0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что самое главное в двигатели

Беспилотная перспектива: какими будут отечественные двигатели для БПЛА

Современная авиация базируется на газотурбинных двигателях. Однако некоторые ее сегменты устойчиво связаны с поршневыми моторами, традиционно устанавливаемыми на учебно-тренировочные, спортивно-пилотажные, сельскохозяйственные самолеты, а также беспилотные летательные аппараты.

О поршневых двигателях для отечественных БПЛА и перспективах российского двигателестроения в этом сегменте рассказывает руководитель отдела Центрального института авиационного моторостроения имени П.И. Баранова (ЦИАМ, входит в НИЦ «Институт имени Н.Е. Жуковского») Лев Аронович Финкельберг.

Интервью было опубликовано в журнале «Беспилотная авиация» (спецвыпуск к Международному военно-техническому форуму «Армия-2020»).

— Лев Аронович, известно, что с поршневыми двигателями для беспилотных летательных аппаратов в нашей стране существуют определенные проблемы. Как это произошло? Можно ли преодолеть отставание?

— В 90-е годы на авиационные поршневые двигатели (АПД) упал спрос, началась своего рода «неопределенность» рынка. У инвестора не было понимания того, какую нишу могут занять двигатели такого типа, и, соответственно, не было потребности в них. Затормозился приток кадров в отрасль: профильные вузы перестали готовить специалистов-поршневиков. Все это, разумеется, сказалось на развитии всего направления.

Интерес начал возрождаться относительно недавно в связи с появлением различных типов беспилотных летательных аппаратов, которым стали необходимы отечественные поршневые моторы. Однако единственный в тот момент серийный АПД М-14П и его модификации в классе мощности 360-400 л.с. к этому времени уже не выпускались из-за отсутствия агрегатов и комплектующих (карбюраторы, магнето и т.д.) и ухода с рынка, как непрофильных, выпускающих такие двигатели предприятий.

Исправлению ситуации способствовало открытие Министерством обороны и Министерством промышленности и торговли Российской Федерации нескольких опытно-конструкторских работ по наиболее востребованным для применения на БПЛА поршневым авиадвигателям в классе мощности от 100 до 300 л.с. Отставание понемногу начало сокращаться, но на фоне того, что необходимо полностью восстанавливать целое направление отрасли, работа предстоит очень большая.

— Какова роль ЦИАМ в этом процессе?

— Роль ЦИАМ традиционна — формирование научно-технического задела, экспертиза разрабатываемых предприятиями двигателей, их испытания, в том числе в ожидаемых условиях эксплуатации. Специально созданные для испытаний таких двигателей термобарокамеры есть только в нашем институте. Практически все разрабатываемые и модернизируемые на базе иностранных аналогов двигатели проходят техническую оценку и испытания в ЦИАМ.

— Насколько техническое оснащение и кадровый состав института готовы к такого рода техническим вызовам?

— Не стал бы называть процесс восстановления выпуска отечественных поршневых моторов для авиации «техническим вызовом», хотя это, конечно, задача непростая. Сейчас идет планомерная работа по исправлению ситуации и выводу на рынок отечественных поршневых двигателей. По сути это требует создания новой инфраструктуры и нормативно-технической базы, в том числе позволяющей применять компоненты и комплектующие от наземной техники.

По нашим прогнозам, имеющегося научно-технического задела, созданного в том числе в ЦИАМ, хватит для того, чтобы через 3-4 года отечественные БПЛА все же смогли летать на «родных» поршневых моторах.

— Что можно сказать по ситуации в части двигателей внутреннего сгорания для легких БПЛА?

— На сегодняшний день практически все российские разработчики БПЛА применяют силовые установки, доработанные на основе импортных базовых двигателей. Однако основные жизненно важные системы (управления, взаимодействия с бортом) и датчики, соответствующие авиационным правилам, начинают разрабатываться и производиться отечественными предприятиями. Поэтому двигатели имеют другое название. Но самое главное здесь то, что появился российский производитель, который отвечает за дальнейшую эксплуатацию этого двигателя.

— Находящийся в том же классе более тяжелый тактический БПЛА «Форпост-Р» оснащается двигателем АПД-85. Пройдены ли госиспытания по этому двигателю? Каковы перспективы по АПД-80?

— Насколько известно, двигатель АПД-85 к испытаниям только готовится. Что же касается двигателя АПД-80, то его мощность в классе от 80 до 100 л.с. открывает сразу две ниши для его использования — беспилотная и сверхлегкая пилотируемая авиация. Скорее всего АПД-80 будет перспективен как для замещения двигателя на существующих летательных аппаратах, так и для создания самолетов новых схем.

— Продолжая идти вверх по увеличению размерности БПЛА, перейдем к MALE-классу. Каким получился двигатель АПД-115Т для БПЛА «Орион»? Что по нему можно рассказать?

— Базой АПД-115Т для БПЛА «Орион» является импортный аналог, доработанный отечественными установками турбонаддува и системой управления двигателем.

Существенно модифицировать двигатель на базе готового серийного импортного образца не так просто, как кажется. Сложность связана с тем, что разработчик при проектировании мотора ориентируется на несколько другую сферу применения летательного аппарата, на крыле которого будет установлен двигатель. Соответственно, конструкцией заложен другой ресурс, срок службы, диагностики и ремонта. При разработке мотора в новом исполнении разработчику приходится решать в том числе и эти задачи, что накладывает на него определенную долю риска. При этом увеличивается и объем испытаний, необходимых для подтверждения параметров, а, следовательно, стоимость конечного изделия.

— Как Вы полагаете, насколько удачная практика основывать отечественные двигатели для БПЛА на зарубежных разработках. Какие плюсы и минусы это имеет? Что перевешивает?

— Практика такая уже есть, и рассуждать о том, плохая она или хорошая, если не предлагать альтернатив, — не совсем корректно. Основной выигрыш разработчиков БПЛА от модернизации двигателей на основе зарубежных аналогов заключаются в сокращении срока создания своей техники, поскольку понятна комплектация силовой установки. При параллельной разработке двигателя и БПЛА мы рискуем остаться без конечного продукта в оговоренные контрактами сроки. Все остальное, связанное с доработкой систем управления двигателя, подтверждением ресурса, обеспечения комплектующих для ремонта и планового обслуживания ведет к значительному удорожанию конечного изделия по сравнению с базовым.

— Имеет ли место дефицит в некоторых технологиях для создания двигателей для БПЛА? Каким образом и как скоро его можно восполнить?

— Дефицит есть, и больше всего он ощутим в агрегатике. В целом выпуск комплектующих может быть локализован в России, просто на это потребуется чуть больше времени. В настоящее время ведутся работы по импортозамещению, или локализации дефицитных комплектующих. Базовые детали уже осваиваются и изготавливаются на отечественных предприятиях — это элементы кривошипно-шатунного и газораспределительного механизмов, корпусные детали и т.д.

— Остаются ли какие-то возможности по взаимодействию с зарубежными компаниями-разработчиками и производителями двигателей для БПЛА на настоящий момент?

— Не только остаются, но и ряд предприятий очень заинтересован в расширении рынка сбыта своей продукции. С некоторыми компаниями и в настоящее время ведется сотрудничество.

— Насколько допустим подход к использованию двигателей, адаптированных из других областей применения, например, из авто- и мототехники? Какие имеются преимущества такого подхода.

— Такой подход не только допустим, он успешно опробован на практике и применяется в том числе и сейчас. В ЦИАМ открыта научно-исследовательская работа «Адаптация» по созданию на базе автомобильного двигателя авиационного варианта. В ноябре прошлого года двигатель-демонстратор АПД-500, разработанный ЦИАМ на базе самого мощного мотора автомобиля «Аурус» из проекта ФГУП «НАМИ» «Единая модульная платформа», прошел испытания на винтовом стенде ООО «ОКБМ» (г. Воронеж). Была подтверждена возможность адаптации современного автомобильного двигателя в авиационную версию.

Преимущества адаптации имеющегося отечественного автомобильного двигателя в авиационный вариант — сокращение сроков выпуска подобных моторов, их стоимости и полное освоение технологий в России. Естественно, у авиадвигателей свои особенности, требования и ограничения. Нужно решить ряд научно-технических проблем, чем мы сейчас и занимаемся. В будущем такой двигатель может быть установлен на учебно-тренировочные, сельхозсамолеты, самолеты местных воздушных линий.

— Какие работы на создание научно-технического задела на перспективу по тематике поршневых двигателей для БПЛА ведутся в ЦИАМ?

Специалисты ЦИАМ ведут работу по развитию технологий для российских авиационных поршневых двигателей. Эволюция связана с применением на АПД электронных систем управления рабочим процессом, обеспечением качественного смесеобразования за счет различных видов впрыска топлива в двигатель, использованием высокоэффективных агрегатов наддува, турбокомпаундных узлов. Улучшению параметров АПД будут способствовать появление в его конструкции деталей из новых материалов. Технологии их изготовления и возможность применения мы также прорабатываем. Кроме того, важной задачей становится подготовка нормативно-технической документации по авиационным поршневым двигателям, соответствующей сегодняшним требованиям.

Читать еще:  Автономный жидкостный подогреватель двигателя как устанавливать

Информационно-аналитический журнал

Директор ИАНТЭ А. Лопатин – о прорывной разработке КНИТУ-КАИ, способной серьезно повлиять на возможности беспилотников. В университете изготовлен двигатель-демонстратор, показывавшийся на международной выставке АКТО-2018 в Казани и выставке в честь Дня машиностроителя в Набережных Челнах. В планах – существенное улучшение конструкции двигателя и выход не только на российские, но и на международные рынки.

Беспилотная авиация стремительно вошла в нашу жизнь в последние годы, став одним из самых быстрорастущих сегментов рынка летательных аппаратов. Вместе с тем, ее возможности в существующем формате БПЛА с винтом в качестве движителя серьезно ограничены.

Директор Института авиации, наземного транспорта и энергетики (ИАНТЭ) КНИТУ-КАИ, заведующий кафедрой Реактивных двигателей и энергетических установок Алексей Лопатин рассказал о новом типе двигателя, способном значительно увеличить скорость и в целом расширить возможности беспилотников – турбореактивном двигателе малой тяги. В университете изготовлен двигатель-демонстратор, показывавшийся на международной выставке АКТО-2018 в Казани и выставке в честь Дня машиностроителя в Набережных Челнах. В планах – существенное улучшение конструкции двигателя и выход не только на российские, но и на международные рынки.

— Расскажите, пожалуйста, о том, что представляет собой турбореактивный двигатель малой тяги и для каких целей он создавался?

— Прежде всего – зачем вообще это надо? В Советском Союзе достаточно неплохо была развита авиационная промышленность и двигателестроение. После 1991 года все стало постепенно приходить в упадок. В наши дни авиационная отрасль более-менее начала восстанавливаться, а вот с двигателестроением остались сложности. Если мы говорим о глобальном конкурентном гражданском двигателестроении, то серьезный игрок на рынке в Российской Федерации пока только один – «ОДК-Пермские моторы» с двигателем ПД-14, который сейчас проходит сертификацию, и перспективным двигателем ПД-35 для более тяжелого класса воздушных судов. Планируется возродить двигателестроение на заводе Кузнецова в Самаре, который в свое время делал двигатели для Ту-144. Это знаменитая «кузнецовская» серия двигателей НК, которые применяются в том числе и на тех изделиях, которые производятся у нас на Казанском авиазаводе. Но на данный момент наибольших успехов добились, конечно же, «Пермские моторы» во главе с генеральным конструктором Александром Александровичем Иноземцевым.

Но выясняется, что время не стоит на месте. Воздушные суда, которые сейчас широко применяются, становятся все более миниатюрными. Фактически речь идет о том, что беспилотная авиация будет развиваться во всем мире наибольшими темпами, даже более динамичными, чем традиционная гражданская авиация. Поэтому в ближайшем будущем, в диапазоне 5-10 лет, вполне возможно, что возникнут концерны, которые создают беспилотную технику и которые по капитализации вполне могут обогнать и «Боинг», и «Эрбас» – именно потому, что такого рода БПЛА сейчас широко входят в жизнь. Беспилотная техника находит все более широкое применение. Таким образом, мы выходим на тему двигателей малой тяги. Потому что если по созданию двигателей для больших лайнеров проведены достаточно большие работы и сейчас этот задел реализуется, то малые двигатели как никто не производил, так никто и не производит.

— Соответственно, на этом рынке меньше конкуренция?

— Конкуренции практически нет. Рынок есть, потребность в малых двигателях – гигантская, а во всем мире существует лишь несколько – от трех до пяти – компаний, занимающихся созданием и разработкой реактивных двигателей малой тяги.

— То есть именно беспилотные летательные аппараты (БПЛА) – основная область применения таких двигателей?

— Двигатели малой тяги применяются в двух серьезных «ипостасях». Первая – это собственно БПЛА, а вторая – это тоже БПЛА, но некоего «эстетического» характера – я говорю об авиамоделизме. Поэтому один из сегментов применения таких двигателей – это некое «приложение к игрушке», если говорить по-серьезному. Но традиционно у нас понимание, что беспилотник – это что-то с пропеллером. Теперь, если мы берем не беспилотник «для игры», а беспилотник «для дела» – каким делом он может заниматься? Разумеется, кроме того, что он может развозить пиццу, почту и тому подобное – то, что, несомненно, будет, но не сегодня. Основные задачи – это отслеживание технического состояния трубопроводов, элементы геологоразведки в сложных местностях, наблюдение за границами, наблюдение за миграциями животных, рыболовный промысел и так далее. Все это подразумевает гражданскую и не только гражданскую полезную нагрузку. Но если мы рассмотрим этот вопрос качественно, отдельно, то выяснится, что вся приборная база, которая сейчас есть, позволяет проводить аэрофотосъемку, регистрацию всех этих параметров со скоростью в несколько тысяч кадров в секунду. Так же обстоит дело и с замером параметров. То есть современная элементная база позволяет это делать очень быстро. Встает вопрос: получается, мы можем повысить эффективность работы этих установок? За счет чего? Тормозом здесь является использование в БПЛА винтовой тяги. Винт – это 160 км/ч максимум. И если мы говорим о скоростях 500-800 км/ч, то здесь мы обращаемся к турбореактивным двигателям малой тяги. И здесь на авансцену и выходят те самые двигатели, которые вначале воспринимались как игрушки, а сейчас являются весьма значимым элементом, как и любой двигатель летательного аппарата.

Иными словами, эффективность выполнения полетного задания сдерживает не авионика, не приборная база, а скорость движения летательного аппарата. Чем она выше, тем более эффективно будет использоваться летательный аппарат в воздухе.

Мы пришли к тому, что нужен новый принцип движения. Что приводит в движение винт? Это либо традиционный автомобильный поршневой двигатель, либо электродвигатель. И тот, и другой имеют явные недостатки. Что касается поршневого двигателя – это известные вещи, связанные с провалами в циклах работы и т. д. Электродвигатель – это необходимость возить с собой большие батареи. Тут мы сталкиваемся с эффективностью использования авиационной техники в принципе, потому что летательный аппарат зачастую может нести только себя и запас электроэнергии. Поэтому газотурбинный двигатель весьма перспективен в этой области. Даже несмотря на то, что он не самый энергоэффективный с точки зрения расхода топлива, за счет скорости, которую он способен обеспечивать летательному аппарату, этого топлива вполне достаточно, чтобы БПЛА смог выполнить полетное задание и вернуться обратно.

— Вы сказали, что в мире производством данного типа двигателей занимается всего несколько компаний. Что это за компании?

— Да, от трех до пяти компаний занимается реактивными двигателями малой тяги. В Германии есть крупная компания Jetcat, на Тайване – компания Ice Hammer, в Чехии – PBS Velká Bíteš. Есть их филиалы. То есть, на самом деле, рынок в этом сегменте достаточно пуст. Почему? В нашей стране, к сожалению, технических требований к малым двигателям не сформировано. Малые реактивные двигатели у нас практически никто не производил, и если мы идем по пути сертификации его как большого двигателя, то на это попросту жизни не хватит. Законодательная база в этом плане не развита. Но нас никто не ограничивает в беспилотных летательных аппаратах, которые не несут ответственность за человеческую жизнь. На БПЛА нет людей на борту, и мы имеем возможность использовать все ресурсы этого летательного аппарата, включая современные двигательные системы.

Интерес к данной теме возник достаточно давно, но у нас страна мегапроектов. Вы понимаете, что создание микротурбореактивного двигателя – это не мегапроект. Поэтому, наверное, и не было серьезного интереса. Для любого крупного КБ это не «системоформирующий» заказ. Для крупных КБ – к примеру, для КБ Люльки, ОДК «Сатурн», омского КБ, рыбинского КБ – это просто неинтересно по масштабу. Эти предприятия живут масштабами. Малых компаний в этой области у нас нет. Остаются университеты. Потому что единственные организации, которые обладают интеллектуальными возможностями для создания таких двигателей – это как раз университеты. В той или иной степени такими двигателями занимаются различные крупные российские технические университеты. Но именно мы вышли на тот этап, когда мы создали двигатель-демонстратор. То есть это еще не полноценный двигатель. Это двигатель, который представляет технологические возможности для работы по этой тематике. Он пока переутяжелен. То есть, двигатель, который мы представляли, должен будет иметь расчетную тягу 10 кгс и вес до 1,5 кг. Сейчас он переутяжелен, это делается специально, так как предстоят огневые испытания и мы просто-напросто страхуемся, чтобы не сжечь его сразу же. Потому что есть теплонагруженные элементы, такие как турбина, оси, опоры двигателя. Есть сопловой аппарат, выходное устройство, которое также высокотеплонагружено. И там еще нужно провести замеры. Кроме расчетной методики нужно еще подтвердить ее экспериментальными данными. И, разумеется, это двигатель будет кардинально, кратно облегчен.

Читать еще:  Что можно чинить в двигателе

— То есть пока это не предсерийный образец?

— Разумеется. Все-таки если мы говорим об авиации – любой: гражданской, военной, беспилотной – надо прежде всего понимать, что изделие, которое создает максимальную прибавочную стоимость – это самолет. А 60-70% самолета – с точки зрения технической сложности, управления и так далее – это двигатель. Поэтому разработка и создание двигателя – это важнейший момент. Самое главное – мы не идем по пути наших коллег из других стран или других городов, которые берут зарубежный аналог и пытаются его копировать. Я хочу подчеркнуть, что тот двигатель, который представлен, – это полностью разработка ученых – специалистов кафедры Реактивных двигателей и энергетических установок (РДиЭУ) КНИТУ-КАИ.

— Привлекались ли к созданию двигателя молодые специалисты и студенты?

— Конечно. Руководит работами по созданию двигателя доцент кафедры РДиЭУ Виталий Алексеевич Сыченков, с которым работают в основном молодые специалисты, студенты и аспиранты. Более того, в рамках одной кафедры такой двигатель создать тяжело. И на первом этапе мы привлекали сотрудников кафедры Теплотехники и энергетического машиностроения (ТиЭМ), доцентов Адольфа Степановича Лиманского и Андрея Владиславовича Ильинкова – по расчету турбины и компрессора. Планируется, что в рамках внутриуниверситетской кооперации на следующем этапе будет привлечена кафедра Радиоэлектроники и информационно-измерительной техники (РИИТ) профессора Юрия Кирилловича Евдокимова. Одной из проблем этих двигателей является их малый межремонтный ресурс – до 50 часов. Двигатели компактные, имеют частоту вращения до 150-160 тысяч оборотов в минуту. При таких оборотах большую нагрузку несут опоры, подшипники. Фактически это расходный материал. Наша задача, кроме тех «ноу-хау», которые используются в двигателе сейчас, кратно увеличить его ресурс за счет установки такой системы, как магнитный подвес ротора двигателя. Это как раз то, чем занимается профессор Евдокимов.

Ну, и предстоит важнейший финальный этап, когда мы будем заниматься цифровой моделью. Этап получения цифровой модели в современном мире является одним из основных моментов в разработке: «Если у вас нет цифровой модели, то вашего изделия не существует». Поэтому цифровая модель должна быть обязательно и она у нас будет, будет выполнена в современных программных комплексах.

Также стоит отметить, что мы планируем создать не один двигатель, а целую линейку двигателей – тягой 15, 25 и 30 кгс. Это перекрывает – и мы обсуждали это сегодня с индийской делегацией – большинство потребностей беспилотной техники. Самое главное, беспилотники используются в оборонных целях, в целях разведки, целеуказания и так далее, и этот момент очень важен. Беспилотник несет очень дороге оборудование. Скорость – помимо эффективности полетного задания, о котором мы уже упоминали, – это еще и возможность выживания летательного аппарата в сложных условиях.

— Меньше вероятность, что собьют.

— Конечно. Оборудование, которое стоит десятки, а иногда и сотни тысяч долларов, может проработать всего 10-15 минут и быть потеряно. Во-первых, это неприемлемо с финансовой точки зрения, а во-вторых, это неприемлемо с точки зрения обороноспособности страны.

— Есть ли в планах дальнейшее совершенствование конструкции двигателя?

Мое мнение, что задача университета – разрабатывать современные технологии, заниматься инжинирингом и воплощать новые технологии в жизнь. А производство – это не задача университета по большому счету. Здесь наш интерес в чем? Мы хотим заложить в двигатель технологии «Пятого технологического уклада». В частности, это аддитивные технологии. Совместно с кафедрой Лазерных технологий на этапе предсерийных испытаний мы планируем «вырастить» на основе аддитивных технологий нетеплонагруженные элементы, в том числе диск компрессора. Пока начнем с этого элемента, а дальше, возможно, будем двигаться в сторону высокотеплонагруженных элементов, таких как диск турбины, но там возможно использование только хромоникелевых сплавов…

— То есть от простого к сложному…

— Да. Дело в том, что там очень высокие температуры. Но чем хороши аддитивные технологии? Для каждого изделия есть такое понятие, как нормочас. То есть за сколько нормочасов работник способен сделать ту или иную конструкцию. Чем меньше нормочасы, тем меньше операций и тем меньше затраты. Современное развитие аддитивных технологий позволяет –в том числе в нашем университете – изготовить диски компрессора и даже турбины, которые не нуждаются в последующей тонкой механической обработке. Соответственно, мы экономим огромные финансовые ресурсы в серийном производстве. При тех же самых технических характеристиках это приведет к резкому удешевлению конструкции двигателя.

На самом деле, здесь абсолютно прагматичная идеология. Если мы сейчас не заложим технологии пятого технологического уклада, мы не сможем создать продукт, который будет востребован глобально.

— Где может быть развернуто серийное производство двигателя?

— Очень серьезно обсуждаются возможности локализации производства и российскими, и зарубежными партнерами – но на территории РФ. Дело в том, что к сожалению или к счастью тот технологический задел, который есть у нас в стране, интеллектуальный уровень позволяют нам с уверенностью говорить, что мы это можем сделать. На самом деле сделать авиационный двигатель могут лишь немногие страны. Существуют наземные энергетические установки, которые тоже в основе своей используют газотурбинный двигатель, но уровень технологий и ресурсов, заложенный в них, кратно меньше, чем в авиационных двигателях. И поэтому те страны и организации, которые могут создать авиационные двигатели, все остальное смогут создать точно. Мы берем по верхней планке. Плюс ко всему, те потребности, которые сейчас имеются, позволяют нам говорить, что мы можем быть конкурентными в мире. Мы не пытаемся создать двигатель, который будет интересен только здесь, в России. Это двигатель для глобального рынка и глобальной конкуренции.

Что самое главное в двигатели

Споры о том, сможет ли когда-нибудь электрический транспорт заменить двигатели внутреннего сгорания, ведутся не первый год. Но в последнее время они приняли особо ожесточенный характер. Особенно с появлением BMW i3 — первой модели, которая действительно претендует на массовость.

Вплоть до выхода i3 электромобили считались очень дорогой игрушкой для богатых и странных, которые очень далеки от народа. Ставшая нарицательной Tesla только подкрепляла такое отношение — пусть в Европе и Северной Америке уже вовсю используют гибридные двигатели, в России конкуренцию бензину и дизелю пока не может составить никто.

Или не мог — до того момента, как российским покупателям был представлен БМВ i3. Рецепт «народного» электромобиля прост, как все гениальное: отказ от специальных платформ для EV с постройкой автомобилей на многофункциональных платформах. Плюс линейка унифицированных двигателей и тяговых батарей, а самое главное — цена. Но стратегия БМВ по развитию электромобилей достойна подробного рассмотрения, чем мы и займемся.

Читать еще:  Вибрация двигателя на больших оборотах уаз

КАКИМИ БУДУТ ЭЛЕКТРОМОБИЛИ ОТ БМВ В БЛИЖАЙШИЕ ГОДЫ

Итак, 2020 год в корпорации BMW считают прорывным для сегмента EV, потому что на рынке появятся электромобили от БМВ с силовыми установками пятого поколения. Нынешние модели i3 и i8 пока остаются уникальными в своем роде, но остальной ряд электромобилей BMW будет строиться на модульных принципах конструирования.

Для них уже разработана линейка унифицированных электрических двигателей: отныне и далее двигатель, редуктор и электронный блок будут объединены в один сегмент. Двигатели будут поставляться со стандартными показателями мощности: 136, 258, 340 и 408 л. с., а для гибридных вариантов — до 204 л. с.

Для линейки новых электромобилей БМВ уже зарегистрированы индексы от i1 до i9 и от iX1 до iX9 для кроссоверов. Эти машины будут оснащены универсальными тяговыми батареями:

  • младшие модели с индексом 30е получат АКБ емкостью 60 кВт⋅ч и смогут проезжать до 450 км на одной зарядке;
  • средний вариант предусмотрен для автомобилей с индексом 40е — это АКБ на 90 кВт⋅ч с 550 км пробега;
  • самые дорогие модели 50е будут иметь батарею на 120 кВт⋅ч и проезжать без подзарядки 700 км.

Для автомобилей серии i аккумуляторные батареи будут «низкими», а для кроссоверов iX — «высокими» Унифицированные платформы позволят собирать на одном конвейере автомобили с разным типом привода. Электромобили от БМВ будут передне-, задне- и полноприводными, при этом компоновка нужного варианта станет технологически проще, чем на автомобилях с ДВС. Дорогие и мощные электромобили BMW будут иметь до трех электромоторов — на каждое заднее колесо будет устанавливаться по отдельному двигателю, что позволит легко управлять вектором тяги.

А самое главное — системно-унифицированный подход к производству позволит снизить цену на электромобили BMW и вывести их на действительно широкий рынок. Сейчас мировую экспансию электрического транспорта сдерживает высокая розничная цена, но по мере падения цен электромобили заполонят города. По прогнозам некоторых аналитиков, электрические двигатели смогут вытеснить ДВС из автопрома уже в ближайшие два десятилетия.

Сердце Indian – американский V-twin

Если задать вопрос: «Что в мотоцикле/автомобиле главное?», – то в 90% случаев мы получим ответ: «Двигатель». И этот ответ будет самым уместным, несмотря на важность остальных составляющих транспортного средства. Ведь именно двигатель превратил велосипед в мотоцикл, а повозку в автомобиль. А так как мотоциклы Indian c 1907 года комплектуются V-образными силовыми агрегатами, то о нем и пойдет речь.

Самое удачное решение

Идея V-образного двухцилиндрового двигателя является практически ровесницей самого мотоцикла. И доказательством ее разумности служит уже тот факт, что она до сих пор жива.

Но давайте для начала уясним, что это такое.

Название V-twin отражает конфигурацию двигателя, то есть, способ расположения цилиндров относительно друг друга. Вопрос о конфигурации встал, когда мощности одноцилиндрового двигателя внутреннего сгорания стало категорически не хватать (а для мотолюбителей, как известно, мощности никогда не бывает много). И вместо того, чтобы увеличивать до гигантских размеров единственный цилиндр, которому и места не находилось в раме почти велосипедного вида (хотя встречались и такие умельцы), был найден способ получше: увеличить число цилиндров.

Но даже два цилиндра можно расположить тремя разными способами: параллельно в один ряд, друг напротив друга или под углом (в виде буквы «V»). И соответственно расположению цилиндров двигатель будет называться рядным, оппозитным или V-образным (V-twin). Популярность третьего способа объясняется просто: такая схема делает мотор максимально компактным, особенно по ширине, что было важным аспектом для конструкторов того времени. Кроме того, он отлично вписался в геометрию мотоциклетной рамы.

Почему V-твин?

Первый в истории V-twin с двумя цилиндрами разработал и запатентовал в 1889 году немецкий конструктор Вильгельм Майбах, работавший в компании Готлиба Даймлера. Серийная же «двойка» Indian вышла в свет в 1907 году и с тех пор прочно закрепилась между колес практически всех моделей марки. А через два года такую конфигурацию двигателей стали использовать и Harley-Davidson. Таким образом, V-образная схема уже тогда дала повод считать ее «американской», что подкреплялось не самым восторженным отношением к ней у европейцев: там она считалась годной лишь для того, чтобы …возить люльку. К примеру, в знаменитой гонке «Tourist Trophy» («Турист Трофи»), проходившей в 1907 году на острове Мэн (Британия), мотоциклы разделили на два класса – 1-цилиндровые и 2-цилиндровые – именно потому, что первые считались заведомо быстрее! Собственно, итоги соревнований эту установку не опровергли: победитель на 1-цилиндровом агрегате выдал среднюю скорость 61,5 км/ч, а лучший гонщик на 2-цилиндровом – о всего 58,2 км/ч. Но, согласитесь, разница небольшая.

Откуда же возникло такое обидное для ценителей V-twin отношение? Небезосновательно предположение, что виной тому сама посадка пилота. В Европе мотоциклом управляли, сидя вертикально и немного наклонившись вперед, а это удобно только при короткой раме. В США же на байке сидели в свободной «ковбойской» позе, слегка откинувшись назад и выставив вперед ноги, а руль с нарочито вытянутыми назад рукоятками служил чем-то вроде поводьев. Такая посадка комфортна только при несколько удлиненной раме, которая необходима для установки V-твина. Преимущества V-образной «двойки» американцы доказали в 1911 году на той же самой гонке, где заводская команда Indian в буквальном смысле разгромила всех, взяв первые три места. Ну и количество рекордов, поставленных в дальнейшем на V-твинах, не оставляет сомнений в их преимуществах.

Современные V-твины Indian

Но вернемся к его конструкции. Не последнее значение имеет угол расположения цилиндров относительно друг друга. Экспериментов с углом развала было немало: его величина варьировалась в очень широком диапазоне, буквально от 10 до 160 градусов. В результате конструкторы нашли наиболее удачные варианты: 45°, 60° и 90° с небольшими отклонениями. Они и пользуются популярностью в современных V-образных агрегатах.

Для своих мотоциклов, выпускающихся с момента возрождения компании (с 2011 года), Indian Motorcycle разработала несколько моторов. Это 1000-кубовый и 1133-кубовый V-твины, Thunder Stroke 111, Thunder Stroke 116 и PowerPlus.

Чем они отличаются друг от друга? Помимо объема цилиндров и угла их развала, важным аспектом является способ охлаждения – воздушный или жидкостный, – от которого зависят некоторые качества. Главное преимущество V-твинов с воздушным способом охлаждения заключается в простоте его конструкции и, соответственно, обслуживания. А недостатки – в более узком рабочем диапазоне, чем у жидкостного, большей вибрации, и меньшей степени охлаждения заднего цилиндра.

Жидкостные двигатели обладают своими плюсами: широким рабочим диапазоном, высочайшей мощностью и крутящим моментом, компактностью конструкции. Минусами можно назвать, пожалуй, лишь сложность, делающую обслуживание более дорогим.

Воздушным охлаждением и углом развала 49 градусов обладают моторы Thunder Stroke, все остальные современные агрегаты Indian имеют жидкостное охлаждение и угол 60 градусов.

Итак, за 120 лет существования V-твины не просто не потеряли актуальность, но, судя по всему, их настоящая история только начинается. Indian Motorcycle умножает их главные достоинства – компактность и тягу – на инновационные технологии, и получает мощные, надежные и послушные агрегаты, раскрывающиеся во всей красе на классических тяжеловесах. А их бархатистый «рык» так ублажает слух, что рядные двигатели, несмотря на иную конструкцию, стараются звучать хотя бы немного похоже.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector