Что такое карамельный реактивный двигатель - Авто журнал "Гараж"
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое карамельный реактивный двигатель

Что такое карамельный реактивный двигатель

15мм/с. Существующие доступные любителю топлива не дают достаточную скорость. Кроме того, при длительной работе двигателя, возникают проблемы с теплозащитой корпуса, который подвергается тепловым нагрузкам гораздо дольше, чем в канальных движках. Сопло также подвергается жесткому и длительному тепловому воздействию.

По этим причинам двигатели торцевого горения не получили широкого распространения, но попытки создать торцевик делаются. Решил попробовать и я. Несмотря на мелкие «комочки» первый блин можно считать очень даже ничего. Назвал свой первый торцевик ТРДК-1.

Топливо

Состав немного изменил:
KNO3 — 65%
сахар — 25%
сорбит — 10%
Fe2O3 — + 1%

Корпус
Сопло
Сборка

Теперь, подготовив свежее топливо, заполняем бронировку почти до верху, оставив незаполненными 3-4 мм. Для этого скатываем из карамели плотную колбаску диаметром и, запихнув в бронировку, утрамбовываем плоским торцом металлического стержня. Эту операцию можно повторить до окончательного заполнения мотора топливом. Получаем топливный заряд длиной 60 мм и диаметром 21 мм.

Пока топливо не застыло надо продавить через сопло небольшой канал для зажигания состава. Это легко делается либо заостренной бамбуковой палочкой для барбекю, либо тыльной стороной сверла Ø3мм.

Зарядка завершена, осталось сделать заглушку. Тут лучше всего подходит технология предложенная ракетчиком Serge77. Идея в том, что заглушка делается просто заливкой сверху эпоксидкой, но так, чтобы слой эпоксидки был выше края корпуса двигателя. Тогда смола пропитывает края картонного корпуса и намертво схватывается с ним. Такая заглушка очень надежна.

Осуществляется несложно. Наматываем скотч липкой стороной наружу так, чтобы он выступал за край корпуса. Уплотняем контакт скотча и корпуса, намотав резинку для денег. В образовавшуюся ванночку заливаем эпоксидку выше края корпуса на 2-3 мм. Смола может просочиться между гильзой и бронировкой, если там остались незаполненные силиконом полости. Это, в-принципе, неплохо, но надо тогда подлить эпоксидки, что бы сохранить уровень выше края корпуса.

После застывания смолы стаскиваем скотч и движок готов.

Характеристики

Испытания двигателя ТРДК-1 прошли 05.09.2010 на стенде ТСК-2-5 на базе 5-ти килограммовых весов. Результаты были обработаны программой ALTIMMEX. Полученные характеристики показаны на рис.1.

Мотор работал 7 секунд, поэтому средняя скорость горения получается 8,6 мм/с.

Заключение

Осмотр двигателя после испытаний не выявил каких-то проблем. Корпус выглядит как новый — сохранил форму, цвет, жесткость. Конструкция оказалась удачной и выдержала довольно длительную тепловую нагрузку.

Надо сказать, что полученные результаты очень даже обнадеживают. Расчет в той же программе ALTIMMEX показывает, см. рис.2, что характеристики двигателя ТРДК-1 вполне достаточны для небольшой легкой ракеты. Если удастся уложиться во взлетную массу 150г, что вполне реально, то мотор может обеспечить полет на высоту свыше 500м. Я уже не говорю о прекрасной возможности использования на второй ступени двухступенчатой ракеты.

По-видимому, есть и резервы. На второй секунде работы вышибло медный капсюль, и диаметр критики немного увеличился. Уменьшился Kn (примерно с 50 до 35), подсело давление в камере сгорания, и упала тяга. Думаю, можно этого избежать, поработав над конструкцией сопла.

Доработка №1

Результат не замедлил сказаться на характеристиках двигателя, рис.3. Тяга достигла максимума в 1,2 кг, подрос удельный импульс. Время, работы, правда, сократилось, что понятно, т.к. рабочее давление подросло и скорость горения достигла 12мм/с, что неплохо для карамели. Гипотетическая 150-ти граммовая ракета с таким движком уже могла бы достигнуть высоты 800м.

К сожалению не все прошло опять гладко. Подложка в донышке гильзы, по-видимому, сделана из нежаростойкого материала, и при нагреве сопло стало выдавливаться наружу. Гайка прослабла, и по резьбе стали слегка подтравливать выхлопные газы. Т.е. данный результат хотя и положительный, но пока не окончательный. Есть над чем поработать.

Карамельное ракетное топливо

Караме́льное то́пливо — твёрдое ракетное топливо, относящееся к смесевым топливам с органической связкой. Названо так из-за внешнего вида и использования в его составе сахара или сорбита. Англоязычный термин «rocket candy» точно так же характеризует отношение к нему. Пионером использования карамельного топлива считается Билл Колбёрн, использовавший его впервые в 1948, а широкую известность в США это топливо приобрело с выходом книги Бертрана Бринли в 1960 году. Широко применяется в импровизированных реактивных снарядах из-за доступности компонентов.

Содержание

  • 1 Состав и свойства
  • 2 Недостатки
  • 3 См. также
  • 4 Ссылки

Состав и свойства [ править | править код ]

Базовый, наиболее изученный и часто используемый состав — 65 % КNО3 и 35 % сорбита (по массе). Такой состав близок к оптимуму по достижимому удельному импульсу при небольших степенях расширения, характерных для модельных РДТТ. Умеренный показатель степени в законе горения делает топливо пригодным для работы в широком диапазоне давлений, и, как следствие, подходящим для кустарно изготавливаемых РДТТ с заметным разбросом геометрических характеристик.

Готовое топливо состоит из твёрдого раствора селитры в сорбите и взвешенных в нём мелкодисперсных частиц нерастворившейся селитры. Температура плавления готового топлива значительно ниже, чем исходных компонентов. Растворимость селитры в сорбите в твёрдом виде гораздо меньше, чем в расплаве, поэтому топливо при остывании набирает прочность постепенно, так как по объёму идёт выделение кристаллов из твёрдого раствора, при этом выделяется некоторое количество тепла. Крупные шашки остаются мягкими более суток.

Читать еще:  Датчик температуры двигателя starline ремонт

Энергетические характеристики данного состава очень умеренные. Теоретический удельный импульс карамельного топлива на нитрате калия — 153 кгс×с/кг, а практически достижимый не превышает 125 кгс×с/кг. Это меньше, чем у дешёвых баллиститных топлив на основе нитроцеллюлозы, поэтому промышленно этот состав не применяется. Однако, это существенно больше, чем у дымного пороха, к тому же, изготовление карамельного топлива не требует специфического оборудования, необходимого для производства пороха, поэтому популярно у изготовителей модельных ракетных двигателей, как кустарных, так и серийных коммерческих.

При замене в составе топлива сорбита на сахарозу скорость горения возрастает значительно, на 40 % при атмосферном давлении, но другие свойства топлива (плотность, удельный импульс, показатель степени в законе горения и т. д.) почти не меняются.

Недостатки [ править | править код ]

Несмотря на относительную его безопасность, по сравнению с другими составами, карамельное топливо требует таких же мер предосторожности при использовании, как и любое другое ракетное топливо, так как является высокоэнергетическим составом.

Главные недостатки этого топлива — гигроскопичность и большое количество конденсированной фазы в продуктах горения. Также следует признать недостатком хрупкость этого топлива, что сужает выбор конструкций РДТТ с его использованием. Наконец, недостатком является значительная усадка (уменьшение объёма) при затвердевании, что может вызвать искажение формы шашки или отслоение бронировки.

Исходное топливо малотоксично, но продукты его горения могут раздражать слизистые и органы дыхания, так как карбонат калия, выделяющийся в сильно диспергированной форме, и имеющий щелочную реакцию, может вызвать химический ожог даже после остывания до комнатной температуры. Температура горения базового состава примерно 1400 ℃, этого достаточно для размягчения стального корпуса РДТТ при воздействии на него без теплозащиты.

Как сделать ракетный двигатель из гильзы

Для самодельной модели ракеты немаловажным моментом является двигатель…

Среди многообразия вариантов его изготовления самым распространенным является использование отработанных гильз от охотничьих патронов.

Попробовал такой вариант моторчика и я. Результат превзошел самые оптимистичные ожидания!

Итак, строим мотор из гильзы

в калибрах я слабо разбираюсь, на металлической части этой гильзы написано «12», а на пластике корпуса «12/70». Внешний диаметр около 20 мм, длина 70 мм.

Изнутри отверткой выбиваем остатки капсюля, получается как бы сопло диаметром чуть меньше 6 мм.

Делаем подставку для установки гильзы для заливки в нее топлива. Это кусок фанерки толщиной 8 мм. В ней сверлим дыру 4 мм и ввинчиваем в нее винт М5 длиной 50 мм. Получаем примерно следующее:

Оборачиваем резьбу винта газетой (3-4 слоя) и скотчем. Эти процедуры нужны для облегчения изъятия получившегося стержня из гильзы.

Надеваем на конструкцию гильзу:

Теперь она ровно стоит, а стержень внутри расположен строго вертикально и по центру будущего двигателя. Готовим карамель (процесс много где описан, если коротко, то смешиваем измельченную калиевую селитру с сорбитом (пропорция по массе 65/35) и плавим ее на сковородке до состояния жидкой кашицы). Заливаем ее в гильзу, периодически постукивая по ее корпусу «тяжеленьким предметом» — это нужно для устранения пустот в топливной массе.

В верхней части оставляем миллиметров 7-10 незаполненными. Это пространство надо чем-нибудь заткнуть…

Верхнюю заглушку делаем из эпоксидной смолы. На следующий день снимаем гильзу с «нашего станка», вынимаем газету со скотчем двумя спицами. В верхней части шилом делаем дырки в корпусе гильзы: это даст возможность эпоксидной смоле затечь в них и более надежно «заткнуть» гильзу. Оборачиваем скотчем верхний край гильзы, подготовив, тем самым, «ванночку» для смолы. Заливаем эпоксидный клей, получаем следующее:

Еще через день все застывает — двигатель готов!

Теоретические расчеты показывают следующие параметры мотора

Тяга — целый килограмм! Честно говоря, не верилось!

Масса пустой гильзы 6,8 г; масса готового двигателя 28,8 г. Топлива — всего 22 грамма! Теория на уровне 5 класса средней школы показывает, что ракету массой 150 грамм этот движок может зашвырнуть аж на 300 м!

В реальности результат был скромнее. Но, главное! ракета вообще смогла оторваться от земли. Например, РП-8 (140 грамм) залетела на 130 м.

ИТОГ: очень легко, из подручного (по полям России таких гильз можно мешок насобирать в охотсезон) материала можно изготовить вполне приличный двигатель!

Замечу, что после полета от такого двигателя останется только «сопло»

и эпоксидная верхняя заглушка

пластиковый корпус гильзы исчезает

Позднее металлические остатки пригодились при изготовлении двигателя из корпусов отработанных БРДП20-ххх

Подробное описание изготовления такого мотора в седьмом полете РП-8.

Ракета от Амперки, часть 1: Теория ракетных двигателей. Карамельное топливо 04.07.2020 15:47

Вступление

Всем привет! Мы — команда ютуб-канала Амперки, в студии и пилим видео по проектам и железкам. Однако, в какой-то момент все изменилось.

Под катом — история постройки нашей ракеты.
Шла весна 2020 года и карантин самоизоляция не щадила никого. В том числе и нас, отлученных от студии, дабы не подвергались опасности заражения заморской бациллой. Вот в этот-то период и начали активизироваться в голове старые идеи сделать то, что давно хотелось, но что было отложено в долгий ящик «когда время будет». Наконец, то_самое_время пришло, и из того самого ящика была извлечена мысль о постройке собственной ракеты, еще и подстёгнутая недавним успешным пуском в эксплуатацию «батута» от SpaceX.

Читать еще:  Ваз 2110 богдан температура двигателя

Так как сделать такой серьезный проект за один заход не получится, разделим его для удобства на составные части (список будет пополняться по мере работы):

  1. Часть 1. Теория ракетных двигателей. Карамельное топливо

Ракетостроение, в целом, наука комплексная, сложная и многогранная. Релевантного опыта у нас не было, не кончали мы институтов по этому направлению, но есть руки, голова, желание —, а это уже многое, так что, как говаривал Юрий Алексеевич, поехали.

Теория ТТРД

Что такое реактивное движение, (для тех, кто, вдруг, не в курсе) много говорить не будем: если в двух словах, то это движение за счет отброса массы в противоположную сторону от направления движения. Про всякие экзотические конструкции двигателей типа ядерных, ионных и иже с ними говорить не будем — одна не предназначены для работы в атмосфере, другие слишком сложны и не воспроизводимы в любительских условиях и т.д., поэтому остановимся на простых, но доступных простому обывателю конструкциях, которые при желании можно повторить практически в домашних условиях, а именно — химических. В таких двигателях реактивная струя получается за счет химической реакции топлива и окислителя (в некоторых случаях роль окислителя может играть атмосферный кислород).

Итак, химические двигатели (ХРД), по агрегатному состоянию топлива классифицируются на жидкостные (ЖРД) и твердотопливные (ТТРД), так что выбирать будем из них. ЖРД весьма удобны, так как позволяют управлять тягой, однако требуют применения в своей конструкции сложных систем форсунок в камере сгорания и не менее сложных систем подачи топлива. Одно только проектирование ЖРД, даже самого примитивного, займет у нас месяцы, а, следовательно, это не наш вариант. Альтернативой могут стать ТТРД за счет простоты своей конструкции и значительно меньшими требованиями к топливу. Да, у нас не выйдет точно дозировать тягу. Точнее, мы ее совсем не сможем дозировать. Однако, есть некоторые аспекты, на которых мы можем сыграть, об этом и пойдет речь дальше.

Виды смесевого топлива

Самым первым, и, соответственно, примитивным топливом для ракет был порох: сначала дымный, а затем и бездымный. Китайцы, придумав эту горючую смесь, быстро догадались, что она не только может делать бух и много света, а еще и толкать снаряд, постепенно сгорая внутри него. Толку от него, конечно, мало, годится только для фейерверков, да и удельный импульс оставляет желать лучшего. Эволюцией бездымного пороха стали гомогенные (однокомпонентные) составы на основе нитроцеллюлозы. Они достаточно неприхотливы в хранении и эксплуатации, а также достаточно экологичны, однако имеют все тот же недостаток в виде слабого удельного импульса.

Намного лучший результат показывают смесевые составы из горючего и окислителя. Чаще всего в качестве такой пары применяют окислители из перхлоратов с горючим из порошка металлов и полимеров или широко известное в кругах моделистов-любителей «карамельное топливо», где в качестве окислителя используются нитраты (селитры) и сложные углеводы (сахар, сорбит) в роли горючего. Вот как раз последние два варианта (перхлоратное и карамельное) топливо мы и выбрали в качестве подопытных для нашей ракеты.

Расчет двигателя

Важнейшая характеристика твердого топлива — это скорость его горения, зачастую это значение — константа для определенного состава топлива. Горение распространяется по поверхности. Если просто поджечь конец цилиндрической топливной шашки, то мы получим торцевое горение, которое даст длительное равномерное прогорание, однако, получить при этом достаточную тягу для подъема ракеты в воздух не выйдет. Для повышения эффективности нужно сделать в топливе канал, по которому будет распространяться горение, повысив тем самым его площадь. Также нужно учитывать, что по мере выгорания профиль канала будет меняться, следовательно, будет меняться эффективная площадь. Можно, конечно, долго экспериментировать с различными профилями, однако, это все уже сделано до нас и упаковано в удобный программный инструментарий.

В программу можно внести все необходимые параметры и получить графики тяги, которую будет развивать ракета. В графе Grain configuration под знаком вопроса есть описательный мануал по различным профилям канала.

Опытным путем, применяя различные конфигурации канала мы нашли оптимальные параметры для нашей ракеты. Для получения таких же показателей нужно ввести такие значения:

Форму канала мы выбрали Moon burner. Умный Meteor c учетом введенных данных построил нам вот такой график:

Из этой диаграммы понимаем, что двигатель со старта получит хороший пинок и будет развивать весьма неплохую тягу на протяжении всего времени работы. По расчетам программы пиковое значение тяги получилось без малого 312 Н при пиковом давлении в 24.5 бар. Средние значения оказались около 265 Н и 19.5 бар соответственно.

Еще одним неоспоримым плюсом программы является возможность прямого экспорта рассчитанных значений в другую не менее полезную для нас программу — OpenRocket, при помощи которой мы будем рассчитывать стабильность ракеты, оперение, балансировку и другие важные показатели, но это будет уже в следующей серии.

Читать еще:  Штанга подвески двигателя дополнительная для чего

Однако, не топливом единым жив начинающий ракетостроитель. Не менее важное значение имеет сопло. По этому принципу РД делятся на сопловые и бессопловые. Последние, технически, имеют дозвуковое сопло, являющееся, по сути, просто отверстием или конусом в нижней части двигателя. Дозвуковым оно называется по той причине, что истекающие через него газы не могут достигать, а уж тем более, превосходить скорость звука, сколько бы не наращивалось давление в камере сгорания, об этом нам говорит гидродинамика. А против физики, как известно, не попрёшь. Тем не менее, такие сопла за счет своей простоты применяются в малых любительских ракетах, а также в фейерверках. Но мы же делаем ракету, значит, дозвуковые сопла — не наш путь.

Альтернативным решением является сверхзвуковое сопло или, как его еще называют по имени изобретателя, — сопло Лаваля. В упрощенном варианте представляет собой два усеченных конуса, сопряженных узкими концами. Место сопряжения называется критической точкой.

Принцип его действия напоминает принцип, на котором работает холодильник: газы, проходя «узкое горлышко» и попадая в бОльший объем резко охлаждаются, за счет чего уменьшается их объем, что приводит увеличению скорости их истечения. В результате, за счет перепада диаметра выпускного отверстия мы получаем на выходе струю газа, движущегося со сверхзвуковой скоростью. Таким образом, применив сопло Лаваля мы значительно повышаем КПД ракеты.

К слову, Meteor проводит расчеты, подразумевая, что на двигателе установлено как раз сверхзвуковое сопло, расчет и изготовление которого также оставим на следующий выпуск.
Итак, характеристики, параметры и габариты двигателя у нас есть, можно приступать к варке топлива.

Изготовление топливных шашек

Первым топливом у нас будет карамельное, готовить будем из сорбита и калиевой селитры. Сорбит можно купить в аптеке, он используется как сахарозаменитель. Калиевую селитру можно найти в садово-огородном отделе, но там она довольно грязная, поэтому купили ч/чда в Русхиме.

Простейший способ — измельчить компоненты до состояния мелкодисперсного порошка и смешать, но тогда топливо остается сыпучим и не будет держать форму. Решено сплавить компоненты вместе. Некоторые бесстрашные любители делают это в сковородках, на открытом огне, даже, бывает на костре, но нам дороги наши пальцы и глаза. Придется делать нагреватель с контролем температуры и песчаная баня, для которого нам понадобятся:

Из плиты выбрасываем ее родной регулятор и ставим в разрез твердотельное реле, управлять которым будем через Ардуино, к которой подключим дисплей и потенциометр, чтобы видеть текущую температуру и иметь возможность ее настройки. В форме для выпекания проделываем отверстие и вставляем термопару. Заполняем форму примерно наполовину песком солью (песка под рукой не оказалось, зато рядом был продуктовый магазин, на качество это не повлияет). Это нужно для создания среды с большой тепловой инерцией. Кстати, соль лучше брать «экстра», так как более крупная при нагреве начинает раскалываться и стрелять в разные стороны, устраивая Сталинград. В центре солевой бани устанавливаем выпарительную чашу, предварительно положив под ее дно щуп термопары. Контролировать процесс будем через первый попавшийся релейный регулятор для Ардуино. Проверяем пирометром разность температур между показаниями термопары и температуры чаши, вносим соответствующие коррективы.

Meteor заботливо подсчитал массу топлива, которая составила 838 г, возьмем с запасом, еще пригодится. Решено было сделать топливный заряд из нескольких шашек для простоты их изготовления. Потом можно будет их просто склеить между собой и вставить в корпус двигателя.

Не забываем про технику безопасности: вблизи топлива не должно быть никаких источников открытого огня, раскаленных предметов и чего-либо, что может вызвать возгорание.

Возьмем по массе 65% калиевой селитры и 35% сорбита, аккуратно засыпаем в чашу и добавляем немного воды. Это и нервы успокоит, и избавит от необходимости измельчать компоненты в пыль, так как в воде они и без того хорошо растворятся и смешаются. Ставим на огонь, выставляем температуру и ждем, постоянно помешивая. Постепенно полученная каша расплавится и станет похожа на овсянку. Надо дождаться выпаривания всей лишней воды (это можно будет понять по прекратившемуся выходу кипящих пузырьков).

Дальше надо действовать решительно: в заранее подготовленную водопроводную ПВХ-трубу, зафиксированную в держателе с внутренним креплением под круглую ось будем запрессовывать топливо.

После извлечения оси у нас как раз останется канал запала по всей длине шашки. Запрессовывать удобно при помощи держателя для дрели, такой очень удачно нашелся в студии. Важно запрессовать топливо таким образом, чтобы внутри шашки не оказалось пузырей и полостей, иначе это потом негативно скажется на горении.

Трубу с топливом откладываем и оставляем до остывания. Затем ее можно будет распилить и достать шашку. Мы сделали несколько штук, одну из них сожжем в целях эксперимента.

В следующем выпуске займемся корпусом двигателя, соплом и испытательным стендом.
А пока мы его готовим, рекомендую почитать следующую книжку про проектирование ЗУРов. Из нее была почерпнута бОльшая часть информации.

Вся серия целиком:

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector