Что охлаждает двигатель внутреннего сгорания - Авто журнал "Гараж"
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что охлаждает двигатель внутреннего сгорания

ПАРОВОЗДУШНЫЙ КЛАПАН СИСТЕМЫ ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Изобретение относится к области бронетанковой техники и предназначено для использования в жидкостной системе охлаждения двигателя внутреннего сгорания танка. Паровоздушный клапан системы охлаждения двигателя внутреннего сгорания содержит корпус с крышкой. Внутри корпуса размещены подпружиненные воздушный и паровой клапаны. В крышке клапана по оси выполнено сквозное резьбовое отверстие. Клапан снабжен тарелкой, установленной под крышкой на торец пружины парового клапана, и регулировочным винтом, установленным в сквозном резьбовом отверстии, выполненном по оси в крышке клапана. В верхней части тарелки выполнено конусное углубление, взаимодействующее с торцом регулировочного винта. Техническим результатом изобретения является повышение надежности работы парового клапана и улучшение условий эксплуатации путем обеспечения регулировки давления срабатывания парового клапана без разборки паровоздушного клапана. 1 ил.

Паровоздушный клапан системы охлаждения двигателя внутреннего сгорания, содержащий корпус с крышкой, размещенные внутри корпуса подпружиненные воздушный и паровой клапаны, отличающийся тем, что, с целью повышения надежности работы парового клапана и улучшения условий эксплуатации путем обеспечения регулировки давления срабатывания парового клапана без разборки паровоздушного клапана, в крышке клапана по оси выполнено сквозное резьбовое отверстие, он снабжен тарелкой, установленной под крышкой на торец пружины парового клапана, и регулировочным винтом, установленным в сквозном резьбовом отверстии, выполненном по оси в крышке клапана, при этом в верхней части тарелки выполнено конусное углубление, взаимодействующее с торцом регулировочного винта.

Изобретение относится к области бронетанковой техники и может быть использовано в жидкостной системе охлаждения двигателя внутреннего сгорания (ДВС) танка.

Паровоздушный клапан (ПВК) устанавливается в расширительный бачок системы охлаждения ДВС, служит для поддержания определенного давления паров охлаждающей жидкости и воздуха в системе, т.е. предохраняет узлы системы охлаждения и ДВС от перегрузки при избыточном давлении перегрева двигателя или разрежения при его остывании.

Известен ПВК, в корпусе которого установлены подпружиненные паровой и воздушный клапаны, регулируемые резьбовыми соединениями. Доступ к регулируемым гайкам закрыт стопором.

Недостатком этой конструкции является сложность регулировки давления срабатывания парового клапана. Для доступа к регулировочной гайке необходимо снимать стопорное устройство. Кроме этого срабатывание клапана происходит не при постоянном давлении из-за того, что паровой клапан перемещается в двух направляющих отверстиях, одно из которых находится в корпусе ПВК, а другое — в воздушном клапане. Направляющие отверстия могут быть расположены несоосно. Во время эксплуатации верхнее направляющее отверстие корпуса ПВК может засоряться тонкодисперсной пылью, а в отверстии воздушного клапана образуется накипь. В результате указанного паровой клапан заклинивается и его срабатывание происходит при большем давлении в системе охлаждения, чем предусмотрено требованиями. При этом узлы и детали системы охлаждения и ДВС подвергаются перегрузке и могут выйти из строя.

Танковая система охлаждения и ДВС работают с большой теплонапряженностью. Допускаемая температура охлаждающей жидкости оговаривается в определенных пределах, поэтому давление в системе охлаждения допускается также в определенных пределах.

ПВК регулируется на срабатывание при определенном давлении, обеспечивая тем самым заданную допустимую температуру охлаждающей жидкости.

Недостатком прототипа является то, что получается большой разброс давления срабатывания ПВК из-за того, что верхний конец паровой пружины поджимается крышкой. При сборке ПВК нажатием на крышку пружина сжимается, а крышка стопорится кольцом. Параллельность торцов пружины и соосность отверстия в крышке под торец пружины и буртика на паровом клапане влияют на давление срабатывания клапана. При очередной разборке — сборке для обслуживания, пружина занимает нефиксированное положение и давление срабатывания отличается от первоначально отрегулированного больше допуска на срабатывание клапана. Для регулирования давления срабатывания вновь приходится разбирать ПВК и добиваться заданной величины давления срабатывания.

Целью настоящего изобретения является повышение надежности работы ПВК и улучшение условий эксплуатации.

Указанная цель достигается тем, что в ПВК системы охлаждения ДВС, содержащем корпус с крышкой, размещенные внутри корпуса подпружиненные паровой и воздушный клапаны, в крышке клапана по оси выполнен прилив с резьбовым отверстием, в котором установлен регулировочный винт с конусным торцом. Под крышкой на верхний торец пружины парового клапана свободно установлена тарелка. Сверху в тарелке по центру выполнено конусное углубление, в которое упирается торец регулировочного винта.

Сопоставительный анализ с прототипом показывает, что предлагаемый ПВК отличается наличием в крышке клапана центрального резьбового отверстия, в которое установлен регулировочный винт, взаимодействующий с конусным углублением тарелки, свободно установленной на верхнем конце пружины парового клапана.

Таким образом, заявляемый паровоздушный клапан соответствует критерию изобретения «новизна».

Сравнение заявляемого изобретения не только с прототипом, но и с другими техническими решениями в данной области техники, не позволило выявить в них признаки, отличающие заявляемое решение от прототипа, что позволяет делать вывод о соответствии критерию «существенные отличия».

Изобретение поясняется чертежом, на котором представлен общий вид ПВК.

ПВК содержит корпус 1, внутри корпуса внизу выполнено полированное седло под паровой клапан и кольцевые проточки под стопорные кольца.

В нижней части корпуса установлена сетка 2 для защиты внутренней полости ПВК от осадков и примесей, содержащихся в охлаждающей жидкости. Сетка зафиксирована стопорным кольцом 3. В верхней части корпуса установлена крышка 4 с отверстиями, защищенными сеткой 5 для свободного прохождения воздуха и паровоздушной смеси и сквозным резьбовым отверстием в центре для установки регулировочного винта 6. Крышка фиксируется от вертикального перемещения стопорным кольцом 7 и является легкосъемным элементом при техобслуживании ПВК. Под крышкой свободно расположена тарелка 8, поджатая пружиной 9 парового клапана 10, резиновая прокладка 11 и воздушный клапан 12 с пружиной 13. На тарелке 8 выполнено конусное углубление, в которое входит конец винта 6.

Читать еще:  Вспомогательный обогрев двигателя что это

Устройство и регулировка воздушного клапана осуществляется как и в прототипе, а именно за счет подобранной пружины 13, поджимающей воздушный клапан 12 к прокладке 11. Большой интервал допустимого давления на разрежение в системе охлаждения не требует дополнительной регулировки воздушного клапана. Регулировка парового клапана осуществляется поджатием пружины 9 через тарелку 8 регулировочным винтом 6 до обеспечения требуемого давления срабатывания клапана по техническим требованиям с последующей надежной контровкой винта. ПВК устанавливается в расширительный бачок системы охлаждения ДВС через прокладку.

В случае превышения максимально допустимой температуры охлаждающей жидкости в системе охлаждения двигателя и достижения максимального давления в расширительном бачке, на которое отрегулирован паровой клапан, происходит его срабатывание. А именно, пpeoдoлeвaя силу сжатия пружины 9, происходит открытие парового клапана 10 и выброс паровоздушной смеси через зазоры между паровым клапаном и корпусом 1 в отверстия крышки 4 и в моторно-трансмиссионное отделение танка. Тем самым защищаются узлы системы охлаждения и двигателя от перегрузок при избыточном давлении от перегрева.

В связи с тем, что в предложенном ПВК на верхний торец пружины парового клапана свободно установлена тарелка, в центральной части которой выполнена конусная засверловка, а в крышке установлен регулировочный винт, обеспечена возможность регулировки срабатывания парового клапана без разборки ПВК. Этим самым улучшились условия обслуживания ПВК при эксплуатации.

В связи с тем, что усилие сжатия пружины парового клапана регулировочным винтом направлено по центру, исключено влияние взаимного положения деталей на точность срабатывания парового клапана. Точность срабатывания парового клапана при этом повышается почти в 20 раз. Кроме того после частичной сборки-разборки в условиях эксплуатации регулировки ПВК не потребуется.

Активные жалюзи системы охлаждения двигателя внутреннего сгорания легкового автомобиля

Проанализирована практика применения активных жалюзи в современном автомобилестроении. Отмечена их высокая эффективность, а также снижение аэродинамического сопротивления автомобиля на 6…10 % в случае их использования. Уменьшение времени подогрева двигателя внутреннего сгорания обеспечивает более быстрый обогрев салона. Все это способствует экономии топлива и уменьшению выбросов вредных веществ в атмосферу. Рассмотрено применение активных жалюзи радиатора с двумя автономными управляемыми секциями. Исследования выполнены с использованием численного моделирования CFD. Определены потенциальные возможности предлагаемого варианта активных жалюзи. Установлено, что, помимо высокой эффективности, жалюзийная система имеет более простую конструкцию и надежность, обусловленную несколькими факторами. Благодаря вертикальному расположению жалюзи разработанная конструкция не снижает эффективность систем охлаждения двигателя и кондиционирования воздуха автомобиля. В отличие от существующих конструкций предлагаемая жалюзийная система регулирует подачу охлаждающего воздуха путем раздельного открытия или закрытия двух независимых секций.

Литература

[1] Евграфов А.Н., Мамедов В.А. Пути улучшения аэродинамики легковых автомобилей. Автомобильная промышленность, 1984, № 4, с. 12–14.

[3] Rhyu S.-H., Lee J.-J., Gu B.-G., Choi B.-D., Lim J.-H. Development of a Micro-Step Voltage-Fed Actuator with a Novel Stepper Motor for Automobile AGS Systems. Sensors, 2014, vol. 14, pp. 8026–8036, doi: https://doi.org/10.3390/s140508026

[5] El-Sharkawy A., Kamrad J., Lounsberry T., Baker G., Rahman S.S. Evaluation of Impact of Active Grille Shutter on Vehicle Thermal Management. SAE International Journal of Materials and Manufacturing, 2011, vol. 4(1), pp. 1244–1254, doi: https://doi.org/10.4271/2011-01-1172

[6] Amin I., Duncan R. Operating an Engine-Grille Shutter Motor with DRV8872-Q1. Application Report SLVA858–December 2016. URL: http://www.ti.com/lit/an/slva858/slva858.pdf (дата обращения 15 декабря 2018).

[7] Budumuru V., Dunn P. Using AcuSolve and MotionSolve for determining torque requirements of an Active Grille Shutter Application. Altair Technology Conference, India, 2017, pp. 1–4. URL: https://www.altairatc.com/india/previous-events/atc/2017/MBD/04_MBD_ShapeCorp-Altair%20Technology%20Conference%202017_NetShape.pdf (дата обращения 10 октября 2018).

[8] Romain N. Radiator shutter for reduced aerodynamic drag. URL: http://www.car-engineer.com/radiator-shutter-reduced-aerodynamic-drag/ (дата обращения 10 марта 2018).

[9] Schütz T. Hucho-Aerodynamik des Automobils. Strömungsmechanik-Wärmetechnik-Fahrdynamik-Komfort. 6. Vollständig neu überarbeitete und erweiterte Auflage. Springer Vieweg, Springer Fachmedien Wiesbaden 2005, 2013. 1171 p.

[10] Williams J. Aerodynamic Drag of Engine-Cooling Airflow with External Interference. SAE World Congress, Detroit, MI, United States, 3–6 March 2003, code 90286, doi: 10.4271/2003-01-0996

[11] D’Hondt M., Gilliéron P. Aerodynamic drag and flow rate through engine compartments of motor vehicles. 28th AIAA Applied Aerodynamics Conference, 28 June–1 July 2010, Chicago, Illinois, code 82594.

[12] D’Hondt M. Etude theorique, experimentale et numerique de l’e-coulement de refroidissement et de ses effets sur l’aerodynamique automobile. Docteur de l’Université d’Orléans. Universite d’Orleans, 2010. 279 p.

[13] Katz J. Race Car Aerodynamics. Cambridge, Bentley Publishers, 1995. 316 p.

Читать еще:  Что такое индукционный двигатель для минимоек

[14] Baeder D., Indinger T., Adams N.A., Unterlechne P., Wickern G. Interference effects of cooling airflows on a generic car body. Journal of Wind Engineering and Industrial Aerodynamics, 2013, vol. 119, pp. 146–157, doi: 10.1016/j.jweia.2013.05.009

[15] Петров А.П. Факторы, связывающие аэродинамику автомобиля с его внутренней аэродинамикой. Журнал автомобильных инженеров, 2016, № 1(96), с. 8–11.

[16] Petrov A. Effect of inner air flow on the aerodynamics of the car. Periodica Polytechnica Transportation Engineering, 2017, doi: https://doi.org/10.3311/PPtr.10376

[17] Петров А.П., Петров К.А. Влияние внутренних потоков на аэродинамику легкового автомобиля. Автотракторостроение-2009. Матер. Междунар. симп., Москва, МГТУ «МАМИ», 2009, с. 235–245.

[18] Петров А.П., Синицын С.Н., Банников С.Н. Математическая модель воздушного тракта с воздухозаборными отверстиями системы охлаждения двигателя. Автомобилестроение: проектирование, конструирование, расчет и технологии ремонта и производства. Матер. Всерос. науч.-практ. конф., 2014, Ижевск, Изд-во ИННОВА, 2015, с. 51–56.

Как работает радиатор охлаждения двигателя

В процессе работы двигателя внутреннего сгорания (ДВС) температура внутри блока цилиндров может достигать 2000°С. Для того что бы двигатель работал в заданном температурном режиме его надо охлаждать, иначе силовой агрегат попросту перегреется и выйдет из строя. Поэтому охлаждение ДВС – одна из важнейших задач, которую решают конструкторы современных машин, совершенствуя и модернизируя как отдельные детали, так и всю систему целиком.

Функциональное предназначение

Главным элементом, входящим в систему охлаждения ДВС, по праву считается радиатор. Именно эта деталь позволяет эффективно и быстро приводить к заданным параметрам температуру охлаждающей жидкости (ОЖ), поддерживая необходимый режим и защищая мотор от перегрева.

Существующие в настоящее время системы охлаждения двигателя, помимо ключевых задач, выполняют целый комплекс вспомогательных функций, повышая тем самым комфорт и качество эксплуатации транспортного средства:

  • сохранение комфортного уровня температуры внутри салона при работе системы отопления, климат-контроля;
  • отвод излишков тепла от картера смазочной системы;
  • охлаждение отработанных выхлопных газов;
  • поддержание нормальных эксплуатационных параметров рабочей среды в автоматической коробке переключения передач (АКПП);

Конструктивные особенности

Радиаторы всех транспортных средствимеют приблизительно одинаковый конструктив, который состоит из следующих основных элементов:

  • верхний и нижний баки (иногда левый и правый);
  • соты из металлических пластин;
  • трубкипо которым циркулирует антифриз;
  • вентилятор;
  • крепежные детали и элементы.

Непосредственно функцию охлаждения выполняет именно сердцевина радиатора, представляющая собой систему тонких поперечных пластин, сквозь которые проложены тонкие вертикальные трубки. Жидкость, поступающая в эти трубки, расходится на множество потоков, что позволяет обеспечить ее интенсивное охлаждение и направление к мотору по замкнутому контуру.

Верхний и нижний баки радиатора совмещены с корпусом и системой трубок специальными патрубками. Нижний бачок имеет специальное устройство – краник для слива ОЖ. Еще один такой кран присутствует в конструкции рубашки мотора.

Сердцевина радиатора охлаждения двигателя бывает двух видов:

  1. Трубчато-пластинчатой. Наиболее распространенный вариант. Трубки при этом могут располагаться в шахматном порядке, под углом или в ряд. Ребра имеют либо плоскую, либо волнистую форму. Допускаются разные размеры трубок по длине.
  2. Трубчато-ленточный. Охлаждающие трубки всегда расположены в ряд. Основной материал изготовления – медь. Толщина, как правило, находится в пределах 0,05 – 0,1 мм.

Для современных автомобилейрадиаторы все чаще изготавливаются из алюминиевых сплавов, что удешевляет их себестоимость и снижает вес изделия..

Особенности функционирования

Система охлаждения двигателя работает и обеспечивает высокую эффективность отведения излишков тепловой энергии от силового агрегата в следующей последовательности:

  • Тосол (или антифриз), под воздействием специального водяного насоса, находится в постоянном движении, циркулируя по герметичному, замкнутому контуру.
  • ОЖ забирает часть тепловой энергии и отводит ее от корпуса мотора.
  • Далее жидкость направляется в радиатор, где происходит охлаждение, отвод тепла в атмосферу. На этом рабочий цикл заканчивается и повторяется вновь в той же последовательности.

В целях повышения эффективности ОЖ перед корпусом радиатора установленспециальный вентилятор. Его задача – прогонять воздух, активизируя процесс охлаждения тосола или антифриза.

Поддержание радиатора в технически исправном состоянии – одно из важнейших условий эффективногофункционирования системы охлаждения, работы двигателя и автомобиля в целом.Для того что бы он служил долго и эффективно и выполнял свои задачи, надо регулярно промывать его наружную поверхность, от слоя пыли и грязи ,которые, сильно снижает эффективность его работы.

Что охлаждает двигатель внутреннего сгорания

Основной тенденцией развития современного двигателестроения является форсирование двигателей внутреннего сгорания по среднему эффективному давлению и давлению наддува. Это приводит к повышению тепловых и механических нагрузок на основные детали двигателя, росту виброактивности дизелей, что обусловливает необходимость совершенствования систем, обеспечивающих надежную работу двигателя во всем диапазоне эксплуатационных режимов, прежде всего — систем смазки и охлаждения. Одним из факторов, отрицательно влияющих на надежность двигателей с жидкостными системами охлаждения, являются эрозионно-коррозионные разрушения элементов систем, прежде всего, наружных поверхностей цилиндровых втулок, омываемых охлаждающей жидкостью. Статья посвящена актуальной проблеме выбора параметров охлаждения современных двигателей внутреннего сгорания с высоким уровнем форсированности и перспективных двигателей. Методика выбора параметров охлаждения включает выявление наиболее значимых из них и обоснованное определение предпочтительных значений данных параметров с учетом требований экономичности и надежности судовых дизелей. Для решения поставленной задачи предложен алгоритм, учитывающий конструктивные характеристики двигателя, параметры рабочего процесса и режимы охлаждения. В статье приводятся расчетные формулы, позволяющие реализовывать предложенный алгоритм. В качестве основных параметров охлаждения, влияющих на интенсивность эрозионно-коррозионных разрушений и экономичность дизеля, установлены температура и давление в системе охлаждения и водородный показатель охлаждающей жидкости. Результаты проведенных расчетов позволяют оценить влияние указанных факторов на интенсивность эрозионно-коррозионных разрушений и удельный расход топлива, а также рекомендовать наиболее предпочтительные параметры охлаждения. Выводы, сделанные на основании проведенных расчетов, подтверждаются результатами моторных испытаний. В статье предложены технические решения, позволяющие осуществлять автоматическое управление параметрами охлаждения судовых дизелей.

Читать еще:  Внезапно что то застучало в двигателе

Ключевые слова

судовые двигатели внутреннего сгорания, жидкостные системы охлаждения, эрозионно-коррозионные разрушения, параметры охлаждения, алгоритм выбора параметров охлаждения, свойства охлаждающей жидкости

Читать полный текст статьи: PDF

Список литературы

Ципленкин Г. Е. Уровень форсировки поршневых ДВС нового поколения / Г. Е. Ципленкин, В. И. Иовлев // Двигателестроение. — 2016. — № 1. — С. 25-30.
Безюков О. К. Состояние и перспективы судового двигателестроения в России / О. К. Безюков, В. А. Жуков // Вестник Астраханского государственного технического университета. Серия: Морская техника и технология. — 2017. — № 2. — С. 40-53. DOI: 10.24143/2073-1574-2017-2-40-53.
Дорохов А. Ф. Моделирование теплопередачи через стенку рабочего цилиндра поршневого ДВС и управление его напряженно-деформированным состоянием. / А. Ф. Дорохов, Н. В. Пахомов // Современные технологии. Системный анализ. Моделирование. — 2015. — № 1 (45). — С. 68-74.
Гулиев Н. Р. Анализ условий работы деталей цилиндропоршневой группы современных двигателей внутреннего сгорания / Н. Р. Гулиев, В. А. Рыжов, Е. В. Коробов, Д. А. Никитин // Аграрные конференции. — 2017. — № 5 (5). — С. 19-29.
Безюков О. К. Охлаждающие жидкости транспортных ДВС / О. К. Безюков, В. А. Жуков. — СПб.: Изд-во СПГУВК, 2009. — 263 с.
Полипанов И. С. Повышение надежности систем охлаждения / И. С. Полипанов, О. К. Безюков, Е. К. Забелина // Речной транспорт (XXI век). — 1988. — № 3. — С. 30-32.
Безюков О. К. Охлаждение транспортных двигателей внутреннего сгорания / О. К. Безюков, В. А. Жуков, В. Н. Тимофеев. — СПб.: Изд-во ГУМРФ им. адм. С. О. Макарова, 2015. — 272 с.
Большаков В.Ф. Эксплуатация судовых среднеоборотных дизелей / В. Ф. Большаков, Ю. Я. Фомин, В. И. Павленко. — М.: Транспорт, 1983. — 160 с.
Кригер А. М. Жидкостное охлаждение автомобильных двигателей / А. М. Кригер, М. Е. Дискин, А. Л. Новенников, В. И. Пикус. — М.: Машиностроение, 1985. — 176 с.
Камкин С. В. Эксплуатация судовых дизелей / С. В. Камкин, И. В. Возницкий, В. П. Шмелев. — М.: Транспорт, 1990. — 344 с.
Громогласов А. А. Водоподготовка, процессы и аппараты / А. А. Громогласов, А. С. Копылов, А. П. Пильщиков. — М.: Энергоатомиздат, 1990. — 270 с.
Тузов Л. В. Защита элементов жидкостных систем охлаждения ДВС от кавитационно-коррозионных разрушений / Л. В. Тузов, О. К. Безюков, В. А. Жуков // Двигатель-97. Материалы междунар. науч.-техн. конф. — М.: МГТУ, 1997. — С. 67-68.
Тузов Л. В. Вибрация судовых двигателей внутреннего сгорания / Л. В. Тузов, О. К. Безюков, О. В. Афанасьева. — СПб.: Изд-во Политехн. ун-та, 2012. — 348 с.
Лебедев О. Н. Двигатели внутреннего сгорания речных судов / О. Н. Лебедев, В. А. Сомов, С. А. Калашников. — М.: Транспорт, 1990. — 328 с.
Churchill R. A. Low-heat rejection engines — a concept review / R. A. Churchill, J. E. Smith, N. N. Clarc, R. A. Turton. — SAE Technical Paper Series, 1989. — № 890153. — Pp. 25-36.
Koch F. W. Cooling System Development and Optimization for DI Engines / F. W. Koch, F. G. Haubner. — SAE Technical Paper Series, 2000. — № 2000-01-0283. — 16 p. DOI: 10.4271/2000-01-0283.
Пат. 2459093 Российская Федерация, МПК F01P 5/10. Система охлаждения двигателя внутреннего сгорания / О. К. Безюков, В. А. Жуков; заяв. и патентообл. О. К. Безюков, В.А. Жуков. — № 2011113342/06; Заявлено 06.04.2011; опубл. 20.08.2012, Бюл. № 23. — 7 с.
Пат. 2453714 Российская Федерация, МПК F01P 5/10. Система охлаждения двигателя внутреннего сгорания / В. А. Жуков; заяв. и патентообл. В. А. Жуков. — № 2011113338/06; Заявлено 06.04.2011; опубл. 20.06.2012, Бюл. № 17. — 7 с.

Об авторах

Безюков Олег Константинович — доктор технических наук, профессор

ФГБОУ ВО «ГУМРФ имени адмирала С. О. Макарова»

Жуков Владимир Анатольевич — доктор технических наук, доцент

ФГБОУ ВО «ГУМРФ имени адмирала С. О. Макарова»

Пуляев Андрей Араратович — аспирант

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты