0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое момент на валу электрического двигателя

Как правильно подобрать электродвигатель

Электродвигатель – механизм, преобразующий энергию электрического тока в кинетическую энергию. Современное производство и быт сложно представить без машин с электроприводом. Они используются в насосном оборудовании, системах вентиляции и кондиционирования, в электротранспорте, промышленных станках различных типов и т.д.

При выборе электродвигателя необходимо руководствоваться несколькими основными критериями:

  • вид электрического тока, питающего оборудование;
  • мощность электродвигателя;
  • режим работы;
  • климатические условия и другие внешние факторы.

Типы двигателей

Электродвигатели постоянного и переменного тока

В зависимости от используемого электрического тока двигатели делятся на две группы:

  • приводы постоянного тока;
  • приводы переменного тока.

Электродвигатели постоянного тока сегодня применяются не так часто, как раньше. Их практически вытеснили асинхронные двигатели с короткозамкнутым ротором.

Главный недостаток электродвигателей постоянного тока – возможность эксплуатации исключительно при наличии источника постоянного тока или преобразователя переменного напряжения в постоянный ток. В современном промышленном производстве обеспечение данного условия требует дополнительных финансовых затрат.

Тем не менее, при существенных недостатках этот тип двигателей отличается высоким пусковым моментом и стабильной работой в условиях больших перегрузок. Приводы данного типа чаще всего применяются в металлургии и станкостроении, устанавливаются на электротранспорт.

Принцип работы электродвигателей переменного тока построен на электромагнитной индукции, возникающей в процессе движения проводящей среды в магнитном поле. Для создания магнитного поля используются обмотки, обтекаемые токами, либо постоянные магниты.

Электродвигатели переменного тока подразделяются на синхронные и асинхронные. У каждой подгруппы есть свои конструктивные и эксплуатационные особенности.

Синхронные электродвигатели

Синхронные двигатели – оптимальное решение для оборудования с постоянной скоростью работы: генераторов постоянного тока, компрессоров, насосов и др.

Технические характеристики синхронных электродвигателей разных моделей отличаются. Скорость вращения колеблется в диапазоне от 125 до 1000 оборотов/мин, мощность может достигать 10 тысяч кВт.

В конструкции приводов предусмотрена короткозамкнутая обмотка на роторе. Ее наличие позволяет осуществлять асинхронный пуск двигателя. К преимуществам оборудования данного типа относятся высокий КПД и небольшие габариты. Эксплуатация синхронных электродвигателей позволяет сократить потери электричества в сети до минимума.

Асинхронные электродвигатели

Асинхронные электродвигатели переменного тока получили наибольшее распространение в промышленном производстве. Особенностью данных приводов является более высокая частота вращения магнитного поля по сравнению со скоростью вращения ротора.

В современных двигателях для изготовления ротора используется алюминий. Легкий вес этого материала позволяет уменьшить массу электродвигателя, сократить себестоимость его производства.

КПД асинхронного двигателя падает почти вдвое при эксплуатации в режиме низких нагрузок – до 30-50 процентов от номинального показателя. Еще один недостаток таких электроприводов состоит в том, что параметры пускового тока почти втрое превышают рабочие показатели. Для уменьшения пускового тока асинхронного двигателя используются частотные преобразователи или устройства плавного пуска.

Асинхронные электродвигатели удовлетворяют требованиям разных промышленных применений:

  • Для лифтов и другого оборудования, требующего ступенчатого изменения скорости, выпускаются многоскоростные асинхронные приводы.
  • При эксплуатации лебедок и металлообрабатывающих станков используются электродвигатели с электромагнитной тормозной системой. Это обусловлено необходимостью остановки привода и фиксации вала при перебоях напряжения или его исчезновения.
  • В процессах с пульсирующей нагрузкой или при повторно-кратковременных режимах могут использоваться асинхронные электродвигатели с повышенными параметрами скольжения.

Вентильные электродвигатели

Группа вентильных электродвигателей включает в себя приводы, в которых регулирование режима эксплуатации осуществляется посредством вентильных преобразователей.

К преимуществам данного оборудования относятся:

  • Высокий эксплуатационный ресурс.
  • Простота обслуживания за счет бесконтактного управления.
  • Высокая перегрузочная способность, которая в пять раз превышает пусковой момент.
  • Широкий диапазон регулирования частоты вращения, который почти вдвое выше диапазона асинхронных электродвигателей.
  • Высокий КПД при любой нагрузке – более 90 процентов.
  • Небольшие габариты.
  • Быстрая окупаемость.

Мощность электродвигателя

В режиме постоянной или незначительно изменяющейся нагрузки работает большое количество механизмов: вентиляторы, компрессоры, насосы, другая техника. При выборе электродвигателя необходимо ориентироваться на потребляемую оборудованием мощность.

Определить мощность можно расчетным путем, используя формулы и коэффициенты, приведенные ниже.

Мощность на валу электродвигателя определяется по следующей формуле:

где:
Рм – потребляемая механизмом мощность;
ηп – КПД передачи.

Номинальную мощность электродвигателя желательно выбирать больше расчетного значения.

Формула расчета мощности электродвигателя для насоса

где:
K3 – коэффициента запаса, он равен 1,1-1,3;
g –ускорение свободного падения;
Q – производительность насоса;
H – высота подъема (расчетная);
Y – плотность перекачиваемой насосом жидкости;
ηнас – КПД насоса;
ηп – КПД передачи.

Давление насоса рассчитывается по формуле:

Формула расчета мощности электродвигателя для компрессора

Мощность поршневого компрессора легко рассчитать по следующей формуле:

где:
Q – производительность компрессора;
ηk – индикаторный КПД поршневого компрессора (0,6-0,8);
ηп – КПД передачи (0,9-0,95);
K3 – коэффициент запаса (1,05 -1,15).

Значение A можно рассчитать по формуле:

или взять из таблицы

p2, 10 5 Па345678910
A, 10 -3 Дж/м³132164190213230245260272

Формула расчета мощности электродвигателя для вентиляторов

где:
K3 – коэффициент запаса. Его значения зависят от мощности двигателя:

  • до 1 кВт – коэффициент 2;
  • от 1 до 2 кВт – коэффициент 1,5;
  • 5 и более кВт – коэффициент 1,1-1,2.
Читать еще:  Холодный пуск двигателя большие обороты

Q – производительность вентилятора;
H – давление на выходе;
ηв – КПД вентилятора;
ηп – КПД передачи.

Приведенная формула используется для расчета мощности осевых и центробежных вентиляторов. КПД центробежных моделей равен 0,4-0,7, а осевых вентиляторов – 0,5-0,85.

Остальные технические характеристики, необходимые для расчета мощности двигателя, можно найти в каталогах для каждого типа механизмов.

ВАЖНО! При выборе электродвигателя запас мощности должен быть, но небольшой. При значительном запасе мощности снижается КПД привода. В электродвигателях переменного тока это приводит еще и к снижению коэффициента мощности.

Пусковой ток электродвигателя

Зная тип и номинальную мощность электродвигателя, можно рассчитать номинальный ток.

Номинальный ток электродвигателей постоянного тока

Номинальный ток трехфазных электродвигателей переменного тока

где:
PH – номинальная мощность электродвигателя;
UH — номинальное напряжение электродвигателя,
ηH — КПД электродвигателя;
cosfH — коэффициент мощности электродвигателя.

Номинальные значения мощности, напряжения и КПД можно найти в технической документации на конкретную модель электродвигателя.

Зная значение номинального тока, можно рассчитать пусковой ток.

Формула расчета пускового тока электродвигателей

где:
IH – номинальное значение тока;
Кп – кратность постоянного тока к номинальному значению.

Пусковой ток необходимо рассчитывать для каждого двигателя в цепи. Зная эту величину, легче подобрать тип автоматического выключателя для защиты всей цепи.

Режимы работы электродвигателей

Режим работы определяет нагрузку на электродвигатель. В некоторых случаях она остается практически неизменной, в других может изменяться. Характер предполагаемой нагрузки обязательно учитывается при выборе двигателя. Действующими стандартами предусмотрены следующие режимы эксплуатации:

Режим S1 (продолжительный). При таком режиме эксплуатации нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения. Мощность привода рассчитывается по формулам, приведенным выше.

Режим S2 (кратковременный). При эксплуатации в этом режиме температура двигателя в период его включения не достигает установившегося значения. За время отключения электродвигатель охлаждается до температуры окружающей среды. При кратковременном режиме эксплуатации необходимо проверять перегрузочную способность электропривода.

Режим S3 (периодически-кратковременный). Электродвигатель работает с периодическими отключениями. В периоды включения и отключения его температура не успевает достигнуть заданного значения или охладиться до температуры окружающей среды. При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени.

Режимы S4 (периодически-кратковременный, с частыми пусками) и S5 (периодически-кратковременный с электрическим торможением). В обоих случаях работа двигателя рассматривается по тем же параметрам, что и в режиме эксплуатации S3.

Режим S6 (периодически-непрерывный с кратковременной нагрузкой). Работа электродвигателя в данном режиме предусматривает эксплуатацию под нагрузкой, чередующуюся с холостым ходом.

Режим S7 (периодически-непрерывный с электрическим торможением)

Режим S8 (периодически-непрерывный с одновременным изменением нагрузки и частоты вращения)

Режим S9 (режим с непериодическим изменением нагрузки и частоты вращения)

Большинство моделей современных электроприводов, эксплуатируемых продолжительное время, адаптированы к изменяющемуся уровню нагрузки.

Климатические исполнения электродвигателей

При выборе электродвигателя учитываются не только его технические характеристики, но и условия окружающей среды, в которых он будет эксплуатироваться.

Современные электроприводы выпускаются в разных климатических исполнениях. Категории маркируются соответствующими буквами и цифрами:

  • У – модели для эксплуатации в умеренном климате;
  • ХЛ – электродвигатели, адаптированные к холодному климату;
  • ТС – исполнения для сухого тропического климата;
  • ТВ – исполнения для влажного тропического климата;
  • Т – универсальные исполнения для тропического климата;
  • О – электродвигатели для эксплуатации на суше;
  • М – двигатели для работы в морском климате (холодном и умеренном);
  • В – модели, которые могут использоваться в любых зонах на суше и на море.

Цифры в номенклатуре модели указывают на тип ее размещения:

  • 1 – возможность эксплуатации на открытых площадках;
  • 2 – установка в помещениях со свободным доступом воздуха;
  • 3 – эксплуатация в закрытых цехах и помещениях;
  • 4 – использование в производственных и других помещениях с возможностью регулирования климатических условий (наличие вентиляции, отопления);
  • 5 – исполнения, разработанные для эксплуатации в зонах повышенной влажности, с высоким образованием конденсата.

Энергоэффективность

Рациональное потребление энергии при сохраняющейся высокой мощности сокращает текущие производственные затраты при одновременном увеличении производительности электродвигателя. Поэтому при выборе привода обязательно учитывается класс энергоэффективности.

В технической документации и каталогах обязательно указывается класс энергоэффективности двигателя. Он зависит от показателя КПД.

Проводимые в тестовом и рабочем режимах экспериментальные исследования показывают, что электродвигатель мощностью 55 кВт высокого класса энергоэффективности сокращает потребление электроэнергии на 8-10 тысяч кВт ежегодно.

Тахогенераторы

Компания «Омматех» представляет широкий ассортимент тахогенераторов для различных целей. Как известно, тахогенератор – это измерительный прибор, который используется для преобразования частоты вращения вала в электрический сигнал. Распространены модели постоянного и переменного тока. Несмотря на малую мощность, микромашины отличаются функциональностью.

В каталоге нашего сайта представлены абсолютные, инкрементальные, лифтовые тахогенераторы, а также устройства с полым и сплошным валом. Мы прилагаем точные характеристики к каждой модели, в том числе монтажное исполнение, размер вала и степень защиты, однако, если у вас останутся вопросы, на них всегда ответят наши консультанты.

Читать еще:  Что такое синхронная частота вращения асинхронного двигателя

Тахогенераторы со сплошным валом

Приборы от компании Radio Energy широко применимы в сфере контроля скорости оборудования – в частности, оборотов ротора и направления вращения, в том числе при реверсе. Устанавливаются как датчики обратной связи на электродвигателях. Стандартное значение – 1000 оборотов в минуту при напряжении 60В.

Тахогенераторы с полым валом

Такие тахогенераторы отличаются удобной формой подачи выходного сигнала, помимо скорости определяя также направление вращения ротора. Применяются также в качестве датчика обратной связи. В отличие от стандартных моделей, которые создают крутящий момент на вал, данные экземпляры отличаются дополнительной устойчивостью.

Лифтовые тахогенераторы

Такие устройства устанавливают на блоки тяги, контролирующие положение и перемещение лифта. Их основной задачей является контроль работы скоростных датчиков, а также определение положения кабины лифта. Лифтовые тахогенераторы точно определяют момент, когда механизм должен остановиться на требуемом этаже строго на уровне пола. Помимо лифтов приборы используются на различных подъемниках.

Функциональные устройства для разных целей

Тахогенераторы используются в закрытых помещениях в условиях умеренного или тропического климата. В зависимости от модели и назначения устройства поддерживают разный уровень температуры – от -45 до +45 С и относительной влажности – 98%. Допускается применение тахогенераторов для двигателя при давлении воздуха не ниже 4000 мм.рт.ст.

По способу монтажа устройства делятся на устанавливаемые при горизонтальном или вертикальном расположении вала – в последнем случае необходимо удостовериться в отсутствии осевых нагрузок. Все представленные экземпляры поддерживают естественное охлаждение ICA 0041, а также защищены от воздействия влаги, попадания пыли и мелких частиц во время работы.

Преимуществом представленных на сайте «Омматех» моделей является автономность – после подключения к системе приборы не требуют задействования дополнительных источников питания. Каждый экземпляр отличается высокой надежностью и износостойкостью.

Высокое качество продукции

Компания «Омматех» предлагает качественное оборудование, поступающее напрямую от производителя. Помимо доступной цены мы предоставляем скидки и гарантируем преимущества постоянным клиентам, отправляя заказанную продукцию на склад или фактически к дверям заказчика. Ассортимент продукции регулярно обновляется, предлагая тахогенераторы для двигателя в широком ассортименте.

Почему «Омматех» пользуется доверием у клиентов? На это есть несколько причин:

1. Мы находим к каждому клиенту индивидуальный подход, подбирая оптимальный вариант под требования;

2. Оперативно отвечаем на запросы;

3. Предлагаем оптимальную замену товарам, которых на данный момент нет в наличии – речь как о стоимости, так и о возможностях;

4. Гибкие условия и никакой предоплаты.

Чтобы купить тахогенератор, достаточно оформить заявку и ждать обратной связи от наших консультантов.

Общие сведения

Условные обозначения

Двигатели имеют следующие условные обозначения :

  • 4А, 4В, АИ (АI) – обозначение серии;
  • Р, С (S) – вариант привязки мощности к установочным размерам по ГОСТ, DIN;
  • Б – закрытое исполнение с естественным охлаждением;
  • В – встраиваемые;
  • П – продуваемые;
  • С – с повышенным скольжением;
  • Ф – с пристроенным вентилятором от отдельного двигателя;
  • Е – однофазные с двухфазной обмоткой и рабочим конденсатором;
  • 3Е – однофазные с трехфазной обмоткой и рабочим конденсатором;
  • 56, 63, 71, 80, 90, 100, 112, 132, 160, 180 – габарит (высота оси вращения, мм);
  • S, L, М – установочный размер по длине корпуса;
  • А, В, С – обозначение длины магнитопровода статора (первая длина-А, вторая длина-В, третья длина-С);
  • 2, 4, 6, 8, 4/2, 6/4, 8/4, 8/6, 6/4/2, 8/4/2, 8/6/4 – число полюсов;
  • К – комбинированное исполнение;
  • Б, Б1 – наличие встроенной температурной защитой

(Б-с установкой терморезисторов, Б1 – с установкой термореле)

  • Ш – для привода промышленных швейных машин;
  • РЗ, РЗК – для привода мотор-редукторов;
  • Е — со встроенным электромагнитным тормозом;
  • Е2 – со встроенным электромагнитным тормозом и ручным растормаживающим устройством;
  • ЕК, Е3К, Е2К — с пристроенным электромагнитным тормозом;
  • ЕК2, Е3К2, Е2К2 — с пристроенным электромагнитным тормозом и ручным растормаживающим устройством;
  • П – исполнение с повышенной точностью по установочным размерам;
  • Ж (1, 2, 3 …) – специальная насосная модификация, где 1, 2, 3 … — порядковый номер модификации;
  • А – для атомных электростанций;
  • Х2 – химостойкое исполнение;
  • Н – малошумные;
  • Л – лифтовые;
  • Т1, Т2, Т3, У1, У2, У3, У5, УХЛ1, УХЛ2, УХЛ4 – виды климатического исполнения.

Виды конструктивных исполнений по способу монтажа

Конструктивное исполнение по способу монтажа (крепление и сочленение) и условное обозначение для этих исполнений — по ГОСТ МЭК 60034-7-2007 ( * — по IЕС 60034-7).

Исполнения по степени защиты

Двигатели выполняют со степенью защиты IР54, IР55 по ГОСТ МЭК 60034-5-2007.

Первая цифра 5 — пыль не может попадать внутрь корпуса в количестве, достаточном для нарушения работы двигателя.

Читать еще:  Вода попала на двигатель не заводится

Вторая цифра 4 — обеспечивается защита от попадания брызг воды.

Вторая цифра 5 — обеспечивается защита от попадания струй воды.

Для обеспечения защиты типа IP55 применены следующие конструктивные дополнения:

— в переднем и заднем подшипниковых щитах устанавливаются уплотнения;

— кабельные вводы и подшипниковые щиты в местах присоединения дополнительно уплотнены от попадания струй воды.

Подшипниковые узлы. Подшипники.

В двигателях применяются подшипники качения согласно таблице 1.

Со стороны привода

Со стороны противоположной приводу

75-180 201 С9Ш2У (6-201-2RSRP5C3) *

АИР63, AIS71, 4ВР63

75-180 202 С9Ш2У (6-202-2RSRP5C3) *

АИР71, AIS80, 4ВР71

75-180 204 С9Ш2У (6-204-2RSRP5C3) *

АИР80, AIS90, 4ВР80

75-180 205 С9Ш2У (6-205-2RSRP5C3) *

АИР90, AIS100, 4ВР90

75-180 206 С9Ш2У (6-206-2RSRP5C3) *

АИР100, АIS100К, АIS112, 4ВР100, АIS100К

75-180 306 С9Ш2У (6-306-2RSRP5C3) *

АИР112, АIS132, 4ВР112

75-180 308 С9Ш2У (6-308-2RSRP5C3) *

АИР132, АIS160, 4ВР1З2

75-180 309 С9Ш2У (6-309-2RSRP5C3) *

75-180 310 С9Ш2У (6-310-2RSRP5C3) *

75-180 312А С9Ш2У (6-312-2RSRP5C3) *

75-180 605 С9Ш2У

75-180 205 С9Ш2У

АИР100РЗ, РЗК, АИР100Ж

75-180 307 С9Ш2У

75-180 306 С9Ш2У

75-180 309 С9Ш2У

75-180 308 С9Ш2У

Вибросмещение, виброскорость, виброускорение двигателей

Максимально допустимое значение вибросмещения, виброскорости и виброускорения трехфазных двигателей указаны в таблице 2 :

— для двигателей с повышенной точностью по установочным размерам — категория В;

— для модификаций встраиваемого исполнения не нормируется;

— для остальных двигателей — категория А.

Максимально допустимое значение виброскорости однофазных двигателей при упругом креплении

Основные параметры электродвигателя

Основные параметры электродвигателя

  • Мощность электродвигателя
  • Номинальная частота вращения
  • Коэффициент полезного действия
  • Момент электродвигателя
  • Момент инерции ротора
  • Номинальное напряжение
  • Электрическая постоянная времени

Мощность электродвигателя

Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.

Механическая мощность

Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t — время, с

Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы.

  • где s – расстояние, м

Для вращательного движения

  • где θ – угол, рад

  • где ω – углавая частота, рад/с,

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Частота вращения

  • где n — частота вращения электродвигателя, об/мин

Момент инерции ротора

Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

  • где J – момент инерции, кг∙м 2 ,
  • m — масса, кг

1 oz∙in∙s 2 = 0,007062 kg∙m 2 (кг∙м 2 )

Момент инерции связан с моментом силы следующим соотношением

  • где ε – угловое ускорение, с -2

Коэффициент полезного действия электродвигателя

Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

  • где η – коэффициент полезного действия электродвигателя,
  • P1 — подведенная мощность (электрическая), Вт,
  • P2 — полезная мощность (механическая), Вт
      При этом

потери в электродвигатели

    обусловлены:
  • электрическими потерями — в виде тепла в результате нагрева проводников с током;
  • магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
  • механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
  • дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

Номинальное напряжение

Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики.

Электрическая постоянная времени

Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

  • где – постоянная времени, с

Момент электродвигателя

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

  • где M – вращающий момент, Нм;
  • F – сила, Н;
  • r – радиус-вектор, м

  • где Pном – номинальная мощность двигателя, Вт,
  • nном — номинальная частота вращения, мин -1

Начальный пусковой момент — момент электродвигателя при пуске.

1 oz = 1/16 lb = 0,2780139 N (Н)
1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)
1 lb∙in = 0,112985 Nm (Нм)

Механическая характеристика

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

Области применения электродвигателей

Электродвигатели являются крупнейшими потребителями электроэнергии в мире, на них приходится около 45% от всей потребляемой электроэнергии.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector