Что такое электронный впрыск на карбюраторном двигателе - Авто журнал "Гараж"
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое электронный впрыск на карбюраторном двигателе

Систем питания с впрыском топлива, включая бензонасосы и фильтры

Конструкторские и исследовательские работы над системами впрыска топлива начались после второй мировой войны. Системы того времени являлись также оставались механическими.

Лишь в 60-е годы прошлого столетия появились первые электронные системы впрыска которые в настоящее время доминируют на автомобилях.

Электронные системы впрыска SPFI (Single Point Fuel Ijection)

Электронные системы впрыска — Одноточечный инжектор устанавливается в корпусе дроссельной заслонки, в том месте, где в раньше устанавливался карбюратор. Таким образом, электронный впрыск выполняется при помощи одной форсунки сразу для всех цилиндров.

Такая схема впрыска была введена в 1940-х годах на больших авиационных двигателях. В автомобильной промышленности на двигателях легковых автомобилях одноточечный инжектор стали устанавливать в 1980-е годы. У разных производителей система имела разные названия, например TBI у General Motors, CFI у Ford, EGI у Mazda. Из-за того, что топливо впрыскивается во впускные каналы, такая схема имеет общее название мокрый впрыск.

Самый главный плюс системы SPFI состоит в низкой стоимости самой системы. Большинство вспомогательных компонентов карбюратора, таких как воздушный фильтр, впускной коллектор и воздушный тракт могут использоваться совместно с системой SPFI без дополнительных доработок. Система SPFI широко использовалась на американском рынке с 1980-го по 1995-й год, на европейском же была популярна в начале и середине 1990-х годов.

CFI (Continuous Fuel Injection) — Непрерывный впрыск топлива. Топливо впрыскивается непрерывно при помощи одной или нескольких форсунок, но с переменной скоростью. Это главное отличие от большинства систем впрыска, в которых топливо впрыскивается короткими импульсами различной продолжительности каждого импульса.

Мощность установленного на автомобиле двигателя с впрыском топлива, как и мощность карбюраторного двигателя, регулируется изменением положения дроссельной заслонки, связанной с педалью акселератора. Если у карбюраторного двигателя при этом изменяется объем поступившей в цилиндры топливовоздушной смеси, то дроссельная заслонка двигателя с впрыском топлива регулирует непосредственно только объем воздуха, состав же смеси зависит от массы топлива, впрыскиваемого топливоподающей аппаратурой.

Принцип работы систем питания

Принцип работы систем питания с впрыском топлива основана на поддержании состава смеси в заданных пределах с помощью автоматического регулятора, дозирующего топливо в точном соответствии с количеством поступившего воздуха. Система впрыска позволяет точно соизмерять количество подаваемого топлива с режимом и нагрузкой двигателя, гибко реагировать на изменение условий эксплуатации автомобиля.

Требования к составу смеси на различных режимах работы двигателя с впрыском топлива в основном аналогичные требованиям, предъявляемым к карбюраторным системам питания автомобильных двигателей, учитываются при проектировании систем регулирования автомобильных двигателей.

Если 20…30 лет назад к системам питания предъявлялись требования касающиеся лишь точного регулирования состава смеси на всех режимах работы двигателя и высокой экономичности, то на сегодняшний день определяющим является требование по низкой токсичности отработавших газов (нормы, на которые постоянно ужесточаются).

К современному автомобильному бензиновому двигателю предъявляют следующие требования: – точное регулирование состава смеси на всех режимах работы двигателя; – высокая экономичность (..5 л/100 км при литраже двигателя до 1,2 л и ..6 л /100 км при литраже до 2 л); – выполнение норм по токсичности (в различных государствах действуют разные нормы, в Европе – EURO 1, 2, 3, 4, в США – в каждом штате свои нормы, но самые жесткие нормы штата Калифорния).

Выполнение этих требований, особенно по экономичности и токсичности, возможно только при использовании цифровых электронных систем впрыска топлива.

Системы питания с впрыскиванием бензина классифицируют по следующим признакам: по месту подвода топлива: – центральный (одноточечный) впрыск наиболее простой и оправдывает применение при либеральных нормах токсичности; – распределенный (форсунки у каждого впускного клапана) позволяет исключить неравномерность дозирования топлива между цилиндрами; – непосредственный (форсунки в головке цилиндров) позволяет организовать в цилиндре двигателя расслоение заряда, что способствует сгоранию бедных смесей; по способу подачи топлива: – с непрерывным впрыскиванием (в системах Бош К-Джетроник и Мультек) – прерывистым впрыскиванием (в системе Бош Л-Джетроник), которое бывает: – фазированным (подача бензина только на впуске); – не фазированным (подача на каждом обороте коленчатого вала).

Системы впрыска Бош Джетроник

Сначала компания Bosch разработала электронную систему впрыска топлива D-Jetronic, которая впервые была применена на автомобиле VW 1600 в 1967 году. Это была первая электронная система впрыска топлива, которая для расчета топливо-воздушной смеси использовала показания датчиков частоты вращения двигателя и плотности воздуха во впускном коллекторе. Эта система была адаптирована для автомобилей таких производителей, как VW, Mercedes-Benz, Porsche, Citroen, Saab и Volvo.

В 1974-м году Bosch модернизировала систему D-Jetronic до систем K-Jetronic и L-Jetronic, хотя некоторые автомобили (например Volvo 164) продолжали использовать систему D-Jetronic еще на протяжении несколько лет. В 1970 году компания Isuzu вместе с Bosch адаптировали систему впрыском топлива D-Jetronic для автомобиля Isuzu 117 Coupe, которая продавалась только в Японии.

Начало карьеры системы распределенного впрыска топлива для бензиновых двигателей, которую разработавшая ее фирма Bosch назвала KE-Jetronic, пришлось на начало 1980-х годов. Система проектировалась как переходная от механической системы впрыска K-Jetronic, которую КЕ во многом повторяла по исполнительной части, к электронным и поэтому не должна была просуществовать долго.

Автомобили с системой впрыска KE-jetronic выпускались с 1982 по 1993 год такими автопроизводителями, как Mercedes, Ford, AUDI, Volkswagen. Подобные машины достаточно широко распространены и в России. Вследствие того, что производитель и разработчик KE-jetronic фирма Bosch давала гарантию на свои компоненты на 8 лет, даже самые свежие автомобили с этой системой имеют проблемы с впрыском.

Система KE-jetronic

KE-jetronic является механическим системой впрыска с электронной коррекцией. Поэтому для правильного понимания работы КЕ необходимо в первую очередь разобраться с механической частью, а именно с давлениями топлива в разных частях дозатора и иметь начальное представление о теории регулирования.

Первым в цепочке узлов, составляющих KE-Jetronic, значится электрический топливный насос. В зависимости от модификации системы он может быть погружным, то есть размещенным непосредственно в бензобаке, или подвесным, расположенным вне бака. Топливный насос состоит из насосной части роликового или шестеренного типа и предназначенного для ее привода электродвигателя. Забрав из бака бензин, насос под давлением направляет его в топливный фильтр.

Система подачи топлива включает в себя: — Электрический бензонасос; — Аккумулятор топлива; — Фильтр тонкой очистки; — Регулятор системного давления; — Форсунки впрыска топлива.

Электрический бензонасос

Электрический бензонасос качает бензин из топливного бака под давлением более 5 Бар сначала в аккумулятор топлива, а потом через фильтр тонкой очистки в Распределитель топлива. Из распределителя бензин подается к топливным форсункам. Форсунки постоянно впрыскивают бензин во впускные каналы двигателя. Когда впускные клапана открываются, топливно-воздушная смесь засасывается в цилиндр. Регулятор системного давления поддерживает постоянную величину давления в системе и сбрасывает излишки бензина обратно в топливный бак. Вследствие постоянной циркуляции в системе подачи топлива, на впрыск всегда подается холодное (не подогретое работающим двигателем) топливо. Это свойство позволяет избежать появления пузырьков пара в бензине и гарантирует легкий пуск горячего двигателя.

Неисправности насосной части

Детали насосной части при работе трутся друг о друга. Где трение, там и износ. А где износ, там увеличение зазоров и появление утечек. В результате бензонасос перестает развивать давление, необходимое для нормальной работы системы.

Другая группа неисправностей – электрические. Изнашиваются щетки и коллектор электродвигателя. Случается, что из-за увеличившихся люфтов еще вполне работоспособные щетки начинают зависать – насос с такими щетками после удара по корпусу способен заработать снова, но вот надолго ли?

Уязвимое место – сетчатый фильтр топливозаборника перед насосом. На нем, как в пылесосе, собирается грязь, которая не успела прочно прилипнуть к стенкам бензобака. Если автомобиль после разгона свыше 60 км/ч начинает дергаться, первое, что нужно сделать, – залезть в бак и проверить состояние сетки. Как правило, оно оставляет желать лучшего. Некоторые автовладельцы, столкнувшись с полным забиванием топливозаборника грязью, выбрасывают сетку или пробивают ее шилом. Лучше все-таки попытаться ее очистить, а затем по мере возможности промыть топливный бак.

Читать еще:  Видеорегистратор включение с запуском двигателя

Внимание: В большинстве случаев все топливные насосы меняются целиком в сборе.

Supauto.RU — это интернет продажи запчастей для иномарок. Для получения подробной информации обращайтесь по телефону.

Москва
Воронеж
Нижний Новгород
Новосибирск
Ростов
Самара
Челябинск

«Зеленый» впрыск

**Не секрет, что появление термина «экология» напрямую связано с жизнедеятельностью человечества. Одно из первых мест в рейтинге изобретений, нещадно загрязняющих окружающую среду, занимают транспортные средства. Но без автомобиля никуда. Вот и задумалось все прогрессивное человечество, как бы передвигаться быстро и с комфортом, и сохранить то, что еще осталось первозданного от природы-матушки. Выход нарисовался один — сделать автомобиль более экологичным, а начали с усовершенствования двигателя внутреннего сгорания. И начался этот длинный и нелегкий путь, которому не видно конца-края до сих пор: путь от карбюратора к впрыску.

Старик-карбюратор
**Бензиновые двигатели — двигатели с внешним смесеобразованием и принудительным воспламенением. Прибор, в котором происходит распыливание жидкого топлива, испарение части его и устанавливается необходимое соотношение между количеством топлива и воздуха, называется карбюратором.
Различают карбюраторы трех типов, испарительный, впрыскивающий и поплавковый всасывающий.
Испарительные карбюраторы предназначались для работы на легкоиспаряющемся топливе (бензине). Воздух, проходя над поверхностью топлива, насыщался его парами и образовывал горючую смесь. Дроссельная заслонка определяла количество подаваемой смеси. Качество смеси, концентрация паров, регулировалось путем изменения объема пространства между поверхностью бензина и крышкой карбюратора. При множестве недостатков этого карбюратора (громоздкость, пожароопасность, необходимость частой регулировки из-за повышенной чувствительности к изменениям условий внешней среды ) у него было одно существенное преимущество — однородная топливовоздушная смесь, так как воздух смешивался с парами топлива.
Впрыскивающий (мембранный) карбюратор имел уже довольно сложное устройство. Топливный клапан перемещается под действием двух эластичных мембран. Первая мембрана разделяет воздушные камеры высокого и низкого давлений. Вторая разделяет следующую пару топливных камер, соответственно, низкого и высокого давлений.
Дроссельной заслонкой регулируется количество воздуха, а следовательно, и смеси, поступающей в двигатель. В одной из двух топливных камер, в результате скоростного напора воздуха, давление повышенное, а во второй, соединенной с горловиной диффузора, устанавливается разрежение (меньше сечение, больше скорость, меньше давление). Впрыскивающие карбюраторы работают точно и надежно при любом положении двигателя. Однако из-за сложности регулировок и обслуживания в автомобильных двигателях не применяются.
Наибольшее распространение получили поплавковые карбюраторы со всасыванием топлива при разрежении, возникающем в суженной части воздушного канала карбюратора — диффузоре вследствие местного повышения скорости потока воздуха.
Современный поплавковый всасывающий карбюратор отличается от простейшего более чем десятком дополнительных устройств. Кроме этого, он оснащен электронным управлением смесеобразованием. Применение таких карбюраторов позволяет поддерживать оптимальный состав топливовоздушной смеси, и оптимальное наполнение цилиндров на различных режимах работы двигателя; увеличить топливную экономичность и уменьшить содержание вредных соединений в отработавших газах; повысить надежность системы питания, а также облегчить обслуживание и диагностику.
И все же любому карбюратору свойственен элемент непредсказуемости в смесеобразовании, кроме того, эта система питания имеет свой предел максимума адаптации к режимам работы двигателя, а также потребляет большое количество топлива.

В борьбе за экологию
Совсем другое дело — впрыск. Он позволяет оптимизировать процесс смесеобразования в гораздо большей степени. Другими словами, впрыск может осуществляться более оптимально по месту, времени и необходимому количеству топлива.
Первые механические системы впрыска появились уже на заре автомобилестроения. Но они не могли конкурировать с более дешевыми карбюраторами и поэтому надолго были вытеснены с рынка серийных автомобилей. Эпоха карбюраторных двигателей могла бы продолжаться очень долго, если бы не ужесточение требований к экологичности. И чтобы обеспечить безболезненный переход автозаводов на выпуск более экологичных автомобилей, ужесточение норм проводилось поэтапно. Нефтяные кризисы заставили задуматься и о топливной экономичности. Таким образом, автопроизводители были вынуждены совершенствовать системы управления двигателем и сами двигатели, используя новейшие достижения науки и техники, для того чтобы сохранить право продавать свои автомобили.
Эволюцию систем управления двигателем можно рассмотреть на примере Европы.
До 1993 года в Европе действовали стандарты токсичности, в которые свободно укладывались карбюраторные двигатели, а также двигатели с механическим впрыском без нейтрализатора отработавших газов. В 1993 году в Европе были приняты более жесткие требования к токсичности, названные «Евро-1». Наряду с резким ограничением содержания вредных веществ в выхлопных газах появилось ограничение по испарениям топлива из систем автомобиля. Из всех вариантов решения проблемы снижения вредных выбросов самым эффективным оказалось использование каталитического нейтрализатора, в котором в результате химической реакции с кислородом в присутствии катализатора углеводороды, оксид углерода и окиси азота превращаются в воду. Особенность нейтрализатора заключается в том, что для эффективной борьбы со всеми вредными компонентами топливо должно подаваться в цилиндр в строгой пропорции с воздухом.
Механический карбюратор оказался не в состоянии обеспечивать точную дозировку топлива, и ему на смену пришел электронный карбюратор. Механический впрыск сменил впрыск электронный: центральный (одноточечный) и распределенный (многоточечный). Неотъемлемой частью систем с нейтрализатором стал датчик кислорода (лямбда-зонд). Для борьбы с испарениями топлива на автомобиль установили систему улавливания паров бензина.
В 1996 году в Европе вступил в силу новый стандарт токсичности — «Евро-2», более жесткий по сравнению с предыдущим. Единственной системой, которая позволяла укладываться в эти требования с большим запасом, была система с распределенным впрыском топлива. Эра карбюраторов завершилась.
Следующий шаг — «Евро-3» — был сделан в 2000 году. Ужесточение норм токсичности в этом стандарте дополняется требованием постоянного контроля работоспособности основных компонентов системы, неисправность которых приводит к увеличению вредных выбросов. Контроллеру была поставлена дополнительная задача — проверять правильность работы системы и информировать водителя о неисправностях. В 2005 году все автопроизводители Европы начинают выпуск автомобилей, удовлетворяющих нормам «Евро-4».
Для выполнения требований по экологичности и улучшению потребительских качеств автомобиля совершенствуются алгоритмы управления двигателем, нейтрализатор переносится ближе к двигателю или снабжается специальным подогревателем. Также используется система рециркуляции отработавших газов, добавляется система подачи вторичного воздуха, увеличивается число клапанов на цилиндр. Впускные трубы становятся изменяемой длины, фазы газораспределения меняются в зависимости от режима работы двигателя, впрыск топлива осуществляется непосредственно в цилиндр;
Россия тоже встала на путь борьбы за чистоту отработавших газов, выбрасываемых автомобилями в атмосферу. Формально в нашей стране с 1 января этого года действуют нормы токсичности, соответствующие уровню «Евро-3».

Что такое впрыск?
Впрыск современного автомобиля — это комплексная система управления, обеспечивающая оптимальный режим работы двигателя с целью снижения токсичности отработавших газов, повышения мощности и экономичности двигателя.
В системе управления двигателем можно выделить следующие составные части.
Контроллер. Это мозг системы, обрабатывающий информацию от датчиков о текущем режиме работы двигателя, выполняющий достаточно сложные вычисления и управляющий исполнительными механизмами.
Датчики — глаза системы, информирующие контроллер о том, что происходит с двигателем и автомобилем в целом в данный момент.
Исполнительные механизмы системы выполняют команды контроллера.
Для того чтобы двигатель нормально работал, необходимо определить оптимальное количество топлива и момент, когда его необходимо подать в цилиндр. Также необходимо определить оптимальный момент, когда необходимо подать в цилиндр искру. Плюс доставить в цилиндр топливовоздушную смесь в нужной пропорции. Первые две задачи решает тандем «датчики — контроллер», третью — «контроллер — исполнительные механизмы». То есть системы впрыскивания бензина более сложны, чем карбюраторные из-за наличия большого числа электронных элементов и требуют более квалифицированного обслуживания при эксплуатации.
В настоящее время впрыскивающие топливные системы классифицируют по различным признакам, а именно: по месту подвода топлива (центральный одноточечный впрыск, распределенный впрыск, непосредственный впрыск в цилиндры); по способу подачи топлива (непрерывный и прерывистый впрыск); по типу узлов дозирующих топливо (плунжерные насосы, распределители, форсунки, регуляторы давления); по способу регулирования количества смеси (пневматическое, механическое, электронное); по основным параметрам регулирования состава смеси (разрежению во впускной системе, углу поворота дроссельной заслонки, расходу воздуха).
Впрыск бензина позволяет более точно распределить топливо по цилиндрам. При распределенном впрыске состав смеси в разных цилиндрах может отличаться только на 6−7%, а при питании от карбюратора — на 11−17%. Отсутствие добавочного сопротивления потоку воздуха на впуске в виде карбюратора и диффузора и вследствие этого более высокий коэффициент наполнения цилиндров обеспечивает получение более высокой литровой мощности. При впрыске возможно использование большего перекрытия клапанов, (когда открыты одновременно оба клапана) для лучшей продувки камеры сгорания чистым воздухом, а не смесью. Лучшая продувка и большая равномерность состава смеси по цилиндрам снижают температуру стенок цилиндра, днища поршня и выпускных клапанов, что в свою очередь позволяет уменьшить потребное октановое число топлива на 2—3 единицы, поднять степень сжатия без опасности детонации. Кроме того, снижается образование окислов азота при сгорании и улучшаются условия смазки зеркала цилиндра. При всех этих преимуществах необходимо отметить, что состав смеси при впрыске топлива должен быть связан с режимом работы двигателя так же, как и при карбюраторном двигателе. Другими словами, для оптимальной работы двигателя соотношение бензина и воздуха практически может выдерживаться только в определенном диапазоне частичных нагрузок, а при пуске, холостом ходе, малых и максимальных нагрузках, при резком открытии дроссельной заслонки необходимо обогащение смеси.
Двигатели с системами впрыска легкого топлива производятся в Германии, США, Англии, Японии, Франции, Италии. Ведутся работы по этим системам и в России. Имеет место явное повышение топливной экономичности и снижение токсичности отработавших газов. Так, например, средний расход топлива автомобиля BMW 5281 с рабочим объемом двигателя 2,8 л и мощностью 193 л.с. равен 10−12 л/100 км, примерно на уровне «Волги» ГАЗ-24, имеющей двигатель вдвое меньшей мощности.
Но несмотря на все имеющиеся плюсы, требования к экологичности все возрастают. Поэтому системы впрыска постоянно совершенствуются и усложняются. Да и запас нефтепродуктов на планете не безграничен. Ведутся разработки по альтернативным видам ресурсов, а значит, будут и новые топливные системы. Так что, быть может, новая эра уже не за горами.

Читать еще:  Двигатель qd32 троит на холодную

Преимущества инжектора перед карбюратором

Преимущества инжектора перед карбюратором
Как известно, бензиновые двигатели оснащаются карбюратором или имеют топливный инжектор. Инжекторные системы подачи топлива имеют ряд преимуществ над карбюраторными и являются более прогрессивными практически по всем параметрам.

Инжектор – иностранное слово, но есть и наш русский эквивалент – впрыск или впрысковой двигатель.

Карбюраторный двигатель смешивает топливо с воздухом перед подачей в камеры сгорания с большим усилием через узкое горло — карбюратор, расходуя при этом около 10 процентов своей мощности. На смешивание бензина с воздухом тоже уходят силы двигателя. Если карбюратор получает много горючего, то он захлебывается и начинает «коптить», если мало, то тогда «не тянет».

В инжекторном двигателе бензин не засасывается, а впрыскивается из форсунки под давлением сразу в камеру сгорания, либо во впускной коллектор. И впрыскивается ровно столько, сколько нужно, ведь за этим следит электроника. Соответственно, мощность и экономичность увеличиваются. Простейшая электронная система впрыска включает в себя: электрический бензонасос, регулятор давления, электронный блок управления, датчик угла поворота дроссельной заслонки, датчик температуры охлаждающей жидкости, датчик числа оборотов коленвала и непосредственно инжектор.

В общем, инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

Точное дозирование топлива и, следовательно, более экономичный его расход. Дозирование топлива осуществляется довольно просто. Форсунки впрыскивают топливо каждый раз перед открытием впускного клапана. Причем столько, сколько решил дать блок управления, соответственно возникает импульс разной длины. Чем длиннее импульс, тем больше бензина за раз попадет. Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов.

Увеличение мощности двигателя примерно на 7-10%. Происходит за счет улучшения наполнения цилиндров, оптимальной геометрии впускного коллектора, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя.

Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки. Улучшенные параметры топливно-воздушной смеси увеличивают динамический момент двигателя.

Легкость пуска независимо от погодных условий. Например, в сильные морозы двигатель практически не требует прогрева и запускается «с пол-оборота», так что почти сразу можно ехать. За счет качества приготовления смеси и стабильность её состава реже, чем карбюратор требует чистки и замены. Контроль за системой производит электроника. Наличие электроники в инжекторе и вовсе может рассматриваться и как преимущество и как недостаток. Ведь электроника может выйти из строя в самый неподходящий момент, например, в дальней дороге. И если нет запасного блока, то придется вызывать помощь. А с карбюратором, кроме засорения жиклёров — устройств, распрыскивающих топливо в воздух, практически ничего не может случиться, и вы в любом случае доберетесь до пункта назначения или хотя бы до ближайшего сервиса.

Большая надежность и долговечность и т.д.

Инжекторная система по устройству и обслуживанию гораздо сложнее карбюраторной, и поэтому ремонт тоже сложнее и дороже.

Но если соблюдать несколько правил, большинство неприятностей можно избежать. Например, плохой бензин разрушает насосы, забивает фильтры, выводит из строя форсунки, поэтому покупать бензин по возможности лучше на проверенных автозаправках. И конечно, надо не забывать чистить бензобак от остающихся воды, грязи и ржавчины, часто менять топливные фильтры, стараться не допускать длительных простоев.

Необходимо помнить, что эффективность работы инжекторного двигателя во многом определяет и состояние форсунок — управляемых электромагнитных клапанов, обеспечивающих дозированную подачу в цилиндры двигателя топлива. А вот блок управления, которому и подчиняются все форсунки, хоть и деталь немаловажная, но и ломается он редко, да и проблем с регулировкой немного. Согласно статистике, 90% поломок инжектора связаны с поломкой датчиков или нарушением питания электронного блока.

В зависимости от количества форсунок и места подачи топлива, системы впрыска подразделяются на три типа: одноточечный (одна форсунка во впускном коллекторе на четыре цилиндра), многоточечный или распределенный (у каждого цилиндра своя форсунка, которая подает топливо в коллектор) и непосредственный (топливо подается форсункой непосредственно в цилиндры, как у дизелей).

Одноточечный впрыск конечно проще, он менее начинен управляющей электроникой, но и менее эффективен. Управляющая электроника позволяет снимать информацию с датчиков и сразу же менять параметры впрыска.

У одноточечного впрыска преимущество перед карбюратором состоит в экономии топлива, экологической чистоте и относительной стабильности и надежности параметров. А вот в приёмистости двигателя одноточечный впрыск проигрывает. Еще один недостаток: при использовании одноточечного впрыска, как и при использовании карбюратора до 30% бензина оседает на стенках коллектора.

Распределенный впрыск мощнее, экономичнее и сложнее. Применение такого впрыска увеличивает мощность двигателя примерно на 7-10 процентов.

Основные преимущества распределенного впрыска: 1). возможность настройки на разных оборотах и соответственно улучшение наполнения цилиндров, в итоге при той же максимальной мощности инжектор разгоняется гораздо быстрее; 2). бензин брызгает непосредственно прямо на клапан, что позволяет сделать более точную регулировку подачи топлива.

Что касается преимуществ бензинового двигателя с прямым или непосредственным впрыском, то они заключаются в том, что благодаря форсункам с электромагнитными клапанами возможен впрыск дозированного количества топлива в камеру сгорания в определенное время. Электронный блок подает в камеры сгорания ровно столько топлива и масла, сколько требуется двигателю при определенном числе оборотов коленчатого вала, реагируя на изменение режима работы мотора, меняя дозировку. Все это обеспечивает моторам улучшенные технические характеристики.

Кроме того, при использовании прямого впрыска концентрация токсичных веществ в выхлопных газах также уменьшается. А двигатели с прямым впрыском FSI еще и на 15% экономичнее бензиновых двигателей с обычной системой впрыска.

FSI расшифровывается как fuel stratified injection, что в переводе с английского означает «послойный впрыск топлива». В системе прямого впрыска FSI насос высокого давления нагнетает бензин в общую для всех цилиндров топливную рампу. При этом, топливо попадает сразу в камеру сгорания через форсунки. Блок управления дает команду на открытие каждой форсунки, а фазы ее работы значительно зависят от нагрузки двигателя и его оборотов.

Читать еще:  Необходимо ли ставить защиту двигателя на автомобиль

Прямой впрыск позволяет добиться преимущества перед карбюратором не только в увеличении мощности двигателя, эта система также обеспечивает хорошую тягу на низких и средних оборотах из-за постоянно изменяемых фаз газораспределения и позволяет серьезно экономить бензин.

В общем, современные инжекторные системы двигателя обеспечивают целый ряд немаловажных преимуществ перед своими карбюраторными собратьями, которые можно перечислять до бесконечности. Однако не стоит забывать, что все свои положительные качества инжектор проявляет только при условии соблюдения правил пользования и эксплуатации.

Что такое электронный впрыск на карбюраторном двигателе

Вот нашел статью.
Первый электронный двигатель (страницы истории)

Появившиеся в середине 90-х годов XX столетия отечественные двигатели, оснащенные электронной подачей топлива, уверенно вытесняют своих карбюраторных предшественников.
И не мудрено, ведь впрысковой мотор обладает лучшими мощностными показателями, более экономичны, выполняют жесткие экологические требования

В самом начале второй мировой войны (1939 год) в немецком «Luftwaffe» появились истребители «Мессершмидт» Me-109F2, на которых стоял V-образный двигатель с непосредственным впрыском и механической системой управления. К середине войны двигатели всех немецких истребителей были впрысковыми

В 1943 году начались испытания советского истребителя «Ла-7» с аналогичной системой топливоподачи

Первый автомобильный двигатель с непосредственным впрыском и механической системой управления был установлен на «Mercedes Benz 300 SL», выпуск которого был начат с 1954 года. Изменение количества топлива происходило в зависимости от оборотов двигателя, положения педали газа с учетом разрежения во впускной трубе.

Вместе с тем, аппаратура «Bosch» оказалась весьма сложной в производстве и эксплуатации. Дальнейшие исследования, проведенные фирмой «Mercedes Benz», показали, что равноценные результаты можно получить при переходе от впрыска топлива в цилиндр к впрыску во впускные патрубки двигателя и что при этом конструкция аппаратуры может быть значительно упрощена. Дальнейшей ступенью развития механического впрыска стала разработка системы непрерывного впрыска топлива во впускную трубу.

С середины 60-х годов автомобили «VolksWagen» стали оснащаться системой электронной подачи топлива «Elefant» Но это за рубежом. А что же у нас?

В 1963 году были начаты испытания опытного образца двигателя ГАЗ-327, спроектированного
и изготовленного в Конструкторско-экспериментальном отделе Горьковского автозавода (КЭО «ГАЗ») и оборудованного топливной аппаратурой впрыска бензина во впускную трубу с электронным управлением цикловой подачей топлива, конструкции
ЦНИТА (г. Ленинград).

Двигатель ГАЗ-327 был создан на базе серийного двигателя ГАЗ-21Д и имел степень сжатия e=7,2 (на серийном двигателе степень сжатия e=6,7). Основные конструктивные особенности опытного двигателя ГАЗ-327, в отличие от серийного ГАЗ-21Д, состояли в следующем:

Был изменен объем камер сгорания на другую степень сжатия без изменения формы камер;
Для улучшения наполнения цилиндров были применены впускные клапана увеличенного размера (с диаметром 43 мм вместо 39 мм у стандартного);
В верхней части головки блока, в специальных приливах против впускных каналов, были сделаны сквозные, с выходом в каналы, отверстия для установки электромагнитных форсунок;
Была изменена конструкция впускной трубы с целью впуска воздуха без его подогрева;
Из-за изменения конструкции головки блока была изменена конструкция выпускной трубы двигателя, в результате чего приемная труба глушителя стала короче;
Изменение режимов работы двигателя достигалось дросселированием потока воздуха в специальном двухгорловом воздушном патрубке, с последовательным открытием воздушных заслонок, имеющих одинаковый диаметр = 33 мм;
Отсутствовал бензонасос диафрагменного типа;
Была изменена конструкция корпуса привода распределителя зажигания из-за компоновки в нем дополнительного прерывателя для запуска устройства формирователя импульсов (датчик оборотов).
В остальном, конструкция опытного образца двигателя ГАЗ-327 была аналогична серийному ГАЗ-21.

По принципу действия система электронного впрыска топлива двигателя ГАЗ-327 очень напоминала современные системы распределенного впрыска.

Топливо под избыточным давлением (2 кгс/см2) подавалось во впускную трубу посредством электромагнитных форсунок. Давление топлива создавалось специальным электрическим бензонасосом и регулировалось редукционным клапаном и стабилизатором давления.

Впрыск топлива осуществлялся одновременно во все цилиндры один раз на цикл работы двигателя.

Создание импульсов тока на открытие топливных форсунок, изменяющейся продолжительности, в зависимости от режима и условий работы двигателя обеспечивался полупроводниковым блоком управления и различными датчиками:

Прерыватель запуска (датчик оборотов) служил для определения числа оборотов двигателя;
Нагрузка на двигатель определялась посредством датчика разрежения сильфонного типа с рабочим ходом 30 мм при перепаде давления в 500 мм. рт. ст.
Этот датчик обеспечивал экономический состав топливной смеси на всех установившихся режимах работы двигателя;
Для обеспечения оптимального регулирования цикловой подачи топлива на холостом ходу (обороты ниже 11001200 об/мин) применялся специальный каскад холостого хода;
Пневматический экономайзер, установленный на впускной трубе, отвечал за обогащение топливоподачи на режимах максимальной мощности (разрежение на впуске — 4060 мм. рт. ст.);
Обогащение топливоподачи при прогреве двигателя осуществлялось в ручную с помощью переменного сопротивления;
В качестве укорительного устройства, обеспечивающего обогащение состава смеси при резком падении разрежения на впуске (с 130150 мм. рт. ст. до 0 мм. рт. ст.), в момент резкого нажатия на педаль газа, использовался ускорительный датчик;
Для высотной коррекции состава смеси в условиях горной эксплуатации автомобиля применялся барометрический датчик, который по устройству и принципу действия был аналогичен датчику разрежения;
Кроме вышеуказанных датчиков, имелся и датчик горного отключения цикловых подач топлива, в задачу которого входила отсечка топлива на режимах принудительного холостого хода («торможение двигателем»).
Для получения сравнительных характеристик в КЭО «ГАЗ» были подвергнуты стендовым и дорожным испытаниям два двигателя:
ГАЗ-327 с электронным впрыском топлива и ГАЗ-21Д1 (стандартный карбюраторный двигатель с увеличенной степенью сжатия до e=7,1).

В результате стендовых испытаний были определены внешние скоростные характеристики двигателей, по которым можно сделать следующие выводы:

Впрысковой двигатель ГАЗ-327 развивал максимальную мощность на 14,3 л.с. (18,3%) больше, чем карбюраторный ГАЗ-21Д1. При этом обороты максимальной мощности увеличились на 400 об/мин.
Максимальный крутящий момент практически не изменился, однако обороты максимального момента увеличились на 1000 об/мин.
Дорожные испытания двигателей ГАЗ-327 и ГАЗ-21Д1 проводились на автомобилях М-21 «Волга».
Автомобиль и тип двигателя Разгон с 0 до 100 км/час, сек. Максимальная скорость, км/час Средний расход топлива, л/100 км
М-21 с двигателем ГАЗ-327 24,0 140,0 10,81
М-21 с двигателем ГАЗ-21Д1 30,0 127,5 11,52
Как видно из таблицы, динамика автомобиля с впрысковым двигателем была выше на 6 секунд (20,1%), максимальная скорость движения на прямой передаче выше на 12,5 км/ч (9,9%), а средний расход топлива в интервале скоростей движения 20120 км/час ниже на 0,71 л/100 км (6,2%).

По результатам испытаний авторитетной комиссией под председательством главного конструктора «ГАЗ». Просвирина были сделаны следующие выводы:

Двигатель ГАЗ-327, оборудованный системой впрыска бензина с электронным управлением подачи, работоспособен и имеет более высокие мощностные показатели, чем сравниваемый с ним двигатель ГАЗ-21Д1.
Система питания впрыска бензина с электронным управлением подачи работоспособна, обеспечивает быстрый и надежный запуск двигателя, хорошую приемистость и устойчивость его работы на различных режимах.
Автомобиль М-21 с двигателем ГАЗ-327 имеет удовлетворительную топливную экономичность и более высокие динамические качества, чем автомобиль М-21 «Волга» с двигателем ГАЗ-21Д1.
Двигатель ГАЗ-327 обеспечивает автомобилю М-21 «Волга» хорошие тяговые качества и приемистость, особенно при движении по городским улицам с интенсивным движением и по горным шоссе с частыми поворотами и крутыми спусками.
Торможение автомобиля двигателем ГАЗ-327 при движении на крутых, затяжных спусках, эффективнее, чем двигателем ГАЗ-21Д1, что уменьшает необходимость применения тормозов.
Отдельные узлы аппаратуры впрыска во время испытаний работали недостаточно стабильно и недостаточно надежно.
Комплект аппаратуры впрыска представляет собой сложное устройство, требующее при устранении неполадок и регулировках аппаратуры, наличия у обслуживающего персонала специальных знаний, стендов и приборов.
В заключение, комиссия сделала резюме: «двигатель ГАЗ-327, оборудованный аппаратурой впрыска с электронным управлением цикловой подачей топлива в принципе работоспособен, но аппаратура впрыска работает недостаточно надежно и недостаточно стабильно, и требует дальнейшей доводки».

Дальнейшая судьба двигателя ГАЗ-327 осталась неизвестной, но первый серийный отечественный электронный впрыск топлива появился лишь спустя 30 лет на двигателях Заволжского моторного завода

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector