расхода
топлива и т.д.);
повышение ресурса и надежности;
улучшение эксплуатационных характеристик;
повышение коэффициента использования металла и т.д.
Совершенствование конструкции, как правило, проводится по основным узлам и системам двигателя в соответствии со специально разработанными программами.
При этом осуществляется принцип комплексного подхода к конструктивному совершенствованию этих узлов и систем двигателя.
Основными целями совершенствования двигателей по применяемым материалам являются следующие: улучшение параметров рабочих процессов, повышение надежности и ресурса двигателя, улучшение его весовых характеристик. Замена применяемых материалов осуществляется непрерывно и комплексно для всех основных деталей и узлов, определяющих ресурс и надежность ГТД.
Рис. 1.2 Функциональные системы и узлы авиационного двигателя
3. НОП характеризуется высокими значениями параметров рабочего процесса с ужесточенными полями допусков. Применительно к авиационному двигателю — это высокие давления, температуры, скорости рабочего тела в проточной части двигателя, высокая частота вращения роторов и большие уровни вибраций.
При работе авиационного двигателя на различных его режимах детали и узлы подвергаются статическим, повторно-статическим, ударным, циклическим, термическим и термоциклическим нагружениям (рис. 1.3).
Данные воздействия приводят к различным видам повреждений деталей и узлов, которые классифицируются следующим образом: вязкое и хрупкое разрушение, потеря устойчивости, усталостное разрушение, термические трещины и коробления, контактное выкрашивание и износ, коррозия и эрозия (рис. 1.4).
В этих условиях технологические процессы на всех стадиях производства должны обеспечивать такое качество деталей, узлов и систем двигателя, которое исключало бы возникновение при эксплуатации двигателя указанных повреждений.
Все это обусловливает высокие требования к производству НОП, к построению технологических процессов изготовления деталей и узлов двигателя, в которых значительное место должны занимать различного вида технологические испытания.
4. На каждом этапе жизненного цикла НОП решение технических проблем по совершенствованию двигателя опирается на современные достижения науки и техники.
В основу создания нового двигателя с перспективными тягово-экономическими характеристиками закладываются принципы экономии энергии, материальных и трудовых ресурсов. Эти принципы являются определяющими на этапах проектирования и доводки двигателя при выборе его термогазодинамической схемы, параметров рабочего процесса, КПД основных узлов, а также конструктивной схемы. Они распространяются и на методологию доводки.
На этапе серийного изготовления в соответствии с этими принципами стараются обеспечить повышение таких производственно-технологических показателей, как коэффициент использования материала, технологичность конструкции и другие при одновременном снижении трудоемкости изготовления деталей и узлов, сборки и испытаний. Эти принципы должны обеспечивать также простоту и надежность эксплуатации двигателя.
5. В процессе создания НОП используются современные экспериментально-доводочные комплексы. Так, при конструкторско-прочностной отработке деталей и узлов авиационного двигателя эти комплексы обеспечивают проведение испытаний, наиболее полно имитирующих действующие нагрузки.
Рис. 1.3. Схема видов нагружений деталей и узлов двигателя
Рис. 1.4. Схема видов повреждений деталей и узлов двигателя
Газодинамическая и параметрическая доводка компрессоров и турбин проводится с использованием целого ряда установок автономной доводки, а также их испытания в составе полноразмерных двигателей. Так, доводка каскада вентилятора и гондолы проводится на установках, обеспечивающих автономные испытания вентиляторов, а также их испытания в составе полноразмерного двигателя.
При этом экспериментально-доводочные комплексы оснащаются современным контрольно-измерительным оборудованием и автоматизированными системами испытаний.
Многие вопросы прочностной и параметрической доводки НОП решаются в сотрудничестве с научно-исследовательскими институтами, что свидетельствует о наукоемкости процесса создания НОП и значительной организационной сложности.
6. Одной из характеристик НОП является материалоемкость. Коэффициент использования материала (КИМ) является одним из основных показателей, характеризующих конструктивное совершенство, технологичность двигателя и уровень его производства. Высокий коэффициент использования материала в основном определяется технологичностью конструкции, которая отрабатывается на этапах эскизного, технического и рабочего проектирования, а также серийного производства.
Например, в конструкции двигателя НК-86 используются различные материалы 85 наименований. Это предъявляет высокие требования к производству и применяемым технологическим процессам, оборудованию, инструменту.
Параметры рабочего процесса НОП, конструкция деталей и узлов, а также используемые для их изготовления материалы непрерывно совершенствуются. Например, в процессе жизненного цикла в конструкцию двигателя НК-8-4 было внесено более 130 изменений и заменено около 20 наименований материалов.
Одним из показателей, характеризующих НОП, является экологическое совершенство. Применительно к авиационному двигателю — это выполнение требований международных норм по уровню шума и эмиссии вредных и загрязняющих веществ в атмосферу.
Примером экологического совершенствования двигателя является использование криогенного топлива (сжиженного природного газа или жидкого водорода).
Непременным условием для НОП является его сертификация на соответствие принятым международным нормам по надежности, ресурсу, экологичности и экономичности.
Контрольные вопросы к лекции 1.
Основные этапы жизненного цикла АД?
Чем характеризуется АД как наукоемкий объект производства?
Основные функциональные системы и узлы АД?
Виды нагружений деталей и узлов АД возникающие при его эксплуатации?
Виды повреждений деталей и узлов АД возникающие при его эксплуатации?
Производство авиационных газотурбинных двигателей
Производство авиационных газотурбинных двигателей (ГТД) представляет одну из наиболее сложных и наукоёмких отраслей машиностроения.
В наше время одним из атрибутов великой державы является способность создавать и производить авиационные газотурбинные двигатели. Помимо России, только США, Великобритания и Франция владеют полным циклом создания и выпуска авиационных ГТД.
Авиационное двигателестроение, базирующееся на наиболее передовых технологиях, стимулирует развитие многих других отраслей промышленности, где требуются компактные, мобильные и хорошо управляемые энергетические установки, — наземный и водный транспорт, электроэнергетику, газовую и нефтяную индустрию и т.д.
Современные авиационные двигатели должны соответствовать высоким требованиям по надёжности, минимальной массе, экономичности и ресурсу. Эти задачи успешно решаются путём совершенствования конструкции, улучшения аэродинамических и термодинамических характеристик двигателей, а также благодаря использованию новых, более эффективных материалов, технологий изготовления деталей и узлов, поверхностного упрочнения и нанесения покрытий.
В технологии производства ГТД в последние годы происходят революционные изменения, связанные с созданием и расширяющимся применением новых технологий, способных коренным образом улучшить качественные показатели выпускаемых изделий, всю структуру и условия производства. Их называют приоритетными, ключевыми или критическими технологиями. К таким технологиям, в частности, относятся:
- информационные технологии, решающие широкий круг задач на всех этапах жизненного цикла изделия, объединённые в концепцию CALS;
- технологии получения новых материалов (керамики, композиционных материалов с полимерной керамической и металлической матрицами, интерметаллидных сплавов, нанопорошковых материалов, функционально-градиентных материалов, жаропрочных сплавов с монокристаллической структурой и др.) и деталей из них;
- многоканальное и многокоординатное программное управление технологическими процессами и технологическим оборудованием;
- технологии нанесения защитных и функциональных покрытий (жаростойких, термобарьерных, уплотнительных и т.д.);
- технологии формообразования изделий сложной формы — моноколес (блисков), лопаток компрессоров и турбин и др.;
- технологии заготовительного производства — литьё по выплавляемым моделям и спрейное литьё, горячее изостатическое прессование в газостатах, лазерная, струйная и плазменная резка и др.;
- технологии получения неразъёмных соединений (диффузионная, электронно-лучевая и лазерная сварка, сварка трением);
- технологии механической, электрофизической и электрохимической обработки, включая глубинное и высокоскоростное шлифование, вихревое точение, обработку глубоких отверстий и отверстий малого диаметра;
- технологии непосредственного получения трёхмерных объектов (деталей и моделей) на основе математической модели изделия (лазерная стереолитография, LOM-процесс, объёмный принтер);
- технологии контроля (координатно-измерительные машины, машины технического зрения, лазерная интерферометрия и др.).
Даже это краткое перечисление говорит о широком внедрении в современное авиадвигателестроение инновационных процессов. Современный инженер-технолог, разрабатывающий технологические процессы, должен обладать знаниями технологических возможностей, технических характеристик и особенностей реализации всех процессов обработки, входящих в технологический маршрут изготовления деталей и узлов новейших ГТД, начиная с заготовительных операций и заканчивая финишными и контрольными.
Характерной особенностью современного развития технологии авиадвигателестроения является широкое использование достижений фундаментальных и общеинженерных наук для решения теоретических проблем и технологических задач. Большую роль в создании научных школ авиационного двигателестроения сыграли общепризнанные фундаментальные и прикладные исследования кафедр и лабораторий МАИ, МВТУ, МАТИ, УГАТУ, РГАТА и лабораторий отраслевых институтов.
Что такое производство авиационных двигателей
Мы используем файлы cookies, чтобы обеспечить вам наилучший уровень сервиса. Продолжайте использовать текущие настройки браузера, если они вам подходят или изучите возможность управления настройками cookies и ознакомьтесь с нашей политикой конфиденциальности..
- О компании
- Новости
- Отрасли
- Контакты
- Продукция
- Онлайн приложения
- Каталоги и брошюры
- Глобальный сайт
© Trelleborg Sealing Solutions
Оформить заявку
Политика конфиденциальности
Настоящая Политика конфиденциальности персональных данных (далее – Политика конфиденциальности) действует в отношении всей информации, которую Интернет-магазин «Название», расположенный на доменном имени адрес магазина, может получить о Пользователе во время использования сайта Интернет-магазина, программ и продуктов Интернет-магазина.
1. ОПРЕДЕЛЕНИЕ ТЕРМИНОВ
1.1 В настоящей Политике конфиденциальности используются следующие термины:
1.1.1. «Администрация сайта Интернет-магазина (далее – Администрация сайта) » – уполномоченные сотрудники на управления сайтом, действующие от имени Название организации, которые организуют и (или) осуществляет обработку персональных данных, а также определяет цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными
1.1.2. «Персональные данные» — любая информация, относящаяся к прямо или косвенно определенному или определяемому физическому лицу (субъекту персональных данных).
1.1.3. «Обработка персональных данных» — любое действие (операция) или совокупность действий (операций), совершаемых с использованием средств автоматизации или без использования таких средств с персональными данными, включая сбор, запись, систематизацию, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передачу (распространение, предоставление, доступ), обезличивание, блокирование, удаление, уничтожение персональных данных.
1.1.4. «Конфиденциальность персональных данных» — обязательное для соблюдения Оператором или иным получившим доступ к персональным данным лицом требование не допускать их распространения без согласия субъекта персональных данных или наличия иного законного основания.
1.1.5. «Пользователь сайта Интернет-магазина (далее ? Пользователь)» – лицо, имеющее доступ к Сайту, посредством сети Интернет и использующее Сайт интернет-магазина
1.1.6. «Cookies» — небольшой фрагмент данных, отправленный веб-сервером и хранимый на компьютере пользователя, который веб-клиент или веб-браузер каждый раз пересылает веб-серверу в HTTP-запросе при попытке открыть страницу соответствующего сайта.
1.1.7. «IP-адрес» — уникальный сетевой адрес узла в компьютерной сети, построенной по протоколу IP.
2. ОБЩИЕ ПОЛОЖЕНИЯ
2.1. Использование Пользователем сайта Интернет-магазина означает согласие с настоящей Политикой конфиденциальности и ми обработки персональных данных Пользователя.
2.2. В случае несогласия с условиями Политики конфиденциальности Пользователь должен прекратить использование сайта Интернет-магазина.
2.3.Настоящая Политика конфиденциальности применяется только к сайту Интернет-магазина Название магазина. Интернет-магазин не контролирует и не несет ответственность за сайты третьих лиц, на которые Пользователь может перейти по ссылкам, доступным на сайте Интернет-магазина.
2.4. Администрация сайта не проверяет достоверность персональных данных, предоставляемых Пользователем сайта Интернет-магазина.
Авиационные двигатели
ЦИАМ, как ведущая научно-исследовательская организация отрасли, участвует в создании двигателей для ЛА различного назначения: беспилотников, малой авиации, дозвуковых пассажирских и транспортных самолетов, сверхскоростных ЛА, вертолетов и других летательных аппаратов. Компетенции института простираются также на вопросы создания поршневых двигателей. Авиадвигателестроение является одним из самых инновационных наукоемких и высокотехнологичных секторов промышленности, интегрирующим результаты деятельности различных направлений науки и техники и стимулирующим научно-техническое развитие целого ряда других отраслей. Мировой опыт показывает, что разработка двигателя занимает в 1,5–2 раза больше времени, чем проектирование ЛА, поэтому правильная организация опережающих работ по созданию силовой установки является критическим элементом для успеха любой программы в области авиастроения. Стран, обладающих технологией полного цикла разработки и производства ГТД, меньше, чем государств, запускающих спутники в космос. Все отечественные авиационные двигатели создавались при участии ЦИАМ. ЦИАМ обладает уникальными стендами, предназначенными для проведения натурных испытаний авиационных двигателей и их узлов. Подробнее о возможностях Научно-испытательного центра ЦИАМ читайте в разделе «Экспериментальная база».
Направления работ
Прогноз развития
Центральный институт авиационного моторостроения имени П.И. Баранова осуществляет комплексное прогнозирование развития двигателей для всех типов атмосферных летательных аппаратов (самолетов, вертолетов, беспилотных ЛА, аэрокосмических систем и др.), а также промышленных и транспортных газотурбинных установок на основе авиационных технологий.
В ЦИАМ ведется разработка методик оценки технико-экономического и весового совершенства авиационных ГТД и АПД в связи с уровнем их технологического развития.
Одна из ключевых компетенций ЦИАМ – разработка математических моделей и прогнозные расчетные исследования характеристик и эффективности перспективных авиационных двигателей и силовых установок (СУ), в том числе нетрадиционных схем: турбореактивных двухконтурных двигателей (ТРДД) со сверхвысокой степенью двухконтурности, ГТД с регенерацией тепла, турбовинтовентиляторных двигателей («открытый ротор»), турбокомпаундных и гибридных силовых установок на базе авиационных поршневых двигателей (АПД), распределенных и гибридных СУ на базе ГТД, энергоустановок на топливных элементах.
Институт проводит обоснование концепций развития авиационного двигателестроения, обобщает опыт создания авиационных ГТД и АПД, разрабатывает научно-технические основы для создания отраслевых и межотраслевых программ развития авиадвигателей.
Проектирование
Математическое моделирование рабочих процессов ГТД
Вычислительный комплекс ЦИАМ, основанный на многоуровневых системах компьютерного моделирования, позволяет проводить уникальные расчеты рабочих процессов во всем тракте ГТД.
В данных расчетах применяются математические модели, базирующиеся на законах сохранения массы, импульса и энергии (нестационарные уравнения Эйлера и Навье – Стокса), учитываются реальные эффекты, сопровождающие рабочий процесс в ГТД: вязкость, турбулентность и теплопроводность, горение, отборы и выдувы охлаждающего воздуха, утечки и др.
Применение компьютерного испытательного стенда ГТД позволяет:
- проектировать высокоэффективные проточные части, обеспечивающие достижение максимального КПД;
- проводить модернизацию существующих узлов ГТД с целью повышения их эффективности;
- моделировать и сопровождать процесс испытания двигателя и его узлов на наземных стендах;
- изучать основные и пониженные (дроссельные) режимы работы;
- исследовать переходные режимы работы (запуск, изменение режима, останов);
- рассчитывать климатические, высотно-скоростные и дроссельные характеристики авиационных ГТД;
- моделировать различные законы регулирования;
- создавать форсированные варианты.
Математическое моделирование и САПР ГТД
Работы по математическому моделированию и системам автоматизированного проектирования газотурбинных двигателей были выделены в отдельное направление в 1993 г. с целью развития САПР-технологий и внедрения современных методов и программ при проектировании двигателей.
Работа института в этой области направлена на решение прикладных задач. ЦИАМ сотрудничает с ведущими предприятиями авиакосмической отрасли по созданию методик и расчету термонапряженного состояния и оптимизации деталей турбомашин, вопросам моделирования напряженно-деформированного состояния и ресурса конструкций при циклическом и сложном неизотермическом нагружении, моделированию технологических процессов изготовления тонкостенных деталей, разработке газодинамических подшипников и перспективных плавающих уплотнений, динамике роторов ГТД.
Специалисты ЦИАМ успешно решают междисциплинарные задачи и создают условия для перехода к многодисциплинарным моделям при проектировании перспективных двигателей. Особое внимание уделяется разработке собственных математических моделей и специализированных комплексов программ, а также развитию численных методов расчета и оптимизации конструкции.
Малоразмерные ГТД
Авиационные поршневые двигатели
Комбинированные двигатели и силовые установки для высокоскоростных ЛА
Центральный институт авиационного моторостроения проводит расчетные и экспериментальные работы по исследованию моделей узлов и элементов конструкции комбинированных СУ (КСУ) различных схем в целях обеспечения их эффективного рабочего процесса при сверхвысоких скоростях полета.
Специалисты института осуществляют:
- расчет характеристик КСУ различных схем с учетом теплового состояния элементов конструкции;
- разработку перспективных направлений использования стандартного и высокоэнергетического топлива;
- разработку требований к технологиям и материалам, обеспечивающим эффективную работу КСУ.
Интеграция силовой установки и летательного аппарата
Важнейшим направлением работы специалистов ЦИАМ является многокритериальная оптимизация параметров силовых установок летательных аппаратов (ЛА) различного назначения и различных скоростей полета по критериям оптимальности: летно-технические характеристики, топливная экономичность, себестоимость перевозок, стоимость жизненного цикла, экологические характеристики и т.д.
Работы ЦИАМ по данному направлению включают в себя:
Комплексы программ позволяют провести исследования, предназначенные для согласования силовой установки и планера и расчета технико-экономических характеристик ЛА (самолетов и вертолетов) различного назначения. Они позволяют решить следующие задачи:
Модуль расчета высотно-скоростных и дроссельных характеристик двигателя разработан специально для проведения широких параметрических и оптимизационных исследований и позволяет учитывать различные виды потерь, связанных с установкой двигателя на ЛА.
В ЦИАМ проводятся разработка и испытания беспилотных летающих лабораторий для отработки технологий малоразмерных гибридных и электрических СУ, в том числе работающих на топливных элементах различных типов.