Что называется циклом теплового двигателя
Цикл Карно
Содержание
- 1 Описание цикла Карно
- 2 Обратный цикл Карно
- 3 КПД тепловой машины Карно
- 4 Первая и вторая теоремы Карно
- 5 Связь между обратимостью цикла и КПД
- 6 См. также
- 7 Комментарии
- 8 Примечания
- 9 Литература
- Эдвардса
- Аткинсона
- Брайтона/Джоуля
- Гирна
- Дизеля
- Калины
- Карно
- Ленуара
- Миллера
- Отто
- Ренкина
- Стирлинга
- Тринклера
- Хамфри
- Эрикссона
В термодинамике цикл Карно́ или процесс Карно́ — это идеальный [1] круговой процесс, состоящий из двух адиабатных и двух изотермических процессов [2] . В процессе Карно термодинамическая система выполняет механическую работу за счёт обмена теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой — холодильником [3] .
Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году [4] [5] .
Поскольку идеальные процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному процессу Карно только с большей или меньшей степенью точности.
Коэффициент полезного действия (КПД) любой тепловой машины не может превосходить КПД идеальной тепловой машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника [6] . По этой причине, позволяя оценить верхний предел КПД тепловой машины, цикл Карно важен для теории тепловых машин. В то же время КПД цикла Карно настолько чувствителен к отклонениям от идеальности (потерям на трение), что данный цикл никогда не применяли в реальных тепловых машинах [K 1] [8] .
Описание цикла Карно [ править | править код ]
Пусть тепловая машина состоит из нагревателя с температурой T H , холодильника с температурой T X
и рабочего тела.
Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две — при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах T (температура) и S
(энтропия).
1. Изотермическое расширение (на рис. 1 — процесс A→B). В начале процесса рабочее тело имеет температуру T H , то есть температуру нагревателя. При расширении рабочего тела его температура не падает за счет передачи от нагревателя количества теплоты Q H
, то есть расширение происходит изотермически (при постоянной температуре) . При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.
2. Адиабатическое расширение (на рис. 1 — процесс B→C). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника T X , тело совершает механическую работу, а энтропия остаётся постоянной.
3. Изотермическое сжатие (на рис. 1 — процесс C→D). Рабочее тело, имеющее температуру T X , приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты Q X
. Над телом совершается работа, его энтропия уменьшается.
4. Адиабатическое сжатие (на рис. 1 — процесс D→A). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.
Обратный цикл Карно [ править | править код ]
В термодинамике холодильных установок и тепловых насосов рассматривают обратный цикл Карно, состоящий из следующих стадий [9] [10] : адиабатического сжатия за счёт совершения работы (на рис. 1 — процесс C→B); изотермического сжатия с передачей теплоты более нагретому тепловому резервуару (на рис. 1 — процесс B→A); адиабатического расширения (на рис. 1 — процесс A→D); изотермического расширения с отводом теплоты от более холодного теплового резервуара (на рис. 1 — процесс D→C).
КПД тепловой машины Карно [ править | править код ]
Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно
Q H = ∫ T d S = T H ( S 2 − S 1 ) = T H Δ S .
Аналогично, при изотермическом сжатии рабочее тело отдаёт холодильнику
Q X = T X ( S 2 − S 1 ) = T X Δ S .
Отсюда коэффициент полезного действия тепловой машины Карно равен
η = Q H − Q X Q H = T H − T X T H .
Первая и вторая теоремы Карно [ править | править код ]
Из последнего выражения следует, что КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела. Этот результат составляет содержание первой теоремы Карно [11] . Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.
Поэтому максимальный КПД любой тепловой машины не может превосходить КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Это утверждение называется второй теоремой Карно [12] [13] . Оно даёт верхний предел КПД любой тепловой машины и позволяет оценить отклонение реального КПД от максимального, то есть потери энергии вследствие неидеальности тепловых процессов.
Связь между обратимостью цикла и КПД [ править | править код ]
Для того чтобы цикл был обратимым, в нём должна быть исключена передача теплоты при наличии разности температур, иначе нарушается условие адиабатичности процесса. Поэтому передача теплоты должна осуществляться либо в изотермическом процессе (как в цикле Карно), либо в эквидистантном процессе (обобщённый цикл Карно или, для примера, его частный случай Цикл Брайтона). Для того чтобы менять температуру рабочего тела от температуры нагревателя до температуры холодильника и обратно, необходимо использовать либо адиабатические процессы (они идут без теплообмена и, значит, не влияют на энтропию), либо циклы с регенерацией тепла при которых нет передачи тепла при разности температур. Мы приходим к выводу, что любой обратимый цикл может быть сведён к циклу Карно.
Примером обратимого цикла, не являющегося циклом Карно, но интегрально совпадающим с ним, является идеальный цикл Стирлинга: в двигателе Стирлинга добавлен регенератор, обеспечивающий полное приближение цикла к циклу Карно с достижением обратимости и тех же величин КПД [14] . Возможны и другие идеальные циклы, в которых коэффициент полезного действия определяется по той же формуле, что и для циклов Карно и Стирлинга, например цикл Эрикссона (англ.) русск. , состоящий из двух изобар и двух изотерм [14] .
Если же в цикле возникает передача теплоты при наличии разности температур, а таковыми являются все технические реализации термодинамических циклов, то цикл утрачивает свойство обратимости. Иначе говоря, посредством отведённой в цикле механической работы становится невозможным получить исходную теплоту. КПД такого цикла будет всегда меньше, чем КПД цикла Карно.
В идеальном тепловом двигателе работающем. Тепловой двигатель
6.3. Второй закон термодинамики
6.3.1. Коэффициент полезного действия тепловых двигателей. Цикл Карно
Второе начало термодинамики возникло из анализа работы тепловых двигателей (машин). В формулировке Кельвина оно выглядит следующим образом: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу.
Схема действия тепловой машины (теплового двигателя) представлена на рис. 6.3.
Цикл работы теплового двигателя состоит из трех этапов:
1) нагреватель передает газу количество теплоты Q 1 ;
2) газ, расширяясь, совершает работу A ;
3) для возвращения газа в исходное состояние холодильнику передается теплота Q 2 .
Из первого закона термодинамики для циклического процесса
где Q — количество теплоты, полученное газом за цикл, Q = Q 1 − Q 2 ; Q 1 — количество теплоты, переданное газу от нагревателя; Q 2 — количество теплоты, отданное газом холодильнику.
Поэтому для идеальной тепловой машины справедливо равенство
Когда потери энергии (за счет трения и рассеяния ее в окружающую среду) отсутствуют, при работе тепловых машин выполняется закон сохранения энергии
где Q 1 — теплота, переданная от нагревателя рабочему телу (газу); A — работа, совершенная газом; Q 2 — теплота, переданная газом холодильнику.
Коэффициент полезного действия тепловой машины вычисляется по одной из формул:
η = A Q 1 ⋅ 100 % , η = Q 1 − Q 2 Q 1 ⋅ 100 % , η = (1 − Q 2 Q 1) ⋅ 100 % ,
где A — работа, совершенная газом; Q 1 — теплота, переданная от нагревателя рабочему телу (газу); Q 2 — теплота, переданная газом холодильнику.
Наиболее часто в тепловых машинах используется цикл Карно , так как он является самым экономичным.
Цикл Карно состоит из двух изотерм и двух адиабат, показанных на рис. 6.4.
Участок 1–2 соответствует контакту рабочего вещества (газа) с нагревателем. При этом нагреватель передает газу теплоту Q 1 и происходит изотермическое расширение газа при температуре нагревателя T 1 . Газ совершает положительную работу (A 12 > 0), его внутренняя энергия не изменяется (∆U 12 = 0).
Участок 2–3 соответствует адиабатному расширению газа. При этом теплообмена с внешней средой не происходит, совершаемая положительная работа A 23 приводит к уменьшению внутренней энергии газа: ∆U 23 = −A 23 , газ охлаждается до температуры холодильника T 2 .
Участок 3–4 соответствует контакту рабочего вещества (газа) с холодильником. При этом холодильнику от газа поступает теплота Q 2 и происходит изотермическое сжатие газа при температуре холодильника T 2 . Газ совершает отрицательную работу (A 34 Т 2 и отвод тепла от теплоотдатчика и подвод тепла к теплоприемнику не влияют на их температуры, T 1 и T 2 остаются постоянными. Обозначим параметры газа при левом крайнем положении поршня теплового двигателя: давление – Р 1 объем – V 1 , температура Т 1 . Это точка 1 на графике на осях P-V. В этот момент газ (рабочее тело) взаимодействует с теплоотдатчиком, температура которого также Т 1 . При движении поршня вправо давление газа в цилиндре уменьшается, а объем увеличивается. Это будет продолжаться до прихода поршня в положение, определяемые точкой 2, где параметры рабочего тела (газа) примут значения P 2 , V 2 , T 2 . Температура в этой точке остается неизменной, так как температура газа и теплоотдатчика одинакова в процессе перехода поршня от точки 1 к точке 2 (расширение). Такой процесс, при котором Т не изменяется, называется изотермическим, а кривая 1–2 называется изотермой. В этом процессе от теплоотдатчика к рабочему телу переходит теплота Q 1 .
В точке 2 цилиндр полностью изолируется от внешней среды (теплообмена нет) и при дальнейшем движении поршня вправо уменьшение давления и увеличение объема происходит по кривой 2–3, которая называется адиабатой (процесс без теплообмена с внешней средой). Когда поршень переместится в крайнее правое положение (точка 3), процесс расширения закончится и параметры будут иметь значения Р 3 , V 3 , а температура станет равной температуре теплоприемника Т 2 . При этом положении поршня изоляция рабочего тела снижается и оно взаимодействует с теплоприемником. Если теперь увеличивать давление на поршень, то он будет перемещаться влево при неизменной температуре Т 2 (сжатие). Значит, этот процесс сжатия будет изотермическим. В этом процессе теплота Q 2 перейдет от рабочего тела к тепло-приемнику. Поршень, двигаясь влево, придет в точку 4 с параметрами P 4 , V 4 и T 2 , где рабочее тело вновь изолируется от внешней среды. Дальнейшее сжатие происходит по адиабате 4–1 с повышением температуры. В точке 1 сжатие заканчивается при параметрах рабочего тела P 1 , V 1 , T 1 . Поршень возвратился в исходное состояние. В точке 1 изоляция рабочего тела от внешней среды снимается и цикл повторяется.
Коэффициент полезного действия идеального двигателя Карно.
Газовый цикл тепловых двигателей и установок
Главная > Учебное пособие >Физика
Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
Ижевский государственный технический университет
Методические указания к выполнению курсовой работы
«Газовый цикл тепловых двигателей и установок»
Составитель: С.С. Макаров
«Газовый цикл тепловых двигателей и установок» — методические указания по выполнению курсовой работы по дисциплине «Термодинамика и теплообмен ДВС» — Ижевск, 2005. – 21 с.
В методических указаниях изложены теоретические основы термодинамического анализа циклов энергетических установок, приведены варианты заданий к курсовой работе, порядок выполнения и пример оформления курсовой работы.
Методические указания предназначены для студентов Машиностроительного факультета специальностей 160302 («Ракетные двигатели»), 140501 («Двигатели внутреннего сгорания») и направлениям 160100 («Авиа- и ракетостроение»), 140502 («Энергомашиностроение»).
1. Теоретические основы термодинамического анализа циклов
1.1. Изохорный процесс
1.2. Изобарный процесс
1.3. Изотермический процесс
1.4. Адиабатный процесс
1.5. Политропный процесс
2. Варианты заданий
3. Пример выполнения расчетов в курсовой работе
4. Порядок оформления курсовой работы
Работа энергетических установок основана на реализации термодинамического цикла. Циклом называется замкнутый круговой процесс, при осуществлении которого рабочее тело, пройдя ряд последовательных состояний, возвращается в исходное состояние. Система непрерывного перевода теплоты в работу, путем осуществления кругового процесса в направлении по часовой стрелке, называется тепловым двигателем. Для определения параметров тепловых двигателей проводят анализ рабочего процесса двигателя.
В задании на курсовую работу приведены варианты рабочих диаграмм идеальных термодинамических циклов тепловых двигателей, которыми заменяют термодинамический процесс реального рабочего двигателя.
Задачами курсовой работы является проведение термодинамического исследования идеального цикла теплового двигателя; определения работы цикла , термического к.п.д. , индикаторного давления , а также построения тепловой диаграммы процесса (в координатах ). Результаты необходимо представить в соответствии с рекомендуемым порядком выполнения и оформления.
1. Теоретические основы термодинамического анализа циклов [1]
Метод исследования анализа идеального термодинамического цикла основан на определении параметров состояния составляющих процессов и состоит в следующем:
1. Выводятся уравнения процесса, устанавливается взаимосвязь между начальными и конечными параметрами рабочего тела.
2. Находится работа процесса .
3. Находится количества тепла .
4. Находится изменение внутренней энергии .
5. Находится изменение энтропии .
6. Цикл отображается в масштабе в рабочей и тепловой диаграммах.
Практический интерес представляют частные случаи изменения состояния газа, составляющие цикл: изохорный, изобарный, изотермический, адиабатный и обобщающий политропный процессы.
1.1 Изохорный процесс [2]
Изохорный процесс — процесс, происходящий в физической системе при постоянном объеме.
Рис.1.1 Изохорный процесс,
Уравнение изохорного процесса имеет вид: . Давления газа пропорционально абсолютным температурам:
В изохорном процессе работа расширения не совершается:
Из уравнения первого закона термодинамики следует:
Вся подведенная теплота расходуется на изменение внутренней энергии рабочего тела. При для двух значений температур ( и ):
Изменение энтропии изохорического процесса:
При изменение энтропии процесса для двух значений температур ( и ) определится:
1.2 Изобарный процесс [2]
Изобарный процесс — процесс, происходящий в физической системе при постоянном внешнем давлении.
Рис. 1.2 Изобарный процесс,
Уравнение изобарного процесса имеет вид: .
Объемы газа пропорциональны абсолютным температурам:
В изобарном процессе совершается работа расширения:
Из уравнения первого закона термодинамики следует: ,
принимая , а при имеем:
Вся подведенная теплота расходуется на изменение энтальпии рабочего тела.
При для двух значений температур ( и ):
Изменение внутренней энергии изобарного процесса:
При для двух значений температур ( и ):
Изменение энтропии изобарного процесса:
При изменение энтропии процесса для двух значений температур ( и ) определится:
1.3 Изотермический процесс [2]
Изотермический процесс — процесс, происходящий в физической системе при постоянной температуре.
Рис. 1.3 Изотермический процесс,
Уравнение изотермического процесса имеет вид: .
Давления обратно пропорциональны объемам газа:
В изотермическом процессе работа расширения:
В изотермическом процессе не происходит изменения внутренней энергии и энтальпии т.к. :
Из первого закона термодинамики . Все количество теплоты, подведенное к газу, затрачивается на совершение работы в процессе расширения:
Изменение энтропии изотермического процесса:
Изменение энтропии процесса для двух точек процесса:
В идеальном тепловом двигателе работающем. Тепловой двигатель
Тепловой двигатель — двигатель, в котором происходит превращение внутренней энергии топлива, которое сгорает, в механическую работу.
Любой тепловой двигатель состоит из трех основных частей: нагревателя , рабочего тела (газ, жидкость и др.) и холодильника . В основе работы двигателя лежит циклический процесс (это процесс, в результате которого система возвращается в исходное состояние).
В тепловых двигателях стремятся достигнуть наиболее полного превращения тепловой энергии в механическую. Максимальное КПД.
На рисунке изображены циклы, используемые в бензиновом карбюраторном двигателе и в дизельном двигателе. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30%, у дизельного двигателя – порядка 40 %.
Французский физик С.Карно разработал работу идеального теплового двигателя. Рабочую часть двигателя Карно можно представить себе в виде поршня в заполненном газом цилиндре. Поскольку двигатель Карно — машина чисто теоретическая, то есть идеальная , силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю. Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. Этот цикл называют циклом Карно .
участок 1-2: газ получает от нагревателя количество теплоты Q 1 и изотермически расширяется при температуре T 1
участок 2-3: газ адиабатически расширяется, температура снижается до температуры холодильника T 2
участок 3-4: газ экзотермически сжимается, при этом он отдает холодильнику количество теплоты Q 2
участок 4-1: газ сжимается адиабатически до тех пор, пока его температура не повысится до T 1 .
Работа, которую выполняет рабочее тело — площадь полученной фигуры 1234.
Функционирует такой двигатель следующим образом:
1. Сначала цилиндр вступает в контакт с горячим резервуаром, и идеальный газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара некое количество тепла.
2. Затем цилиндр окружается идеальной теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется, и газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.
3. На третьей фазе теплоизоляция снимается, и газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.
4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией, и газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара. После этого теплоизоляция удаляется и цикл повторяется вновь с первой фазы.
В теоретической модели теплового двигателя рассматриваются три тела: нагреватель , рабочее тело и холодильник .
Нагреватель – тепловой резервуар (большое тело), температура которого постоянна.
В каждом цикле работы двигателя рабочее тело получает некоторое количество теплоты от нагревателя, расширяется и совершает механическую работу. Передача части энергии, полученной от нагревателя, холодильнику необходима для возвращения рабочего тела в исходное состояние.
Так как в модели предполагается, что температура нагревателя и холодильника не меняется в ходе работы теплового двигателя, то при завершении цикла: нагревание-расширение-остывание-сжатие рабочего тела считается, что машина возвращается в исходное состояние.
Для каждого цикла на основании первого закона термодинамики можно записать, что количество теплоты Q нагр, полученное от нагревателя, количество теплоты |Q хол|, отданное холодильнику, и совершенная рабочим телом работа А связаны между собой соотношением:
A = Q нагр – |Q хол|.
В реальных технических устройствах, которые называются тепловыми машинами, рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Так, в паровой турбине электростанции нагревателем является топка с горячим углем. В двигателе внутреннего сгорания (ДВС) продукты сгорания можно считать нагревателем, а избыток воздуха – рабочим телом. В качестве холодильника в них используется воздух атмосферы или вода природных источников.
КПД теплового двигателя (машины)
Коэффициентом полезного действия теплового двигателя (КПД) называется отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:
Коэффициент полезного действия любого теплового двигателя меньше единицы и выражается в процентах. Невозможность превращения всего количества теплоты, полученного от нагревателя, в механическую работу является платой за необходимость организации циклического процесса и следует из второго закона термодинамики.
В реальных тепловых двигателях КПД определяют по экспериментальной механической мощности N двигателя и сжигаемому за единицу времени количеству топлива. Так, если за время t сожжено топливо массой m и удельной теплотой сгорания q , то
Для транспортных средств справочной характеристикой часто является объем V сжигаемого топлива на пути s при механической мощности двигателя N и при скорости . В этом случае, учитывая плотность r топлива, можно записать формулу для расчета КПД:
Второй закон термодинамики
Существует несколько формулировок второго закона термодинамики . Одна из них гласит, что невозможен тепловой двигатель, который совершал бы работу только за счет источника теплоты, т.е. без холодильника. Мировой океан мог бы служить для него, практически, неисчерпаемым источником внутренней энергии (Вильгельм Фридрих Оствальд, 1901).
Другие формулировки второго закона термодинамики эквивалентны данной.
Формулировка Клаузиуса (1850): невозможен процесс, при котором тепло самопроизвольно переходило бы от тел менее нагретых к телам более нагретым.
Формулировка Томсона (1851): невозможен круговой процесс, единственным результатом которого было бы производство работы за счет уменьшения внутренней энергии теплового резервуара.
Формулировка Клаузиуса (1865): все самопроизвольные процессы в замкнутой неравновесной системе происходят в таком направлении, при котором энтропия системы возрастает; в состоянии теплового равновесия она максимальна и постоянна.
Формулировка Больцмана (1877): замкнутая система многих частиц самопроизвольно переходит из более упорядоченного состояния в менее упорядоченное. Невозможен самопроизвольный выход системы из положения равновесия. Больцман ввел количественную меру беспорядка в системе, состоящей из многих тел – энтропию .
КПД теплового двигателя с идеальным газом в качестве рабочего тела
Если задана модель рабочего тела в тепловом двигателе (например, идеальный газ), то можно рассчитать изменение термодинамических параметров рабочего тела в ходе расширения и сжатия. Это позволяет вычислить КПД теплового двигателя на основании законов термодинамики.
На рисунке показаны циклы, для которых можно рассчитать КПД, если рабочим телом является идеальный газ и заданы параметры в точках перехода одного термодинамического процесса в другой.
Изобарно-изохорный
Изохорно-адиабатный
Изобарно-адиабатный
Изобарно-изохорно-линейный
Цикл Карно. КПД идеального теплового двигателя
Наибольшим КПД при заданных температурах нагревателя T нагр и холодильника T хол обладает тепловой двигатель, где рабочее тело расширяется и сжимается по циклу Карно (рис. 2), график которого состоит из двух изотерм (2–3 и 4–1) и двух адиабат (3–4 и 1–2).
Теорема Карно доказывает, что КПД такого двигателя не зависит от используемого рабочего тела, поэтому его можно вычислить, используя соотношения термодинамики для идеального газа:
Экологические последствия работы тепловых двигателей
Интенсивное использование тепловых машин на транспорте и в энергетике (тепловые и атомные электростанции) ощутимо влияет на биосферу Земли. Хотя о механизмах влияния жизнедеятельности человека на климат Земли идут научные споры, многие ученые отмечают факторы, благодаря которым может происходить такое влияние:
- Парниковый эффект – повышение концентрации углекислого газа (продукт сгорания в нагревателях тепловых машин) в атмосфере. Углекислый газ пропускает видимое и ультрафиолетовое излучение Солнца, но поглощает инфракрасное излучение, идущее в космос от Земли. Это приводит к повышению температуры нижних слоев атмосферы, усилению ураганных ветров и глобальному таянию льдов.
- Прямое влияние ядовитых выхлопных газов на живую природу (канцерогены, смог, кислотные дожди от побочных продуктов сгорания).
- Разрушение озонового слоя при полетах самолетов и запусках ракет. Озон верхних слоев атмосферы защищает все живое на Земле от избыточного ультрафиолетового излучения Солнца.
Выход из создающегося экологического кризиса лежит в повышении КПД тепловых двигателей (КПД современных тепловых машин редко превышает 30%); использовании исправных двигателей и нейтрализаторов вредных выхлопных газов; использовании альтернативных источников энергии (солнечные батареи и обогреватели) и альтернативных средств транспорта (велосипеды и др.).
6.3. Второй закон термодинамики
6.3.1. Коэффициент полезного действия тепловых двигателей. Цикл Карно
Второе начало термодинамики возникло из анализа работы тепловых двигателей (машин). В формулировке Кельвина оно выглядит следующим образом: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу.
Схема действия тепловой машины (теплового двигателя) представлена на рис. 6.3.
Цикл работы теплового двигателя состоит из трех этапов:
1) нагреватель передает газу количество теплоты Q 1 ;
2) газ, расширяясь, совершает работу A ;
3) для возвращения газа в исходное состояние холодильнику передается теплота Q 2 .
Из первого закона термодинамики для циклического процесса
где Q — количество теплоты, полученное газом за цикл, Q = Q 1 − Q 2 ; Q 1 — количество теплоты, переданное газу от нагревателя; Q 2 — количество теплоты, отданное газом холодильнику.
Поэтому для идеальной тепловой машины справедливо равенство
Когда потери энергии (за счет трения и рассеяния ее в окружающую среду) отсутствуют, при работе тепловых машин выполняется закон сохранения энергии
где Q 1 — теплота, переданная от нагревателя рабочему телу (газу); A — работа, совершенная газом; Q 2 — теплота, переданная газом холодильнику.
Коэффициент полезного действия тепловой машины вычисляется по одной из формул:
η = A Q 1 ⋅ 100 % , η = Q 1 − Q 2 Q 1 ⋅ 100 % , η = (1 − Q 2 Q 1) ⋅ 100 % ,
где A — работа, совершенная газом; Q 1 — теплота, переданная от нагревателя рабочему телу (газу); Q 2 — теплота, переданная газом холодильнику.
Наиболее часто в тепловых машинах используется цикл Карно , так как он является самым экономичным.
Цикл Карно состоит из двух изотерм и двух адиабат, показанных на рис. 6.4.
Участок 1–2 соответствует контакту рабочего вещества (газа) с нагревателем. При этом нагреватель передает газу теплоту Q 1 и происходит изотермическое расширение газа при температуре нагревателя T 1 . Газ совершает положительную работу (A 12 > 0), его внутренняя энергия не изменяется (∆U 12 = 0).
Участок 2–3 соответствует адиабатному расширению газа. При этом теплообмена с внешней средой не происходит, совершаемая положительная работа A 23 приводит к уменьшению внутренней энергии газа: ∆U 23 = −A 23 , газ охлаждается до температуры холодильника T 2 .
Участок 3–4 соответствует контакту рабочего вещества (газа) с холодильником. При этом холодильнику от газа поступает теплота Q 2 и происходит изотермическое сжатие газа при температуре холодильника T 2 . Газ совершает отрицательную работу (A 34 Мотоблок