Что такое приведенная мощность двигателя - Авто журнал "Гараж"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое приведенная мощность двигателя

Мощность двигателя согласно разным стандартам.

ощность двигателя является главным показателем для оценки транспортного средства и его эксплуатаци онных характеристик. В некоторых странах этот показатель служит также для расчета налогов и стоимости страхования.
К сожалению, употребляемые в международной практике показатели мощности двигателя во многих случаях не поддаются прямому сравнению друг с другом, хотя и существуют четкие зависимости между отдельными единицами измерения, например:

киловатт (кВт) 1 кВт = 1,35962 л.с. = 1,34102 hp
лошадиная сила (л.с.) 1hp = 1,0139 л.с.
лошадиная сила США (hp) 1 л.с. = 0,9862 hp
И хотя уже достаточно прочно вошел в обиход киловатт, все же мощность продолжают определять согласно различным стандартам и инструкциям по испытаниям. Ниже перечислены организации, разработавшие методы измерения мощности двигателя. От отдельных методов измерения частично уже отказались, с тем чтобы добиться по возможности оптимальной гармонизации в этой сфере.

DIN — Германский институт стандартизации
ЕСЕ — Европейская экономическая комиссия ООН, ЕЭК ООН
EG — Европейское экономическое сообщество, ЕЭС
ISO — Международная организация по стандартизации, ИСО
JIS — Японский промышленный стандарт
SAE — Общество инженеров автомобильной промышленности (США)

В принципе, мощность двигателя (Р) рассчитывают исходя из крутящего момента двигателя (Ма) и частоты вращения двигателя (n):

Крутящий момент двигателя (Ма) выражается через силу(Р), которая действует на плечо рычага (I):

Для определения мощности двигателя эти показатели измеряют на стенде, а не на транспортном средстве, используя гидравлические тормоза или электрогенераторы. При этом произведенная двигателем работа преобразуется в тепло. Чтобы определить характеристику мощности двигателя при полной нагрузке, измерения проводятся, как правило, через 250 — 500 об/мин.

При этом следует различать два метода определения мощности:

Мощность нетто, или реальная

Испытываемый двигатель оборудован всеми вспомогательными, необходимыми для эксплуатации транспортного средства агрегатами — генератором, глушителем, вентилятором и пр.

Мощность брутто, или «лабораторная мощность» (стендовая)

Испытываемый двигатель не оборудован всеми вспомогательными, необходимыми для эксплуатации транспортного средства агрегатами. Эта мощность соответствует прежней по системе SAE; мощность брутто выше мощности нетто на 10–20%.

В обоих случаях ее называют «эффективной мощностью»:
Рэфф — измеряемая установленная мощность двигателя
Рприв = Рзфф × К
Рприв — приведенная мощность, или пересчитанная на определенное эталонное состояние
К — поправочный коэффициент.

В связи с различной плотностью воздуха (из-за атмосферного давления, температуры и влажности воздуха) всасываемый двигателем воздух бывает «тяжелее или легче», при этом количество топливно-воздушной смеси, поступающей в двигатель, будет больше или меньше. Поэтому измеряемая мощность двигателя будет выше или ниже.

Колебания атмосферных условий при испытании учитывают с помощью поправочного коэффициента, пересчитывая измеряемую мощность на определенное эталонное состояние. Например, мощность двигателя снижается примерно на 1% на каждые 100 м увеличения высоты, а 100 м высоты соответствуют примерно 8 мбар атмосферного давления.

Различные стандарты и инструкции по испытаниям предусматривают различные эталонные состояния и методы пересчета мощности, измеренной при фактических атмосферных условиях в момент испытаний:

Стандарт DIN 70020 Стандарт ЕЭС 80/1269 (88/195)Стандарт ЕЭК ООН-R 85Стандарт ИСО 1585
t 20 °C 25 °C
P 1013 мбар 99 кПа
K 1013 / P × кв.корень (273 + t / 293) (99 / Ps)1,2 × (T / 198)0,6
Р — атмосферное давление воздуха
Рs — атмосферное давление воздуха в сухую погоду (за вычетом парциального давления водяного пара)
t — температура, С°
Т — температура, К

Но такой пересчет приемлем только для двигателей внутреннего сгорания с искровым зажиганием (бензиновых). Для дизелей применяются более сложные формулы. Мощность двигателя по стандарту DIN на 1–3% меньше мощности, пересчитанной по стандарту ЕЭС или по стандартам ИСО/ЕЭК ООН, из — за различных методов расчета поправочных коэффициентов. Прежние довольно существенные отличия в показателях мощности по японскому стандарту JIS или по SAE от германского стандарта DIN объяснялись использованием мощности брутто или смешанных форм мощности брутто/нетто.

Читать еще:  Газель 405 двигатель инжектор схема топлива

Расчет мощности и выбор электродвигателей для ЭП

Выбор электродвигателя предполагает:

а) выбор рода тока и номинального напряжения, исходя из экономических соображений, с учетом того, что самыми простыми, дешевыми и надежными являются асинхронные дви­гатели, а самыми дорогими и сложными — двигатели посто­янного тока.

б) выбор номинальной частоты вращения,

в) выбор конструктивного исполнения двигателя, учиты­вая три фактора: защиту его от воздействия окружающей среды, способ и обеспечение охлаждения и способ монтажа.

Расчет мощности двигателей для длительного режима работы

При постоянной нагрузке (рис. 17.3, а) определяется мощ­ность Рс или момент Mс механизма, приведенные к валу дви­гателя, и по каталогу выбирается двигатель, имеющий бли­жайшую не меньшую номинальную мощность

Для тяжелых условий пуска осуществляется проверка ве­личины пускового момента двигателя так, чтобы он превышал момент сопротивления механизма. Пусковой момент, Н*м,

где λ — кратность пускового момента двигателя, выбираемого по каталогу.

При длительной переменной нагрузке (рис. 17.3, б) определение номинальной мощности двигателя производят по

методу средних потерь, либо методу эквивалентных ве­личин (мощности, момента или тока).

Расчет мощности двигателя по методу средних потерь

Метод основан на предположении, что при равенстве но­минальных потерь двигателя ΔРН и средних потерь ΔРср, опреде­ляемых по диаграмме нагрузки, температура двигателя не будет превышать допустимую, °С:

1. Определяется средняя мощность нагрузки, кВт,

2. Предварительно подбирается двигатель с номинальной мощностью Рн. При этом

3. Определяются номинальные потери подобранного дви­гателя, кВт,

4. Определяются по диаграмме потери ΔP1, ΔР2,. ΔРп, кВт,

где ηп — КПД, соответствующий мощности Рп и зависящий

от загрузки двигателя. При

5. Определяются по диаграмме средние потери, кВт,

где а — отношение постоянных потерь в двигателе, указанных в каталоге, к номинальным

6. Проверяется условие равенства средних и номинальных потерь. При их расхождении более чем на 10% подбирают другой двигатель и повторяют расчет.

Расчет мощности двигателя по методу эквивалентных величин

Метод основан на понятии среднеквадратичного или экви­валентного тока (мощности, момента). Переменные потери в двигателе пропорциональны квадрату тока нагрузки. Эквива­лентным, неизменным по величине током называют ток, создающий в двигателе такие же потери, как и изме­няющийся во времени фактический ток нагрузки.

1. Определяют величину эквивалентного тока, А,

2. По каталогу выбирают двигатель, номинальный ток ко­торого равен или несколько больше 1$.

3. Двигатель проверяют по перегрузочной способности: отношение наибольшего момента сопротивления к номиналь­ному не должно превышать допустимого значения, приводи­мого в каталогах (см. также, например, гл. 6 и 7).

или эквивалентного момента, Н*м:

Если мощность и вращающий момент двигателя пропорцио­нальны величине тока, то для расчета можно воспользоваться выражениями для эквивалентной мощности, кВт:

Расчет мощности двигателей

для повторно-кратковременного

и кратковременного режимов работы

Повторнократковременный режим работы (рис. 17.3, б).

По нагрузочной диаграмме определяют среднюю мощ­ность Рср.

Выбирают двигатель, номинальная мощность которого не меньше средней мощности.

Определяют эквивалентную мощность Р$ ( или Мэ).

Эквивалентную мощность (момент, ток) пересчитывают для ближайшего стандартного значения ПВНМ:

По каталогу выбирают двигатель с номинальной мощностью Рн при ПВНМ так, чтобы Рн Р.

Выбранный двигатель проверяют по перегрузочной способ­ности.

Кратковременный режим работы (рис. 17.3, а).

Стандартные продолжительности рабочего периода для этого режима составляют 15, 30, 60 и 90 мин. Мощность двигателя определяется по методу эквивалентных величин.

В этом режиме могут использоваться и двигатели» рассчитанные на длительный режим работы. Двигатель вы­бирают заниженной мощности. Следовательно, ток двигателя в период работы в этом режиме может существенно превышать номинальный, однако превышение температуры при этом не должно быть больше допустимого, X:

Читать еще:  4afe efi что за двигатель

Ток двигателя в кратковременном режиме работы, допус­тимый в течение времени tP, A:

— постоянная времени нагрева двигателя, с.

Коэффициент тепловой перегрузки двигателя

Если постоянные потери К неизвестны, то для номинального режима их ориентировочно принимают равными переменным

потерям в двигателе, Вт:

Если известны потери ΔРкр и ΔРн, то постоянная времени, с, определяется из соотношения

После несложной процедуры регистрации Вы сможете пользоваться всеми сервисами и создать свой веб-сайт.

Определение мощности двигателей при повторно-краковременном режиме работы

Режим работы электропривода, при котором периоды работы имеют такую длительность и так чередуются с паузами определенной длительности, что температура всех устройств, входящих в состав электропривода, не достигает установившегося значения, ни во время каждого периода работы, ни во время каждой паузы, называется повторно-кратковременным .

Режиму повторно-кратковременной нагрузки соответствуют графики, подобные представленному на рис. 1. Перегрев электродвигателя изменяется по пилообразной ломаной линии, состоящей из чередующихся отрезков кривых нагрева и охлаждения. Режим повторно-кратковременной нагрузки характерен для приводов большинства металлорежущих станков.

Рис. 1. График повторно-кратковременной нагрузки

Мощность электродвигателя, работающего в повторно-кратковременном режиме, наиболее удобно определить по формуле средних потерь, которую можно записать в виде

где ΔA — потери энергии при каждом значении нагрузки, включая процессы пуска и торможения.

Когда электродвигатель не работает, условия его охлаждения значительно ухудшаются. Это учитывают введением экспериментальных коэффициентов β0

У асинхронных защищенных двигателей серии А с синхронной частотой вращения 1500 об/мин и мощностью 1—100 кВт коэффициент β0 составляет 0,50—0,17, а у двигателей с обдувом β0 = 0,45 — 0,3 (с увеличением Рн коэффициент β0 убывает). У закрытых двигателей β0 близок к единице (0,93—0,98). Это объясняется тем, что эффективность вентиляции у закрытых двигателей низка.

Во время пуска и торможения средняя частота вращения электродвигателя ниже номинальной, вследствие чего также ухудшается охлаждение электродвигателя, что характеризуется коэффициентом

При определении коэффициента β1 условно принято, что изменение частоты вращения происходит по линейному закону и что коэффициент β1 линейно зависит от нее.

Зная коэффициенты β0 и β1 получим

где ΔР1, ΔР2, — потери мощности при различных нагрузках, кВт; t1 t2 —время действия этих нагрузок, с; tn, tT, t0—время пуска, торможения и паузы, с; ΔАп ΔАТ — потери энергии в двигателе при пуске и торможении, кДж.

Как было указано выше, каждый электродвигатель должен быть выбран по условиям нагрева и по условиям перегрузки. Для применения метода средних потерь необходимо предварительно задаться определенным электродвигателем, который и в данном случае целесообразно выбрать по условиям перегрузки. Формулу эквивалентной мощности можно использовать для грубого расчета в тех случаях, когда пуск и торможение происходят редко и существенно не влияют на нагрев электродвигателя.

В станкостроении для работы в режиме повторно-кратковременной нагрузки применяют электродвигатели, предназначенные для работы с продолжительной нагрузкой. Электропромышленность выпускает также и двигатели, специально предназначенные для работы с повторно-кратковременной нагрузкой, получившие широкое распространение в подъемно-транспортных сооружениях. Такие электродвигатели выбирают с учетом относительной продолжительности включения:

где tp — время работы двигателя; t0 — продолжительность паузы.

Пример выбора двигателя по мощности при повторно-краковременном режиме работы.

Определить мощность электродвигателя при п0 — 1500 об/мин; двигатель работает по нагрузочному графику, приведенному на рис. 2, а. Мощность на валу электродвигателя при холостом ходе станка Рхх = 1 квт. Приведенный момент инерции станка Jc = 0,045 кг-м2.

1. Предварительно выбираем электродвигатель по условиям перегрузки, принимая λ = 1,6:

По каталогу подбираем электродвигатель защищенного исполнения ближайшей большой мощности (2,8 кВт), у которого пн = 1420 об/мин;

Читать еще:  Что то гремит в двигателе мопеде

Для этого двигателя λ = 0,85•2 = 1,7. Таким образом, двигатель выбран с некоторым запасом по перегрузке.

Зависимость η=f(P/Pн) данного двигателя приведена на рис. 2, б.

Рис. 2. Зависимости N = f(t) и η=f(P/Pн)

находим потери при мощностях 1; 3; 4,2 кВт (по графику). Потери соответственно составляют 0,35; 0,65 и 1 кВт. Находим потери при Рн = 2,8 кВт, которые составляют ΔРн = 0,57 кВт.

3. Определяем время пуска и время торможения противовключением:

приведенная мощность двигателя

Большой англо-русский и русско-английский словарь . 2001 .

  • приведенная мощность
  • приведенная надстройка

Смотреть что такое «приведенная мощность двигателя» в других словарях:

приведенная мощность — Мощность двигателя, приведенная к стандартным атмосферным условиям … Политехнический терминологический толковый словарь

Удельная мощность двигателя на единицу массы — удельная мощность на единицу массы максимальная мощность двигателя, приведенная к единице технически допустимой максимальной массы транспортного средства, в кВт/т;. Источник: Постановление Правительства РФ от 10.09.2009 N 720 (ред. от… … Официальная терминология

мощность — 3.6 мощность (power): Мощность может быть выражена терминами «механическая мощность на валу у соединительной муфты турбины» (mechanical shaft power at the turbine coupling), «электрическая мощность турбогенератора» (electrical power of the… … Словарь-справочник терминов нормативно-технической документации

удельная мощность — 3.21 удельная мощность (power density): Значение выходной мощности, Вт/м для кабелей и кабельных блоков электронагревателя и Вт/м2 для прокладок, нагревательных панелей и блоков из прокладок и нагревательных панелей. Источник … Словарь-справочник терминов нормативно-технической документации

удельная мощность на единицу массы — Максимальная мощность двигателя, приведенная к единице полной массы транспортного средства, в кВт/т. [Технический регламент о безопасности колесных транспортных средств] Тематики автотранспортная техника … Справочник технического переводчика

удельная мощность на единицу массы — 3.6 удельная мощность на единицу массы: Максимальная мощность двигателя, приведенная к единице полной массы транспортного средства в кВт/т. (Введено дополнительно, ). Источник: ГОСТ Р 51616 2000: Автомобильные транспортные средства. Шум… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 52517-2005: Двигатели внутреннего сгорания поршневые. Характеристики. Часть 1. Стандартные исходные условия, объявление мощности, расхода топлива и смазочного масла. Методы испытаний — Терминология ГОСТ Р 52517 2005: Двигатели внутреннего сгорания поршневые. Характеристики. Часть 1. Стандартные исходные условия, объявление мощности, расхода топлива и смазочного масла. Методы испытаний оригинал документа: 3.18 длительная… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 51616-2000: Автомобильные транспортные средства. Шум внутренний. Допустимые уровни и методы испытаний — Терминология ГОСТ Р 51616 2000: Автомобильные транспортные средства. Шум внутренний. Допустимые уровни и методы испытаний оригинал документа: 5.6 Измерение шума при движении автотранспортного средства с постоянной скоростью 5.6.1 Измерение шума… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р МЭК 60204-1-2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования — Терминология ГОСТ Р МЭК 60204 1 2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования оригинал документа: TN систем питания Испытания по методу 1 в соответствии с 18.2.2 могут быть проведены для каждой цепи… … Словарь-справочник терминов нормативно-технической документации

ГОСТ 23851-79: Двигатели газотурбинные авиационные. Термины и определения — Терминология ГОСТ 23851 79: Двигатели газотурбинные авиационные. Термины и определения оригинал документа: 293. Аварийное выключение ГТД Аварийное выключение Ндп. Аварийное отключение ГТД D. Notausschaltung Е. Emergency shutdown F. Arrêt urgent… … Словарь-справочник терминов нормативно-технической документации

Требования — 5.2 Требования к вертикальной разметке 5.2.1 На поверхность столбиков, обращенную в сторону приближающихся транспортных средств, наносят вертикальную разметку по ГОСТ Р 51256 в виде полосы черного цвета (рисунки 9 и 10) и крепят световозвращатели … Словарь-справочник терминов нормативно-технической документации

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector