0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое предохранитель в двигателях

Выбор предохранителей для защиты асинхронных электродвигателей

Отстройка плавких вставок предохранителей от пусковых токов электродвигателей

Отстройка плавких вставок от пусковых токов выполняется по времени: пуск электродвигателя должен полностью закончиться раньше, чем вставка расплавится под действием пускового тока.

Опытом эксплуатации установлено правило: для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.

Все электродвигатели разбиты на две группы по времени и частоте пуска

Двигателями с легким пуском считаются двигатели вентиляторов, насосов, металлорежущих станков и т. п., пуск которых заканчивается за 3…5 с, пускаются эти двигатели редко, менее 15 раз в 1 ч.

К двигателям с тяжелым пуском относятся двигатели подъемных кранов, центрифуг, шаровых мельниц, пуск которых продолжается более 10 с, а также двигатели, которые пускаются очень часто — более 15 раз в 1 ч. К этой категории относят и двигатели с более легкими условиями пуска, но особо ответственные, для которых совершенно недопустимо ложное перегорание вставки при пуске.

Выбор номинального тока плавкой вставки для отстройки от пускового тока производится по выражению: Iвс ≥ Iпд /К (1)

где Iпд — пусковой ток двигателя, определяемый по паспорту, каталогам или непосредственным измерением; К — коэффициент, определяемый условиями пуска и равный для двигателей с легким пуском 2,5, а для двигателей с тяжелым пуском 1,6…2.

Поскольку вставка при пуске двигателя нагревается и окисляется, уменьшается сечение вставки, ухудшается состояние контактов, она может ложно перегореть при нормальной работе двигателя. Вставка, выбранная в соответствие с формулой 1, может сгореть также при затянувшемся по сравнению с расчетным временем пуске или самозапуске двигателя. Поэтому во всех случаях целесообразно измерить напряжение на вводах двигателя в момент пуска и определить время пуска.

Для предотвращения сгорания вставок при пуске, что может повлечь за собой работу двигателя на двух фазах и его повреждение, целесообразно во всех случаях, когда это допустимо по чувствительности к токам КЗ, выбирать вставки более грубыми, чем по условию (1).

Каждый двигатель должен защищаться своим отдельным аппаратом защиты. Общий аппарат допускается для защиты нескольких маломощных двигателей только в том случае, если будет обеспечена термическая устойчивость пусковых аппаратов и аппаратов защиты от перегрузки, установленных в цепи каждого двигателя.

Выбор предохранителей для защиты магистралей, питающих несколько асинхронных электродвигателей

Защита магистралей, питающих несколько двигателей, должна обеспечивать и пуск двигателя с наибольшим пусковым током и самозапуск двигателей, если он допустим по условиям техники безопасности, технологического процесса и т. п.

При расчете защиты необходимо точно определить какие двигатели отключаются при понижении или полном исчезновении напряжения, какие остаются включенными, какие повторно включаются при появлении напряжения.

Для уменьшения нарушений технологического процесса применяют специальные схемы включения удерживающего электромагнита пускателя, обеспечивающего немедленное включение в сеть двигателя при восстановлении напряжения. Поэтому в общем случае номинальный ток плавкой вставки, через которую питается несколько самозапускающихся двигателей, выбирается по выражению: Iвс ≥ ∑Iпд /К. (2)

∑Iпд — сумма пусковых токов самозапускающихся электродвигателей.

Выбор предохранителей для защиты магистралей при отсутствии самозапускающихся электродвигателей

В этом случае плавкие вставки предохранителей выбираются по следующему соотношению: Iном. вст. ≥ кр/К

где Iкр = I’пуск + I’длит – максимальный кратковременный ток линии;

I’пуск – пусковой ток электродвигателя или группы одновременно включаемых электродвигателей, при пуске которых кратковременный ток линии достигает наибольшего значения;

I’длит – длительный расчетный ток линии до момента пуска электродвигателя (или группы электродвигателей) – это суммарный ток, который потребляется всеми элементами, подключенными через плавкий предохранитель, определяемый без учета рабочего тока пускаемого электродвигателя (или группы двигателей).

Выбор предохранителей для защиты асинхронных электродвигателей от перегрузки

Поскольку пусковой ток в 5…7 раз превышает номинальный ток двигателя, плавкая вставка, выбранная по выражению (1), будет иметь номинальный ток в 2…3 раза больше номинального тока двигателя и, выдерживая этот ток неограниченное время, не может защитить двигатель от перегрузки.

Для защиты двигателей от перегрузки обычно применяют тепловые реле, встраиваемые в магнитные пускатели или в автоматические выключатели.

Читать еще:  Чем меньше двигатель тем выше обороты

Если для защиты двигателя от перегрузки и управления им применяется магнитный пускатель, то при выборе плавких вставок приходится учитывать также условие предотвращения повреждения контактов пускателя.

Дело в том, что при коротких замыканиях в двигателе снижается напряжение на удерживающем электромагните пускателя, он отпадает и разрывает ток короткого замыкания своими контактами, которые, как правило, разрушаются. Для предотвращения этого короткого замыкания двигатели должны отключаться предохранителем раньше, чем разомкнутся контакты пускателя .

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Выбор плавкого предохранителя для защиты двигателей

Асинхронные двигатели имеют неприятную особенность — их пусковой ток в 5-7 раз превышает номинальный ток двигателя! Предохранители не подбираются по номиналу двигателя!

Данный подбор действителен для „инерционных“ или „gL“-предохранителей (VDE 0636).

Номинальный ток предохранителя ограничивается его нагревательной способностью. При длительном прохождении этого тока через предохранитель корпус предохранителя не перегревается. Номинальный ток предохранителя должен быть не меньше максимального значения номинального тока плавкой вставки, используемой с данным предохранителем.

Номинальные токи предохранителя и плавкой вставки / в не должны быть меньше расчетного тока цепи.

Основным условием, определяющим выбор плавких предохранителей для защиты асинхронных двигателей с короткозамкнутым ротором, является отстройка от пускового тока.

Номинальный ток предохранителя должен быть меньше пускового тока примерно в 2,5 раза или в 1,6 – 2,8 раза больше номинального. Но даже при защите двигателей с фазным ротором, когда предохранитель может быть выбран на ток, близкий к номинальному; такая защита менее чувствительна к небольшим перегрузкам, чем тепловые реле. Поэтому более целесообразно применять тепловые реле для полноценной защиты двигателя.

Выбор плавких вставок от пусковых токов выполняется по времени: пуск электродвигателя должен полностью закончиться раньше, чем вставка расплавится под действием пускового тока.

Опытом эксплуатации установлено правило: для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.

Выбор предохранителей для защиты асинхронных электродвигателей:

Все электродвигатели разбиты на две группы по времени и частоте пуска

Двигателями с легким пуском считаются двигатели вентиляторов, насосов, металлорежущих станков и т. п., пуск которых заканчивается за 3…5 с, пускаются эти двигатели редко, менее 15 раз в 1 ч.

К двигателям с тяжелым пуском относятся двигатели подъемных кранов, центрифуг, шаровых мельниц, пуск которых продолжается более 10 с, а также двигатели, которые пускаются очень часто — более 15 раз в 1 ч. К этой категории относят и двигатели с более легкими условиями пуска, но особо ответственные, для которых совершенно недопустимо ложное перегорание вставки при пуске.

Выбор номинального тока плавкой вставки для отстройки от пускового тока производится по выражению: Iвс ≥ Iпд /К (1)

где Iпд — пусковой ток двигателя, определяемый по паспорту, каталогам или непосредственным измерением; К — коэффициент, определяемый условиями пуска и равный для двигателей с легким пуском 2,5, а для двигателей с тяжелым пуском 1,6…2.

Поскольку вставка при пуске двигателя нагревается и окисляется, уменьшается сечение вставки, ухудшается состояние контактов, она может ложно перегореть при нормальной работе двигателя. Вставка, выбранная в соответствие с формулой 1, может сгореть также при затянувшемся по сравнению с расчетным временем пуске или самозапуске двигателя. Поэтому во всех случаях целесообразно измерить напряжение на вводах двигателя в момент пуска и определить время пуска.

Номинальный ток предохранителя, указанный на нем, равен наибольшему из номинальных токов плавких вставок, предназначенных для данной конструкции предохранителя. Номинальный ток предохранителя должен быть больше, чем действующее значение протекающего через него в нормальном рабочем режиме тока.

Для предотвращения сгорания вставок при пуске, что может повлечь за собой работу двигателя на двух фазах и его повреждение, целесообразно во всех случаях, когда это допустимо по чувствительности к токам КЗ, выбирать вставки более грубыми, чем по условию (1).

Читать еще:  Что такое выбег синхронного двигателя

Каждый двигатель должен защищаться своим отдельным аппаратом защиты. Общий аппарат допускается для защиты нескольких маломощных двигателей только в том случае, если будет обеспечена термическая устойчивость пусковых аппаратов и аппаратов защиты от перегрузки, установленных в цепи каждого двигателя.

Пример выбора плавких предохранителей

В предыдущей статье мы рассмотрели условия выбора плавких предохранителей. В этой же статье, речь пойдет непосредственно о примере выбора плавких предохранителей для асинхронных двигателей и распределительного щита ЩР1, согласно схеме рис.1 (схема дана в однолинейном изображении). Самозапуск двигателей исключен. Условия пуска легкие. Технические характеристики двигателей приведены в таблице 1.

Рис. 1 – Схема защиты плавкими предохранителями группы короткозамкнутых асинхронных двигателей

Таблица 1 – Технические характеристики двигателей 4АМ

Обозначение на схемеТип двигателяНоминальная мощность Р, кВтКПД η,%Коэффициент мощности, cos φIп/Iн
4АМ112М27,587,50,887,5
4АМ100L25,587,50,917,5
4АМ160S215880,917,5
4АМ90L2384,50,886,5
4АМ180S215880,917,5

1. Определяем номинальный ток для двигателя 1Д:

2. Определяем пусковой ток для двигателя 1Д:

3. Определяем номинальный ток плавкой вставки предохранителя FU2:

Iн.вс. > Iпуск.дв/k = 111,15/2,5 = 44,46 А;

где:
k =2,5 — коэффициент, учитывающий условия пуска двигателя, в моем случаем пуск двигателей легкий. Подробно выбор коэффициента, учитывающий условие пуска двигателя рассмотрен в статье: «Условия выбора плавких предохранителей».

Выбираем плавкую вставку предохранителя FU2 на ближайший больший стандартный номинальный ток 50 А, по каталогу на предохранители NV-NH фирмы ETI, согласно таблицы 2.

Номинальный ток отключения для предохранителей NV/NH с характеристикой АМ составляет 100 кА. По этому условие Iном.откл > Iмакс.кз., будет всегда выполнятся.

Аналогично рассчитываем номинальный ток плавкой вставки для двигателей 2Д-5Д и заносим результаты расчетов в таблицу 3.

Обозначение на схемеТип двигателяНом.ток, АПусковой ток, АНоминальный ток плавкой вставки, АНом. ток предохранит., А
РасчетныйВыбранный
4АМ112М214,82111,1544,465050
4АМ100L210,578,831,524040
4АМ160S228,5213,785,48100100
4АМ90L26,1439,915,962020
4АМ180S228,5213,785,48100100

4. Выбираем плавкую вставку предохранителя FU1.

4.1 Определяем наибольший номинальный длительный ток с учетом, что у нас включены все двигатели:

4.2 Определяем наибольший ток, учитывая что наиболее тяжелым режимом для предохранителя FU1, будет пуск наиболее мощного двигателя 5Д при находящихся в работе двигателях 1Д, 2Д, 3Д, 4Д.

Выбираем плавкую вставку предохранителя FU1 на номинальный ток 125 А.

Теперь нам нужно проверить выбранные плавкие вставки на отключающую способность короткого замыкания для отходящих линий в соответствии с ПУЭ раздел 1.7.79, время отключения не должно превышать 5 сек. Для проверки берется ток однофазного замыкания на землю в сети с глухозаземленной нейтралью.

Значения токов короткого замыкания для проверки отключающей способности предохранителей берем из статьи: «Пример приближенного расчета токов короткого замыкания в сети 0,4 кв».

Проверим выбранную плавкую вставку предохранителя FU2 на отключающую способность.

Двигатель 1Д защищен плавкой вставкой на 50 А, ток однофазного КЗ составляет 326 А, максимальный ток отключения плавкой вставки при времени 5 сек составляет 281 А согласно таблицы 2, Iк.з.(1) = 326A > Iк.з.max=281A (условие выполняется). Аналогично проверяем и остальные предохранители, результаты расчетов заносим в таблицу 4.

Проверим на отключающую способность предохранитель FU1, учитывая, что ток трехфазного короткого замыкания в месте установки предохранителя Iк.з(3) = 2468 А.

Предельно допустимый ток отключения для предохранителя FU1 с плавкой вставкой на 125 А составляет 100 кА > 2468 A (условие выполняется).

Таблица 4 – Результаты расчетов

Обозначение на схемеНоминальный ток плавкой вставки, АIк.з.(3), АIк.з.(1), АМаксимальный ток отключения плавкой вставки при времени 5 сек. Iк.з.max, AПримечание
FU11252468
FU250326281Условие выполняется
FU340222195Условие выполняется
FU4100 (80)429595 (432)Условие не выполняется
FU52012286Условие выполняется
FU6100 (80)429595 (432)Условие не выполняется
Читать еще:  Что такое контроллер системы управления двигателем

Как видно из результатов расчета для предохранителей FU4 и FU6 чувствительности к токам КЗ не достаточно. Чтобы увеличить чувствительность к токам КЗ, можно увеличить сечение кабеля, в данном случае увеличение сечение кабеля, является не целесообразным.

Либо уменьшить номинальный ток плавкой вставки для предохранителей FU4 и FU6, отстраиваясь от пусковых токов и учитывая, что условия пуска двигателя легкие (время пуска 5 сек.).

Как показывает опыт эксплуатации, для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.

Исходя из этого, выбираем ток плавкой вставки для предохранителей FU4 и FU6 на 80 А, где: Iк.з.max = 432 А при времени 5 сек., пусковой ток равен 213,7 А (условие выполняется).

190. Защита электродвигателей плавкими предохранителями

Плавкие предохранители представляют собой приспособления с легкоплавкой проволокой, изготовленной из меди, цинка или свинца и укрепленной на изолирующем основании. Назначение предохранителей заключается в отключении потребителя (части осветительной установки, двигателя и т. п.) от сети при недопустимо большой перегрузке или коротком замыкании. При этом большое количество тепла расплавляет плавкую вставку предохранителя и тем самым разрывается электрическая цепь. Являясь наиболее распространенными защитными приспособлениями, плавкие предохранители в то же время очень несовершенны.

Плавкие предохранители имеют относительно малую предельно-отключающую мощность. Наибольшая мощность, которую могут отключить предохранители нли какой-либо отключающий аппарат (например, масляный выключатель, автоматический выключатель) без опасности быть поврежденным или разрушенным, называется предельно-отключающей мощностью.

Сгорание вставки предохранителя сопровождается выделением пламени и горячих газов, могущих служить причиной ожогов, ослепления людей и возникновения пожаров.

Плавкие предохранители могут выдерживать перегрузку в течение неограниченного времени на 25%, в течение одного часа — на 60% и приблизительно двух минут — на 80%.

Таким образом, плавкие предохранители не могут защищать двигатель от небольших и длительных перегрузок, при этом двигатель может выйти из строя, в то время как плавкая вставка предохранителя останется целой. Только при внезапных больших перегрузках или коротких замыканиях предохранители могут быстро отключать двигатели.

Казалось бы, что, выбирая предохранитель на ток, меньший номинального тока электродвигателя, можно защитить последний от перегрузки. На самом деле это не так. Известно, что пусковой ток двигателя значительно превышает номинальный ток (например, пусковой ток асинхронного двигателя с корог-козамкнутым ротором в 5—7 раз превышает его номинальный ток). Предохранители, выбранные иа малый ток, будут сгорать в момент пуска двигателя.

Для выбора тока плавкой вставки предохранителя на практике пользуются следующим выражением:

Плавкие предохранители бывают пробочные, пластинчатые и трубчатые. Пробочные предохранители изготовляются на напряжение до 500 В и на токи от 2 до 60 А и применяются для защиты осветительных сетей и электродвигателей малой мощности.

Пластинчатые предохранители, обладающие большими недостатками (разбрызгивание металла вставки при перегорании, трудность замены их), в настоящее время стараются не применять.

Трубчатые предохранители низкого напряжения изготовляются на напряжение до 500 В и на токи от 6 до 1000 А. Конструктивно трубчатые предохранители могут быть выполнены с открытой фарфоровой трубкой (типа СПО) и с закрытой стеклянной, фибровой или фарфоровой трубкой. Трубки с пропущенными сквозь них плавкими вставками часто засыпают кварцевым песком (тип ПН — предохранитель насыпной). В момент перегорания предохранителя песок разбивает электрическую дугу на ряд мелких дуг, хорошо охлаждает дугу и она быстро гаснет.

Наиболее широкое применение на практике получили трубчатые газогене-рирующие предохранители ПР (фиг.384), состоящие из фибровой трубки 1, закрытой с двух сторон латунными колпачками 3. Внутри трубки располагается плавкая вставка 4 из цинкового сплава. Предохранитель вставляется в контакты 2.

Действие предохранителя ПР заключается в том, что в момент перегорания вставки под действием высокой температуры дуги часть внутренней поверхности фибровой трубки разлагается, выделяющийся при этом газ с большим содержанием водорода при высоком давлении производит деионизацию электрической дуги и она быстро гаснет.

Предохранители ПР обладают большой отключающей способностью и безопасны в эксплуатации.

Под отключающей способностью аппарата подразумевают предельно-отключающую мощность, которую может отключить данный аппарат.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector