Что называется индикаторной диаграммой двигателя - Авто журнал "Гараж"
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что называется индикаторной диаграммой двигателя

Четырехтактный двигатель

Цилиндр двигателя закрыт крышкой, в которой располагаются клапаны для впуска свежего заряда и клапаны выпуска газов. Клапаны удерживаются в закрытом состоянии пружинами и давлением в цилиндре при процессах сжатия, сгорания и расширения. Открытие клапанов в нужные моменты производится газораспределительным механизмом.

Газораспределительный механизм состоит из рычагов, штанг и толкателей, на которые воздействуют кулачки распределительного вала.

Распределительный вал приводится в движение от коленчатого вала двигателя и имеет вдвое меньшую частоту вращения, чем коленчатый вал, вследствие чего каждый клапан открывается один раз за два оборота коленчатого вала. Взаимосвязь газораспределительного механизма с коленчатым валом находится в определенной механической зависимости. Эта зависимость устанавливается заводом-изготовителем двигателя и изображается диаграммой фаз (углов) газораспределения.

Диаграмма фаз газораспределения — паспортная характеристика определенного типа двигателя. Она на графике указывает фазы (углы) положений колена коленчатого вала, при которых происходят изменения термодинамического процесса в наиболее экономичном режиме в цилиндре двигателя. Диаграмма фаз газораспределения является руководящим документом проверки и регулировки поршневого двигателя внутреннего сгорания как при сборке в процессе изготовления, так и при ремонте двигателя.

Изменение давления рабочего тела в цилиндре двигателя за рабочий цикл, который фиксируется специальным прибором — индикатором — на диаграммной бумаге в координатах давления Р и рабочего объема КЛ, называется индикаторной диаграммой.

Рассмотрим термодинамический процесс рабочего цикла в четырехтактном двигателе (рис. 6.5).

Фаза ф;_2 — это угол, описываемый коленом коленчатого вала, при котором клапан впуска открыт. На индикаторной диаграмме

Рис. 6.5. Схема работы четырехтактного двигателя и индикаторные диаграммы: 1 — начало открытия впускного клапана; 2 — закрытие впускного клапана; 3 — начало подачи топлива; 4 — начало открытия выпускного клапана; 5 — закрытие выпускного клапана; а-г — такты рабочего цикла; Р0 — атмосферное давление; I — точка максимального давления газов в цилиндре этот процесс изображен линией 1-2 — процесс всасывания свежего заряда.

Фаза ф2-3 — это угол, описываемый коленом коленчатого вала, при котором оба клапана закрыты. На индикаторной диаграмме наблюдается процесс сжатия свежего заряда, при этом температура его достигает 500. 700 °С.

Фаза у3_4 — это угол, описываемый коленом коленчатого вала при закрытых клапанах впуска и выпуска. Точка 3 находится вблизи ВМТ. С этого момента в цилиндр двигателя подается топливо в мелкораспыленном виде, которое активно (при 7 = 500.700°С) испаряется, воспламеняется и сгорает. Этот процесс длится тысячные доли секунды. В цилиндре резко возрастают температура (»1700°С) и давление (Р^ образовавшихся газов, вследствие чего колено коленчатого вала успевает пройти ВМТ, и сила, равная произведению давления газов на площадь поршня, раскручивает коленчатый вал. Этот процесс расширения газов называют рабочим ходом поршня, и он заканчивается при положении колена коленчатого вала в точке 4.

Фаза ц>4_5 — это угол, описываемый коленом коленчатого вала, при котором открыт клапан выпуска. На индикаторной диаграмме этот процесс — выпуск отработавших газов — изображен линией 4-5. В позиции колена коленчатого вала 5 клапан выпуска закрывается, а клапан впуска открывается. Этим завершается рабочий цикл и начинается следующий.

Весь рабочий цикл совершился за четыре такта, поэтому такой двигатель называют четырехтактным.

Создание комбинированных двигателей явилось новым этапом в развитии ДВС. Цель создания комбинированных двигателей — получение более экономичного и мощного двигателя при малых его габаритах. Потребность в таких двигателях особенно велика на железнодорожном транспорте. Увеличение мощности двигателя при тех же габаритах осуществляется за счет компрессорного наддува. В комбинированном двигателе в качестве компрессорных машин используются почти все виды компрессоров, а в качестве расширительной машины применяется только газовая турбина.

Благодаря наддуву в цилиндры подается на каждый рабочий цикл больше воздуха, чем при всасывании, что дает возможность сжигать большее количество топлива. Это позволяет получать при одинаковых с обычным дизелем размерах цилиндров и той же частоте вращения вала большую мощность.

При сжатии в нагнетателе воздух нагревается, его удельный объем возрастает, что значительно уменьшает воздушный заряд в цилиндре; поэтому в дизелях со средним и высоким наддувом обязательно применяют охлаждение наддувочного воздуха перед поступлением его в цилиндры.

Охлаждение воздуха на каждые 10 °С дает увеличение мощности дизеля на 3.4% и снижение удельного расхода топлива примерно на 1,5.2,0 г/(кВт-ч). Экономичность комбинированного двигателя с наддувом повышается также вследствие увеличения механического КПД и дополнительного использования теплоты отработавших газов.

Индикаторная диаграмма комбинированного четырехтактного дизеля с газотурбинным наддувом представлена на рис. 6.6.

В двигателях с наддувом процесс зарядки цилиндра происходит иначе, чем у дизеля без наддува. Турбокомпрессор засасывает воздух при атмосферном давлении Р0 и сжимает его до давления Рк. Сжатый в компрессоре воздух проходит через охладитель и впускной коллектор. На пути от турбокомпрессора до цилиндра давление воздуха снижается от Рк до Ра, поэтому линия давления впуска расположена ниже линии Рк и выше линии Р0.

После заполнения цилиндра воздухом начинается процесс сжатия, который на индикаторной диаграмме изображен кривой 2- 3.

Рис. 6.6. Индикаторная диаграмма четырехтактного дизеля с газотурбинным наддувом:

Р0- атмосферное давление; Р„ — давление в период наполнения; Рг — давление в цилиндре в период выпуска; Рк — давление воздуха в наддувочном коллекторе; Кс — объем камеры сжатия; КЛ — рабочий объем; К„ — полный объем цилиндра; 1 — 5 — процесс продувки: 1 — открытие клапанов впуска; 2 — закрытие клапанов впуска; 3 — впрыск топлива в цилиндр; 4 — открытие клапанов выпуска; 5- закрытие клапанов выпуска; I — точка максимального давления газов в цилиндре

В конце сжатия в цилиндр впрыскивается через форсунку топливо, которое воспламеняется в точке 3. Процесс сгорания показан линией 3-1, а расширение газов происходит по кривой г- 4. В точке 4 открываются выпускные клапаны, и отработавшие газы выталкиваются в газовую турбину при давлении Рт. Газы проходят через направляющий аппарат на лопатки турбины, а затем выбрасываются в атмосферу. На диаграмме линия выпуска газа из цилиндра расположена выше атмосферной и ниже линии наполнения.

В четырехтактных двигателях энергии отработавших газов вполне достаточно, чтобы нагнетатель сжимал воздух до давления Рк, более высокого, чем Рт. В результате наддува площадь индикаторной диаграммы, а следовательно, и мощность двигателя значительно возрастают.

Классификация и циклы двигателей

Тепловые двигатели разделяются на:

  • поршневые двигатели внутреннего сгорания
  • газотурбинные
  • реактивные

На современных автомобилях устанавливают поршневые двигатели внутреннего сгорания, в которых топливо сжигается внутри рабочего цилиндра.

Но способу смесеобразования и воспламенения топлива поршневые двигатели внутреннего сгорания разделяются на две группы:

  • а) с внешним смесеобразованием и принудительным зажиганием от электрической искры (карбюраторные и газовые)
  • б) с внутренним смесеобразованием и воспламенением от соприкосновения с воздухом, сильно нагретым в цилиндре путем высокого сжатия (двигатели с воспламенением от сжатия или дизельные)

Рабочим циклом называется ряд последовательных процессов, периодически повторяющихся в каждом цилиндре двигателя во время его работы.

Изображение рабочего цикла в виде замкнутой кривой, покалывающей изменение давления газов в течение цикла в зависимости от положения поршня в цилиндре, называется индикаторной диаграммой. Такую диаграмму снимают во время работы двигателя, используя прибор, называемый индикатором.

Рис. Индикаторная диаграмма четырехтактного карбюраторного двигателя:
1 — начало такта сжатия; 2 — момент зажигания смеси; 3 — конец, такта сжатия; 4 — точка максимального давления газов; 5 — начало открытия выпускного клапана; 6 — конец расширения газоз; 7 — конец такта выпуска;
Vа—полный объем цилиндра; Vh — рабочий объем цилиндра; Vc — объем камеры сгорания; S — ход поршня

Четырехтактный рабочий цикл

На рисунке изображена индикаторная диаграмма четырехтактного карбюраторного двигателя, снятая при работе его с максимальной мощностью. Здесь по горизонтальной оси отложен объем цилиндра V в кубических сантиметрах (или ход поршня), а по вертикальной оси — давление газов в цилиндре р в килограммах на квадратный сантиметр. Изменение давления газов в цилиндре при разных тактах цикла можно проследить по положению основных точек индикаторной диаграммы,

Читать еще:  Брелок перестал показывать температуру двигателя

При такте впуска (линия 7—1) цилиндр наполняется горючей смесью. Чем лучше наполнение цилиндра, тем выше мощность двигателя.

Коэффициент наполнения — это отношение веса горючей смеси, действительно поступившей в цилиндр, к весу горючей смеси, которая могла бы заполнить рабочий объем цилиндра при атмосферном давлении и температуре окружающей среды 20°С. Величина коэффициента наполнения при полном открытии дросселя карбюратора и среднем числе оборотов коленчатого вала составляет 0,75—0,85; по мере прикрытия дросселя коэффициент наполнения уменьшается и при малых оборотах холостого хода доходит до 0,20.

Давление в цилиндре при впуске (линия 7—1) ниже атмосферного (0,7 — 0,9 кг/см2) вследствие сопротивления воздушного фильтра, карбюратора, впускного трубопровода и клапанов. Температура смеси в конце впуска 75—125°С.

Такт сжатия (линия 1—2—3). При сжатии рабочей смеси происходит повышение температуры и давления. Давление в конце такта сжатия (точка 3) тем больше, чем выше степень сжатия. При степени сжатия в карбюраторных автомобильных двигателях, равной 6—9, давление в конце такта сжатия равно 7—12 кг/см2, а температура газов 350—400°С.

Такт «сгорание—расширение» (линия 3—4—5—6). На индикаторной диаграмме линия сгорания (3—4) отклоняется от вертикали вправо, т. е. горение заканчивается, когда поршень несколько отойдет от в.м.т.

Чем выше скорость горения (в допустимых пределах), тем больше мощность двигателя. Скорость горения зависит от качества топлива, состава и степени завихрения рабочей смеси и ее температуры, степени сжатия, опережения зажигания и коэффинта остаточных газов.

Коэффициент остаточных газов показывает процентное содержание в рабочей смеси продуктов сгорания, оставшихся в цилиндре от предыдущего цикла. При увеличении этого коэффициента понижается скороcть горения рабочей смеси.

В конце сгорания (точка 4) давление газов повышается до 30—40 кг/см2, а температура — до 2200—2500°С.

Расширение начинается после достижения газами максимального давления (точка 4); газы при этом оказывают давление на поршень и совершают полезную работу. К концу расширения (точка 6) давление газов в цилиндре уменьшается до 3—5 кг/см2, температура снижается до 1000—1200°С.

Такт выпуска (линия 6 -7). Для лучшей очистки цилиндра выпускной клапан открывается до н.м.т. (точка 5). Процесс выпуска протекает при давлении выше атмосферного, которое к концу такта снижается до 1,1 —1,2 кгсм2; температура к этому моменту уменьшается до 700—800°С.

Па новых моделях автомобилей Минского и Кременчугского автомобильных заводов устанавливают четырехтактные дизельные двигатели ЯМЗ-236 и ЯМЭ-238; индикаторная диаграмма таких двигателей показана на рисунке:

Рис. Индикаторная диаграмма четырехтактного дизельного двигателя: 1 — начало такта сжатия; 2 — момент впрыска топлива; 3 — конец такта сжатия; 4 — точка максимального давления газов; 5 — начало открытия выпускного клапана; 6 — конец расширения газов; 7 конец такта выпуска

При такте впуска (линия 7—1) в цилиндр поступает воздух. В связи с меньшим сопротивлением впускной системы (отсутствие карбюраторов) давление при впуске несколько выше (0,85—0,95 кг/см2), чем в карбюраторном двигателе, а температура ниже (40—60°С).

Такт сжатия (линия 1—2—3). Так как степень сжатия в дизельных двигателях ЯМЗ составляет 16,5, давление в конце сжатия (точка 3) повышается до 40—42 кг/см2, а температура воздуха — до 740—800°С.

Такт «сгорание-расширение» (линия 3—4—5—6). Форсунка начинает впрыскивать топливо за 20° до в.м.т. (точка 2), поэтому большая часть топлива сгорает до прихода поршня в в.м.т. (линия 3—4). Время, отводимое в дизельном двигателе на образование горючей смеси, в 20—30 раз меньше, чем в карбюраторном двигателе, поэтому для полного сгорания топлива необходимо вводить повышенное количество воздуха.

Давление газов в конце сгорания (точка 4) достигает 74—80 кг/см2, температура — 1700-2000°С. Давление к концу расширения (точка 6) снижается до 3—4 кг/см2, а температура — до 800—900°С.

Так как воздух в дизельных двигателях предварительно не подогревается и часть тепла топлива расходуется на подогрев подаваемого в цилиндр избыточного воздуха, то температура при сгорании—расширении в дизельных двигателях ниже, чем в карбюраторных.

Такт выпуска (линия 6—7). Выпускной клапан открывается за 56° до н.м.т. (точка 5). После н.м.т. (точка 6) давление газов быстро снижается до 1,1 —1,2 кг/см2 и до конца выпуска (точка 7) остается постоянным. Температура при выпуске 600—700°С.

Двухтактный рабочий цикл

Рис. Индикаторная диаграмма двухтактного дизельного двигателя с прямоточной продувкой:
1 — начало такта сжатия; 2 — момент закрытия продувочных отверстий; 3 — момент закрытия выпускных клапанов; 4 — момент впрыска топлива. 5 — начало горения; 6 — точка максимального давления газов; 7 — начало открытия выпускных клапанов; 8 — момент открытия продувочных отверстий

На рисунке приведена индикаторная диаграмма двухтактных дизельных двигателей с прямоточной продувкой (ЯАЗ-М204А и ЯАЗ-М206А), устанавливаемых на автомобилях МАЗ-200, КрАЗ-219 и их модификациях. Так как этот двигатель имеет нагнетатель воздуха, то вся диаграмма располагается выше линии атмосферного давления.

Первый такт. Когда поршень находится в н.м.т. (точка 1), давление воздуха в цилиндре — около 1,5 кг/см2, температура 90°С, продувочные отверстия и выпускные клапаны открыты, происходят продувка и наполнение цилиндра воздухом. При движении поршня от н.м.т. к в.м.т. кромка днища поршня перекрывает продувочные отверстия (точка 2; 46° после н.м.т.), в точке 3 (54° после н.м.т.) закрываются выпускные клапаны, и начинается сжатие воздуха. В конце такта в цилиндр, наполненный воздухом, сжатым до давления 50 кг/см2 и нагретым до температуры 600—700°С, впрыскивается под давлением до 1400 кг/см2 топливо (точка 4). Горение (линия 5—6) происходит почти при постоянном объеме. Давление в конце горения (точка 6) достигает 70—100 кг/см2, а температура 1800°С.

Второй такт. Поршень движется от в.м.т. к н.м.т, происходит расширение газов. В конце расширения при давлении около 5—6 кг/см2 и температуре 800°С (точка 7, 85° до н.м.т.) открываются выпускные клапаны, а затем и продувочные ошерстия (точка 8; 46° до н.м.т.); происходят выпуск отработавших газов и продувка цилиндра воздухом.

В двухтактных двигателях процесс сгорание—расширение происходит при каждом обороте коленчатого вала, т.е. вдвое чаше, чем в четырехтактных, поэтому двухтактный двигатель при одинаковом с четырехтактным двигателем рабочем объеме цилиндров имеет большую мощность, а при одинаковом с ним числе цилиндров — лучшую равномерность хода. Недостаток двухтактный дизельных двигателей состоит в том, что при снижении скорости вращения коленчатого вала процессы выпуска отработавших газов и впуска свежего воздуха у них ухудшаются, поэтому двигатели не могут длитеьно работать при пониженных числах оборотов коленчатого вала.

Построение индикаторной диаграммы

Индикаторную диаграмму строят на отдельном стандартном листе, в системе координат в соответствии с расчётными величинами выбирается масштабы по осям давлений и объёмов и наносятся равномерные шкалы. На диаграмме обозначают характерные точки цикла: «t » — конец выпуска и начало впуска; «а» — конец впуска и начало сжатия; «с» — конец сжатия и начало сгорания; «z» — конец условного сгорания, «b » — конец расширения и начало выпуска.

Изображают горизонтальные линии, соответствующие Р0 = 0,101 кПа и .

Для точного построения процессов сжатия и расширения, которые являются политропными, выполняют дополнительные расчёты.

При расчёте и построении процесса сжатия:

1. Выбираем несколько значений объёмов в диапазоне между .

2. По уравнению политропы при каждом выбранном объёме рассчитываем давление, результаты заносим в таблицу 14.1.

3. Наносим соответствующие точки но индикаторную диаграмму.

Для процесса расширения выполняют аналогичные расчёты и построения с той разницей, что объёмы выбирают в диапазоне между .

Читать еще:  Starline заблокировала запуск двигателя что делать

Таблица 14.1 — Расчёт процессов сжатия и расширения

Нанесенные на диаграмму промежуточные точки сжатия и точки расширения соединяем плавными кривыми. После этого достраиваем процессы газообмена. Полученная индикаторная диаграмма двигателя внутреннего сгорания дизеля MAN изображена на рисунке 14.1.

Рисунок 14.1 — Индикаторная диаграмма ДВС MAN.

Результаты расчетов и общепринятые границы изменения расчетных параметров сводим в таблицу.

Таблица — Результаты расчетов.

Организационно-производственная структура предприятия. Заработная плата персонала
Управление предприятием осуществляет директор. Он является учредителем предприятия, имеет высшее профессиональное образование по специальности «Автомобили и автомобильное хозяйство». Директор осуществляет общее руководство, особое внимание, уделяя работе с клиентами, качеству оказания услуг, а также организует учет материальных, трудовых и финансовых ресурсов, издержек производства, ведет сметы расходов, начисляет заработную плату, выполняет оп .

Математические модели процесса зачерпывания
Для обеспечения нормальных условий работы привода подъёма ковша необходимо и достаточно, чтобы максимальный момент, развиваемый приводом на оси поворота ковша Мп.max, превышал максимальный момент сопротивления зачерпыванию Мз.max, то есть: Мп.max > Мз.max . (3.22) Таким образом, для расчёта предельной глубины внедрения ковша по фактору максимальных силовых возможностей механизма черпания, необходимо иметь две математические модели: максима .

Расчет основных рабочих скоростей
Для расчета ряда основных рабочих скоростей трактора, диапазон скоростей, который характеризуется отношением высшей рабочей скорости к скорости на первой передаче основного ряда рабочих скоростей принимаем равным v оснT=2 [6]. , (7) где z — количество передач. Теоретическую скорость Vт, движения м/с на любой передаче определяем отношением [1]: , (8) где к — номер передачи. м/с; м/с; м/с; м/с; м/с; м/с. .

Индикаторная диаграмма двигателя

Здравствуйте! Диаграмму цикла двигателя внутреннего сгорания, вычерченную в системе координат v — p и характеризующую величину работы, получаемой в цилиндре двигателя за один цикл, можно построить на основе расчетов (теоретическая диаграмма), или снять непосредственно с работающего двигателя его индицированием (действительная индикаторная диаграмма) специальными приборами — индикаторами.

На рис. 1. изображена индикаторная диаграмма четырехтактного двигателя. Полезная площадь диаграммы равна алгебраической сумме положительной площади (со знаком «+»), соответствующей работе за такты сжатия и расширения, и отрицательной площади (со знаком «-»), которая соответствует работе, затраченной на осуществление тактов впуска и выпуска (насосная работа).

В двухтактных двигателях вся площадь индикаторной диаграммы представляет собой полезную индикаторную работу. Работа цикла определяется из выражения Li = piFS = piVh, где рi — среднее индикаторное давление, Па; F — площадь поршня, м2; S — ход поршня, м; Vh — рабочий объем цилиндра, м3.

Среднее индикаторное давление находят по индикаторной диаграмме следующим образом. Планиметром или каким-либо другим способом измеряют площадь f (в мм²) индикаторной диаграммы, представляющую собой индикаторную работу. Разделив полученную площадь f на длину l (в мм) индикаторной диаграммы, получают высоту h (в мм) прямоугольника, равновеликого по площади индикаторной диаграмме. Эта высота с учетом масштаба оси ординат равна среднему индикаторному давлению: pi = f/lm, где m — масштаб оси ординат (давлений) индикаторной диаграммы, мм/Па.

Таким образом, среднее индикаторное давление равно некоторому условному постоянному давлению, под действием которого поршень в процессе расширения газа создает работу, равную фактической работе газа в цилиндре за один цикл (индикаторной работе).

Среднее индикаторное давление зависит от количества подаваемого в цилиндр топлива и изменяется с изменением нагрузки двигателя. Для различных двигателей оно имеет различные значения в зависимости от применяемого цикла, коэффициента избытка воздуха, степени сжатия и др. Наибольшее среднее индикаторное давление достигается в авиационных двигателях, в которых сжигание топлива происходит с минимальными коэффициентами избытка воздуха.

Величина рi является очень важной характеристикой, так как работа двигателя, при определенных размерах цилиндра Vh прямо пропорциональна среднему индикаторному давлению. Мощность, развиваемая в каждом цилиндре и соответствующая индикаторной работе Li, определяется по формуле

где n— число оборотов в минуту; i — тактность двигателя
Для многоцилиндрового двигателя простого действия с числом цилиндров z общая мощность равна

Согласно формулам (1) и (2), мощность двигателя можно повысить за счет увеличения размеров Vh и числа цилиндров z, а также числа оборотов n или за счет уменьшения тактности i. Наиболее эффективным способом увеличения мощности двигателя является применение наддува, увеличивающего среднее индикаторное давление. В двигателях с наддувом свежая смесь предварительно сжимается в компрессоре, благодаря чему увеличивается масса заряда в цилиндре. В результате в том же объеме цилиндра сжигается больше топлива и, следовательно, развивается большая мощность. В некоторых дизелях применение наддува приводит к увеличению мощности в 1,5—2,5 раза.

Эффективная мощность равна разности индикаторной мощности и мощности, затрачиваемой на преодоление сил трения и привод вспомогательных устройств: Ne = Ni — Nтр. Мощность, затрачиваемую на механические потери, и эффективную мощность двигателя, определяют опытным путем.

Таким образом, увеличение мощности двигателя достигается повышением степени сжатия, увеличением числа оборотов, количества цилиндров, применением двухтактного процесса, наддува, использованием полостей цилиндра по обе стороны поршня в качестве рабочих (двигатели двойного действия) и снижением различного рода потерь энергии. Исп. литература: 1) Теплотехника, под ред. И.Н.Сушкина, Москва, «Металлургия», 1973. 2) Теплотехника, Бондарев В.А., Процкий А.Е., Гринкевич Р.Н. Минск, изд. 2-е,»Вышейшая школа», 1976.

Маневровые локомотивы

Индикаторные диаграммы рабочего процесса четырех- и двухтактных дизелей

Так же, как и диаграмму термодинамического цикла, можно изобразить в координатах р-V и действительный цикл двигателя внутреннего сгорания. Полученная при этом диаграмма называется индикаторной.

Диаграмма четырехтактного дизеля. Вначале рассмотрим рабочий цикл четырехтактного дизеля, не имеющего наддува.

Первый такт — наполнение. Когда поршень дизеля двигается слева направо, открывается впускной клапан 3 (рис. 19) и воздух из атмосферы поступает в цилиндр. В двигателях без наддува процесс наполнения цилиндра происходит вследствие разрежения

Рис. 19. Диаграмма рабочего цикла четырехтактного дизеля и схема его устройства:

1 — поршень; 2 — цилиндр; 3 — впускной клапан; 4 — форсунка; 5 — выпускной клапан в нем, а давление воздуха в цилиндре достигает 0,085-0,09 МПа, поэтому линия наполнения цилиндра располагается ниже атмосферной (0,1 МПа). В действительности линия наполнения не прямая, так как на нее оказывают влияние неравномерность скорости движения поршня, фазы открытия и закрытия клапанов, конструкция входного патрубка и другие факторы. Для более полной зарядки цилиндра воздухом принимаются меры к снижению сопротивления проходу воздуха в цилиндр. Качество зарядки цилиндра оценивается коэффициентом наполнения ц„, который обычно равен0,8-0,88. Это значит, что цилиндр дизеля наполняется воздухом только на 80-88 % по сравнению с тем количеством воздуха, которое поместилось бы в рабочем объеме цилиндра при нормальных условиях окружающей среды. Коэффициент наполнения зависит главным образом от температуры и давления воздуха в точке а (см. рис. 19). Чем выше давление и чем ниже температура воздуха в точке а, тем больше коэффициент наполнения (рис. 20).

Второй такт — сжатие. Поршень движется справа налево, впускной клапан закрывается, воздух в цилиндре сжимается. При этом температура его в точке с повышается до 500-750 °С, а давление может возрастать до 5- 7 МПа. Процесс сжатия на диаграмме изображен линией ас (см. рис. 19). Когда поршень еще не дошел до верхней мертвой точки (в.м.т.) на 18-30° угла поворота коленчатого вала, через форсунку 4 в цилиндр впрыскивается жидкое топливо, которое в точке с воспламеняется и начинает гореть. Подача топлива прекращается после того, как поршень уже пройдет в.м.т. на 10-15° и снова начнет двигаться слева направо. Поступившее в цилиндр топливо перемешивается с воздухом и начинает гореть. На диаграмме процесс горения изображен ломаной линией сг’г.

Третий такт — расширение газа. В начале третьего хода поршня происходит сгорание топлива, которое теоретически заканчивается в точке г. Давление в точке г возрастает до 8-13 МПа, а температура до 1750- 2100 К. После точки г происходит расширение газов, которое продолжается до тех пор, пока не откроется выпускной клапан. Последний открывается в точке е’ на 40-55° до нижнего положения поршня, когда давление в цилиндре достигает 0,5-0,8 МПа, а температура 1000-1100 К- Предварение открытия выпускного клапана способствует уменьшению сопротивления выходу отработавших газов через выпускную систему и, следовательно, лучшей очистке цилиндра от отработавших

Читать еще:  Давление топлива в инжекторных двигателях уаз

Рис. 20. Изменение коэффициента наполнения цилиндров г),, в зависимости от давления и температуры воздуха в цилиндре в начале сжатия

Рис. 21. Индикаторная диаграмма четырехтактного дизеля с газотурбинным наддувом:

ря — давление в период наполнения; рг давление в цилиндре в период выпуска; рк — давление воздуха в наддувочном коллекторе; V,, объем камеры сжатия: объем, описываемый поршнем, V* — полный объем цилиндра газов. Ход расширения является полезным рабочим ходом, так как в этот период газы с большим давлением действуют на поршень дизеля в направлении его движения и совершают полезную работу, отдавая ее нагрузочному агрегату.

Четвертый такт — выпуск газов. Поршень движется справа налево, вы-

Рис. 22. Диаграмма рабочего цикла двухтактного дизеля и схема его устройства:

А — продувочное окно; В — выпускное окно. 1 — цилиндр; > — поршень; ,3 — форсунка пускной клапан 5 открыт и газы выталкиваются из цилиндра. Процесс выпуска газов на диаграмме изображен линией e’er. Удаление газов происходит при давлении 0,11-0,12 МПа, поэтому линия выпуска газов располагается выше атмосферной линии. Температура газов за выпускным клапаном равна 700-900 К-

Для более совершенной продувки и зарядки цилиндра воздухом впускной и выпускной клапаны на протяжении 50-100° поворота кривошипа коленчатого вала открыты одновременно. Это так называемое «перекрытие» клапанов обеспечивает хорошую очистку цилиндров от продуктов сгорания топлива и более полное заполнение рабочего объема воздухом, а также охлаждение днища поршня и выпускных клапанов потоком холодного воздуха. Качество очистки цилиндра от отработавших газов оценивается коэффициентом остаточных газов у, который представляет собой отношение количества оставшихся в цилиндре от предыдущего цикла газов к величине поступившего в цилиндр свежего воздушного заряда. Обычно у — = 0,024-0,1.

Особенности рабочего цикла четырехтактного дизеля с газотурбинным наддувом. В дизелях с наддувом процесс зарядки цилиндра происходит иначе, чем у двигателей без наддува. Турбокомпрессор засасывает воздух из атмосферы при давлении р0 (рис. 21) и сжимает до давления рк- Сжатый в турбокомпрессоре воздух прежде, чем попасть в цилиндр, проходит через охладитель, впускной коллектор и выпускные клапаны; на пути от турбокомпрессора до цилиндра его давление снижается от рк до р„. Поэтому линия давления впуска расположена ниже линии рк и выше атмосферной линии (Ро).

После заполнения цилиндра воздухом поршень, двигаясь от точки а налево, сжимает воздух. Процесс сжатия изображен кривой ас. В конце сжатия в цилиндр впрыскивается топливо, которое воспламеняется в точке с. Процесс сгорания показан линиями cz’ и г’г. Расширение газов происходит по кривой ге. В точке е открываются выпускные клапаны, и отработавшие газы выталкиваются в газовую турбину (при давлении рт), а затем выбрасываются в атмосферу. Таким образом, линия выпуска газа из цилиндра расположена выше атмосферной и ниже линии наполнения. В четырехтактных двигателях энергии отработавших газов вполне достаточно, чтобы нагнетатель сжимал воздух до давления рк, более высокого, чем рг. В результате наддува площадь индикаторной диаграммы, а следовательно, и мощность дизеля значительно возрастают.

Следует отметить, что в действительности процесс сгорания происходит не по прямым линиям с г’ и г’г, а по штриховой линии (см. рис. 21).

Диаграмма двухтактного дизеля. Сжатие воздуха в цилиндре при движении поршня справа налево начинается в точке а и продолжается до точки с (рис. 22). За 16-25° угла поворота коленчатого вала до крайнего левого положения поршня через форсунку 3 в цилиндр при высоком давлении подается жидкое топливо (в мелкораспыленном виде), которое, соприкасаясь с нагретым до высокой температуры сжатым воздухом, воспламеняется. Образовавшиеся газы, стремясь расшириться, перемещают поршень вправо. Движущийся поршень через шатун вращает коленчатый вал. Не доходя до крайнего правого положения, поршень 2 своей кромкой открывает выпускное окно Б, давая выход отработавшим газам через глушитель наружу. Двигаясь дальше вправо, поршень открывает продувочное окно Л, через которое в цилиндр стремляется свежий воздух, имеющий повышенное давление. Воздух вытесняет отработавшие газы и заполняет цилиндр. Когда поршень изменит направление и начнет двигаться справа налево, он вначале закроет продувочное окно А, а затем выпускное Б, после чего начнется сжатие оставшегося в цилиндре воздуха. Таким образом, полный рабочий процесс (цикл) в двухтактном дизеле совершается за два кода поршня (такта), при этом коленчатый вал совершает один оборот.

В двухтактных дизелях продувочный воздух подается в цилиндры нагнетателем, приводимым в движение от вала дизеля, или турбокомпрессором. От качества продувки цилиндров зависит мощность и к.п.д. дизеля. Чтобы обеспечить хорошую продувку цилиндров воздухом и снизить тепловое напряжение деталей дизеля, соприкасающихся с горячими газами, в цилиндры подается значительно больше воздуха, чем требуется для горения топлива; во время продувки часть воздуха уходит через выпускные окна. Учитывая это, подача продувочного воздушного нагнетателя должна быть на 30-40 % больше, чем это необходимо для обеспечения полного сгорания топлива. При проектировании двухтактных двигателей конструкторы стремятся к тому, чтобы при наименьшей потере сжатого воздуха получалась бы наилучшая продувка и зарядка цилиндров. В двухтактных дизелях обычно энергии отработавших газов недостаточно для сжатия наддувочного воздуха до требуемого давления, так как давление это должно быть больше, чем давление в выпускном трубопроводе для качественной очистки цилиндров, а энергия выпускных газов (при прочих равных условиях) ниже, чем в четырехтактных двигателях, из-за разбавления газов холодным продувочным воздухом. Поэтому в двухтактных дизелях используется комбинированный наддув, при котором часть энергии, необходимой для сжатия наддувочного воздуха, отбирается от коленчатого вала двигателя (см. выше).

Схемы продувки двухтактных дизелей. Наиболее простая, но вместе с тем и наиболее несовершенная схема- так называемая поперечно-щелевая продувка, при которой в цилиндре может оставаться 15-20% отработавших газов (рис. 23,а). Такая продувка применяется в маломощных дизелях, для которых простота конструкции, а не экономичность, имеет решающее значение. Схема продувки, показанная на рис. 23,6, более совершенна. Благодаря обратному клапану 3 эта конструкция обеспечивает некоторый наддув цилиндров. Такая схема продувки применяется на тихоходных судовых двигателях.

Более совершенна прямоточная кла-панно-щелевая продувка (рис. 23,в). Сжатый воздух из нагнетателя поступает в цилиндр через нижние окна, а отработавшие газы удаляются через выпускные клапаны 3, размещенные в крышке цилиндра. При такой продувке на дизеле устанавливают распределительный вал. Клапанно-щелевая продувка применяется в тепловозных дизелях 11Д45 и 14Д40.

Наиболее совершенна прямоточно-щелевая продувка (рис. 23,г), которую можно осуществить в двигателях со встречно движущимися поршнями. Сжатый воздух от нагнетателя поступает через верхние окна (продувочные), а отработавшие газы удаляются из цилиндра через нижние (выпускные) окна. Чтобы можно было полнее зарядить цилиндр, нижний поршень, перекрывающий выпускные окна, несколько опережает (на 10-12° угла поворота коленчатого вала) верхний поршень, перекрывающий впускные окна.

При таком способе продувки в цилиндре почти не остается отработавших газов. Прямоточно-щелевая продувка применяется в тепловозных дизелях 2Д100 и 1 ОД 100.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты