Асинхронный двигатель работает без нуля
Асинхронный двигатель работает без нуля
2.3. Асинхронная электрическая машина
Самым распространенным двигателем в промышленности является асинхронный двигатель. На рис.2.10 показаны конструкция и схема включения статорных и роторных обмоток трехфазного асинхронного двигателя.
Рис.2.10. Конструкция (а) и схема включения статорных и роторных обмоток (б) трехфазного асинхронного двигателя
В неподвижном статоре расположены три катушки, создающие круговое вращающееся магнитное поле, а во вращающемся роторе — три катушки, замкнутые накоротко или на внешние сопротивления через контактные кольца и щетки. Если число катушек обмотки статора равно 3, т. е. на каждую фазу одна катушка, то за одну минуту вектор сделает 60 f оборотов вокруг оси статора. При необходимости иметь меньшую скорость применяются многополюсные обмотки. Каждая обмотка имеет одну пару полюсов. Если к каждой фазе подключить катушек, то общее число катушек обмотки статора будет равно . Для характеристики размещения обмотки вдоль рабочего зазора двигателя введено понятие полюсного деления :
D — внутренний диаметр статора.
За один период переменного тока вращающееся магнитное поле поворачивается на двойное полюсное деление 2 : , а полный оборот вокруг оси машины оно делает за периодов. Следовательно:
за время ( ) с — 1 оборот;
за минуту в 60 раз больше, т. е.
[об/мин],
— частота питающей сети.
Вращающийся магнитный поток Ф индуктирует в обмотках статора и ротора ЭДС и .
Так как обмотка ротора закорочена, то в ней возникает ток , который, взаимодействуя с магнитным полем, вызовет появление вращающегося момента . В результате ротор начнет вращаться в сторону вращения магнитного поля. Величина ЭДС и частота ее изменения зависят от скорости пересечения вращающим магнитным полем проводников обмотки ротора, т. е. от разности скоростей вращения магнитного поля и ротора . При равенстве этих скоростей ЭДС , частота , ток и момент будут равны нулю. По этой причине электрические машины, работающие на этом принципе, называют асинхронными.
Относительная разность скоростей вращения поля и ротора
называется скольжением. Нетрудно видеть, что
В заторможенном режиме асинхронная машина работает в режиме трансформатора; ее схема замещения подобна схеме замещения приведенного трансформатора. Ток холостого хода асинхронной машины значительно выше, чем у трансформатора, так как в ней имеется рабочий зазор. Поэтому этот режим работы машины редко применяется.
В рабочем режиме частота равна
Энергетическая диаграмма работы машины имеет вид (рис.2.11):
Рис.2.11.Энергетическая диаграмма работы электрической машины
Мощность, потребляемую из электрической сети можно определить, используя выражение:
В ротор передается электромагнитная мощность (рис.2.11).
Часть этой мощности расходуется на покрытие электрических потерь в обмотке ротора; оставшаяся часть превращается в механическую мощность
Потери в сердечнике ротора из-за малой величины частоты (1 ё 3 Гц) практически отсутствуют. Для электромагнитной мощности можно написать:
— угловая скорость вращения магнитного поля.
— угловая скорость вращения ротора.
Схема замещения цепи ротора при его вращении имеет вид (рис.2.12):
Рис.2.12. Схема замещения цепи ротора
Из рис.2.12 можем записать:
Так как (здесь — индуктивное сопротивление заторможенного ротора), то
Теперь схему замещения ротора можно представить в виде (рис.2.13):
Рис.2.13. Схема замещения роторной цепи машины при вращении ротора без выделения (а) и с выделением (б) сопротивления механической мощности
Сопротивление учитывает выходную механическую мощность асинхронной машины (рис. 2.13б). Полная схема замещения асинхронной машины имеет вид (рис.2.14а):
Рис.2.14 Полная схема замещения асинхронной короткозамкнутой машины (а) и ее упрощенная схема (б)
Без большой погрешности намагничивающую часть схемы можно непосредственно подключить к питающему напряжению (рис.2.14б). Ошибка, вносимая этим допущением, невелика потому, что в последней схеме не учитывается лишь влияние падения напряжения на активном сопротивлении первичной обмотки и индуктивности рассеяния первичной обмотки от намагничивающего тока на величину тока ротора. Эта схема не отражает зависимости намагничивающего тока от нагрузки двигателя, так как определяет неизменное значение этого тока
Определим ток фазы ротора как функцию параметров двигателя:
где — индуктивное сопротивление короткого замыкания.
Величина определяется выражением
Критическое скольжение, соответствующее максимуму момента определяется дифференцированием полученного выражения по и последующим приравниванием к нулю результата:
Подставив полученное выражение в зависимость , получим
С учетом последних двух зависимостей, выражение для M может быть представлено в виде так называемой уточненной формулы Клосса:
Анализ выражения механической характеристики показывает, что при она близка к линейной зависимости , а в области больших скольжений имеет гиперболический характер: . Максимальный момент, развиваемый асинхронной машиной в двигательном режиме меньше, чем соответствующее значение момента для генераторного режима работы . С помощью выражения для эту разницу можно выразить количественно:
— модуль критического скольжения.
По выражению (2.20) на рис. 2.15 построена зависимость момента от скольжения M=F(s).
Рис. 2.15. Зависимость момента асинхронной машины от скольжения
В реальных асинхронных машинах ЭДС и магнитный поток при работе машины в двигательном режиме по мере роста нагрузки и связанного с ним падения напряжения в цепи статора снижаются. Изменение фазы тока статора и падения напряжения на сопротивлении приводят к тому, что ЭДС двигателя и поток в области малых скольжений возрастают и превышают значения, соответствующие идеальному холостому ходу. Поэтому в соответствии с выражением максимум момента в генераторном режиме при больше, чем в двигательном. Двигатель с фазным ротором обеспечивает возможность изменения параметров цепей ротора путем введения добавочных сопротивлений. Механические характеристики двигателя с фазным ротором (2.16а):
Рис. 2.16. Механические характеристики асинхронной машины при различных способах управления изменениями: активного сопротивления в цепи ротора (а), реактивного сопротивления в цепи статора (б), напряжения (в) и частоты (г) питающей цепи
Максимум момента не зависит от величины суммарного сопротивления в цепи фазы ротора, а критическое скольжение увеличивается пропорционально суммарному сопротивлению :
Из характеристик рис. 2.16a видно, что при пуске двигателя выгодно иметь большое сопротивление , т.к. при этом обеспечивается большая величина пускового момента. Увеличение сопротивления в цепи ротора ограничивает также ток в двигателе в режиме противовключения. Плавным изменением сопротивления при торможении противовключением и последующем пуске в противоположном направлении можно обеспечить постоянство тормозного и пускового моментов двигателя в этих режимах.
Модуль жесткости рабочего участка механической характеристики обратно пропорционален величине , поэтому реостатные характеристики двигателя при больших добавочных сопротивлениях имеют невысокую жесткость.
При введении в цепь ротора добавочных индуктивных сопротивлений, уменьшаются величины и . Влияние добавочных сопротивлений, включенных в цепь статора , аналогично влиянию добавочных индуктивностей (рис. 2.16б).
В пределах рабочего участка механической характеристики асинхронной машины, когда ток статора существенно не превышает номинальное значение, ЭДС двигателя E незначительно отличается от напряжения сети:
Из этого выражения следует, что при изменение напряжения приводит к изменению потока машины. Так как в номинальном режиме магнитная цепь машины насыщена, то повышение напряжения питания даже на 20-30% может увеличить ток холостого хода машины до значений, превышающих номинальный ток , и двигатель может нагреться выше нормы даже при отсутствии полезной нагрузки на его валу. Снижение напряжения питания приводит к уменьшению магнитного потока. Форма механических характеристик асинхронной машины при , (рис. 2.16в) говорит о том, что пропорционален квадрату приложенного напряжения, а .
При , изменение частоты питающего напряжения приводит к пропорциональному изменению величины . Так как , то обратно пропорционален частоте . В номинальном режиме машина насыщена при , поэтому допустимо только увеличение частоты , что вызывает соответствующее уменьшение потока . В соответствии с выражением
увеличение приводит к уменьшению критического момента. Критическое скольжение при этом также уменьшается, а скорость холостого хода увеличивается.
При необходимости уменьшения частоты для снижения скорости необходимо дополнительно изменить напряжение питания так, чтобы поток поддерживался примерно постоянным.
Устойчивость работы электродвигателя — способность двигателя восстанавливать установившуюся скорость вращения при небольших кратковременных возмущающих воздействиях (по питающей сети, по моменту нагрузки).
Условие равновесия моментов, приложенных к ротору двигателя:
— электромагнитный момент двигателя;
— статический момент нагрузки (с учетом механических потерь в двигателе);
— динамический момент, зависящий от момента инерции вращающихся масс и ускорения ротора .
В статике , ускорение ротора , т. е. ротор вращается с установившейся скоростью. При вращение ротора ускоряется, а при — замедляется.
Условие имеет место при двух величинах скольжения и , соответственно в точках A и B (рис. 2.17).
Рис. 2.17. К устойчивости работы асинхронного двигателя
При малейшем изменении момента нагрузки и появляющемся в результате этого отклонения скорости вращения от установившегося значения появляется избыточный замедляющий или ускоряющий момент , увеличивающий это отклонение. При случайном увеличении статического момента ротор двигателя замедляется и скольжение возрастает. Так как точка B соответствует ниспадающему участку механической характеристики, то при этом момент двигателя также уменьшается, что приведет к еще большему увеличению модуля разности и увеличению скольжения. Этот процесс будет протекать до полной остановки двигателя. При случайном уменьшении статического момента ротор ускоряется, скольжение уменьшается. Момент двигателя вследствие уменьшения скольжения возрастает, что приводит к увеличению разности , а значит и к дальнейшему снижению скольжения. Этот процесс будет продолжаться до тех пор, пока машина не перейдет в режим работы, соответствующий точке A . В этой точке режим работы машины устойчив, так как случайное увеличение и замедление ротора (увеличение скольжения) приведет к возрастанию момента и уменьшению модуля разности . Наоборот, случайное уменьшение статического момента и ускорение ротора (уменьшение скольжения) приведет к уменьшению модуля разности . В результате разность, в обоих случаях, начнет уменьшаться и когда момент станет равным , двигатель снова будет работать с установившейся скоростью. Условие устойчивой работы асинхронного двигателя:
Это условие выполняется для всех практически встречающихся механизмов, если двигатель работает на участке OM механической характеристики. Следовательно, двигатель может работать устойчиво только в диапазоне скольжений ротора . Для расширения диапазона устойчивой работы точку M механической характеристики асинхронной машины надо сдвигать вправо. Это можно осуществить в случае применения двигателя с фазовым ротором включением в цепь ротора дополнительного активного сопротивления .
Приведенное выше условие является необходимым, но недостаточным. Когда двигатель работает при скольжении, меньшем , но близком к нему, случайная перегрузка двигателя может привести к его остановке, если на краткое (или длительное) время . Поэтому максимальный момент иногда называют опрокидывающим моментом. Для того чтобы двигатель работал надежно, его номинальный режим выбирают таким, чтобы
Так как величина момента пропорциональна квадрату питающего напряжения, то даже сравнительно небольшое изменение питающего напряжения может привести к существенному снижению .
Характеристиками асинхронного двигателя называются зависимости скорости вращения (или скольжения ), момента на валу , тока статора , коэффициента полезного действия и коэффициента мощности , от полезной мощности при и . Характеристики определяются либо экспериментальным, либо расчетным (по схеме замещения) путями. Они строятся только для зоны устойчивой работы двигателя, т. е. от скольжения, равного нулю, до скольжения, превышающего номинальное на 10-20%. Перечисленные выше характеристики имеют вид (рис.2.18):
Рис. 2.18. Рабочие характеристики асинхронного двигателя
Скорость вращения ротора в режиме полной нагрузки лишь на 2-8% меньше скорости холостого хода, т.к. при проектировании асинхронной машины с целью уменьшения потерь в обмотке ротора стремятся снизить скольжение двигателя в номинальном режиме его работы до величины 0,02 ё 0,06. Следовательно, скоростная характеристика асинхронного двигателя является довольно «жесткой».
Вращающий момент на валу машины определяется выражением , где — угловая скорость вращения ротора. Так как изменяется незначительно (вследствие жесткости скоростной характеристики), то зависимость момента от мощности имеет практически линейный характер.
Момент несколько меньше электромагнитного момента : , где — момент, обусловленный трением в двигателе.
Зависимость тока статора асинхронного двигателя от полезной мощности имеет примерно такой же характер, как в трансформаторе ток — статора зависит от тока нагрузки. Но величина тока холостого хода двигателя значительно больше, чем у трансформатора (20 ё 40% у асинхронного двигателя и 5-10% у трансформатора).
Зависимость коэффициента полезного действия асинхронного двигателя такая же, как и у трансформатора.
Коэффициент мощности асинхронного двигателя при переходе от режима холостого хода к режиму номинальной нагрузки возрастает от значения ё 0,18 до некоторой максимальной величины, которая для двигателей малой мощности составляет 0,6 ё 0,85, а для двигателей средней и большой мощности 0,85 ё 0,92. При дальнейшем росте нагрузки несколько уменьшается.
3.5. Несимметричные и аварийные режимы работы трехфазных цепей
Для соединения трехфазной цепи в звезду возможны следующие аварийные режимы работы:
1) обрыв фазы (рис. 3.10);
2) обрыв нулевого провода (рис. 3.11);
3) короткое замыкание фазы при обрыве нуля (рис. 3.12).
4) обрыв фазы и нуля, рис. 3.12.
Для соединения трехфазной цепи в треугольник возможны следующие аварийные режимы:
2) обрыв линейного провода.
Аварийные режимы в нагрузках соединенных звездой
1) При обрыве фазы А , работа нагрузкой
не совершается, а остальные нагрузки (
) свои режимы работы не изменят (рис. 3.13):
.
Если нагрузки связаны и является одним целым, то этот режим будет аварийным. Так, если эта нагрузка – асинхронный двигатель, то он будет в аварийном режиме и нулевой провод будет нагружен дополнительно (рис. 3.13):
2) Обрыв нулевого провода не всегда вызывает аварию в трехфазных цепях. Если нагрузка симметрична, то обрыв нулевого провода не изменит токов нагрузок, так как для симметричной нагрузки
.
Для несимметричных нагрузок , и поэтому такой режим может вызвать аварию.
Для того чтобы показать это, используем метод двух узлов:
Напряжение (рис. 3.14) не равно нулю, если нагрузки несимметричны. Фазные токи также будут неодинаковыми.
3) При коротком замыкании фазы А и обрыве нуля напряжение этой фазы равно нулю:, (рис. 3.15).
Нагрузка фазы В увеличится в раз:
.
Аналогично и в фазе С:
;
будет увеличен по отношению к исходному в
раз.
4) Обрыв фазы и нулевого провода дает:
.
В оставшихся фазах токи будут одинаковыми, а напряжения на них будут зависеть от сопротивлений нагрузок (рис. 3.16).
Аварийные режимы в нагрузках соединенных треугольником
1) Обрыв фазы.
Ключ к1 замкнут, ключ к2 разомкнут (рис. 3.17). В этом режиме ток в фазе отсутствует, а остальные нагрузки работают как обычно (рис. 3.18). В таком аварийном режиме линейные токи фаз А и В соответствуют фазным токам, а линейный ток фазы С остается таким, каким был прежде.
2)
Обрыв линейного провода. Ключ к1 разомкнут и ключ к2 замкнут (рис. 3.19). Фаза нагрузки с своего режима не изменит, а фазы
становятся последовательно соединенными и параллельно подключеннымик линейному напряжению фаз В, С (см. рис. 3.17), то есть цепь становитсяоднофазной. Топографическая и векторная диаграммы в этом случае могут иметьвид, как показано на рис.3.19.
Подключение трёхфазного двигателя к однофазной сети без конденсаторов: 4 схемы для начинающего мастера
Асинхронные электродвигатели просты по конструкции, дешевы, массово применяются в различных производствах. Не обходятся без них домашние мастера, запитывая их от 220 вольт с пусковыми и рабочими емкостями.
Но, есть альтернативный вариант. Это — подключение трёхфазного двигателя к однофазной сети без конденсаторов, который тоже имеет право на существование.
Ниже я показываю 4 схемы реализации такого проекта. Вы можете выбрать для себя любой из них, более подходящий под ваши личные интересы и местные условия эксплуатации.
- Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов
- Электронная схема В Голик: устройство запуска трехфазных электродвигателей на доступной элементной базе
- 2 схемы подключения трехфазного двигателя к однофазной сети без конденсаторов автора В Бурлако: в чем отличия
- Схема запуска асинхронного двигателя от симисторного электронного ключа: усовершенствование конструкции В Голик
- Схема безконденсаторного запуска электродвигателей с большими пусковыми моментами
- Преимущества схемы тиристорного преобразователя: автор В Соломыков
С этой темой я впервые столкнулся в конце 1998 года, когда к нам в электролабораторию РЗА пришел друг связист с журналом Радио за №6 от 1996 года и показал статью про безконденсаторный запуск.
Мы сразу решили испытать ее в деле, благо все детали, включая тиристоры и подходящий двигатель, у нас имелись. Как раз был перерыв на обед.
Для проверки спаяли электронный блок навесным монтажом. Справились где-то меньше, чем за час. Схема заработала практически без наладки. Оставили ее для наждака.
Порадовали маленькие габариты блока и отсутствие необходимости подбирать конденсаторы. Особых отличий в потере мощности по сравнению с конденсаторным пуском замечено не было.
Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов
Для подключения в однофазную сеть по этому методу подойдет любой асинхронный движок типового исполнения.
Автор Голик обращает внимание, что обороты ротора в минуту должны составлять не 3000, а 1500. Связано это с конструкцией обмоток статора.
Мощность устройства ограничена электрическими характеристиками силовых диодов и тиристоров — 10 ампер с величиной обратного напряжения более 300 вольт.
Три обмотки статора необходимо подключать по схеме треугольника.
Их выводы собираются на клеммной колодке тремя последовательными перемычками.
Напряжение 220 вольт подключается через защитный автоматический выключатель параллельно одной обмотке, назовем ее «A». Две другие оказываются последовательно соединенными между собой и параллельно — с ней.
Обозначим их «B» и «C». На выводы одной из них, например, «B» подключается электронный блок. Назовем его ключом «k».
Представим, что ее контакт всегда разомкнут, а напряжение подано. Тогда по цепочкам «A» и «B+C» станут протекать токи Ia и Ib+c. Мы знаем, что сопротивление всех обмоток статора (резистивно-индуктивное) одинаково.
Поэтому в цепи «A» ток станет в два раза превышать вектор Ib+c, а по фазе они будут совпадать.
Каждый из этих токов создаст вокруг себя магнитный поток. Но, они не смогут в этой ситуации привести во вращение ротор.
Чтобы электродвигатель стал работать, необходимо сдвинуть по углу два этих магнитных потока (или токи между собой). Эту функцию в нашем случае выполняет электронный ключ.
Его конструкция собрана так, что он кратковременно замыкается, а затем размыкается, шунтируя обмотку «B».
Для этого процесса выбирается момент времени, когда синусоида напряжения достигает максимального амплитудного значения, а сила тока в обмотке «C», ввиду ее индуктивного сопротивления, минимальна.
Резкое закорачивание сопротивления «B» в цепи «B+C» создает бросок тока через замкнутый электронный контакт по виткам обмотки «C», который быстро возрастает и затем снижается под влиянием уменьшения амплитуды напряжения до нуля.
Между токами в обмотках «A» и «C» образуется временной сдвиг, обозначенный буквой φ. За счет возникновения этого угла сдвига фаз создается суммирующий магнитный поток, начинающий раскрутку ротора двигателя.
Форма тока в обмотке «C» при работе электронного ключа отличается от гармоничной синусоиды, но она не мешает создать на валу ротора крутящий момент.
При переходе полуволны синусоиды напряжения в область отрицательных значений картина повторяется, а двигатель продолжает раскручиваться дальше.
Электронная схема В Голик: устройство запуска трехфазных электродвигателей на доступной элементной базе
Силовая выходная часть электронного ключа, осуществляющая коммутацию обмотки, выполнена на двух мощных диодах (VD1, VD2) и тиристорах (VS1, VS2), включенных по схеме обычного моста.
Однако здесь они выполняют другую задачу: своими плечами из одного тиристора и диода поочередно шунтируют обмотку подключенного электродвигателя при достижении амплитудного значения синусоиды напряжения на схеме.
За счет такого подключения создан электронный ключ двунаправленного действия, реагирующий на положительную и отрицательную полуволну гармоники.
Диодами VD3 и VD4 осуществляется двухполупериодное напряжение сигнала, поступающего на цепи управления. Оно ограничивается и стабилизируется резистором R1 и стабилитроном VD5.
Сигналы на открытие тиристоров электронного ключа поступают от биполярных транзисторов (VT1 и VT2).
Переменный резистор R7 с номиналом на 10 килоом предназначен для регулировки момента открытия силового тиристора. Когда его ползунок установлен в минимальное положение сопротивления, то электронный ключ срабатывает при наибольшем напряжении амплитуды на обмотке B.
Максимальное введение сопротивления резистора R7 закрывает электронный ключ.
Запуск схемы осуществляют при положении ползунка R7, соответствующем максимальному сдвигу фаз токов между обмотками. После этого его сдвигают, определяют наиболее устойчивый режим работы, который зависит от приложенной нагрузки и мощности двигателя.
Все электронные детали со своими номиналами приведены на схеме. Они не являются дефицитными. Их можно заменить любыми другими элементами, соответствующими по электрическим характеристикам.
Вариант их размещения на электронной печатной плате показан на картинке. Регулировочный резистор R7 показан справа двумя подключенными проводами, синим и коричневым. Сам он не виден на фото.
Силовая часть, созданная для работы с электродвигателями небольшой мощности, может выполняться без радиаторов охлаждения, как показано здесь. Если же диоды и тиристоры работают на пределе своих возможностей, то теплоотвод обязателен.
2 схемы подключения трехфазного двигателя к однофазной сети без конденсаторов автора В Бурлако: в чем отличия
Здесь я полагаюсь на информацию из интернета, ибо вижу, что в принципе конструкции рабочие, а принципы управления токами в обмотках те же, что предложил В Голик.
Кстати, авторы статей ссылаются на автомобильный украинский журнал «Сигнал» №4 за 1999 год. Пришлось поискать его в интернете. Однако разочаровался, там оказалась полностью перепечатанная статья из журнала Радио под авторством В Голик. Вот так…
Если знаете, где можно найти первоисточник на эту информацию, то сообщите в комментариях.
Электронные ключи, выполненные по технологии Бурлако, работают так же. Они просто выполнены из других, более усовершенствованных полупроводников, как и силовая часть.
Схема запуска асинхронного двигателя от симисторного электронного ключа: усовершенствование конструкции В Голик
Картинка подключения трехфазного электродвигателя упростилась. Вместо двунаправленного силового блока из двух тиристоров и диодов здесь работает один симистор VS1 серии ТС-2-10.
Он также шунтирует одну обмотку «B» в момент достижения синусоидой напряжения амплитудного значения, когда ток параллельной цепочки минимален.
При этом создается сдвиг фаз токов в параллельных обмотках, как и в предыдущей схеме, порядка 50-80 угловых градусов, что достаточно для вращения ротора.
Работой симитора VS1 управляет ключ, выполненный на симметричном динисторе VS2 для каждого полупериода гармоники напряжения. Он получает команды от фазосдвигающей цепочки, выполненной из резистивно-емкостных элементов.
Сдвиг фазы сигнала конденсатором C дополняется общим сопротивлением R1+R2. Подстроечный резистор R2 на 68 кОм работает как R7 в предыдущей схеме, регулируя время заряда конденсатора и, соответственно, момент подключения VS2, а через него VS1 в работу.
Рекомендации автора по сборке и наладке
Схема испытывалась и предназначена для работы с электродвигателями, раскручивающими ротор до 1500 оборотов в минуту с электрической мощностью 0,5÷2,2 кВт.
На устройствах электронных ключей, работающих с мощными электродвигателями, необходимо обеспечивать теплоотвод с симистора VS1.
При наладке устройства обращают внимание на оптимальную подгонку угла сдвига фаз токов между обмотками, когда двигатель запускается и работает нормально: без шума, гула и вибраций. Для этого может потребоваться изменение номиналов у элементов фазосдвигающей цепочки.
Семисторы можно использовать другой марки. Важно, чтобы они соответствовали электрическим характеристикам. Вместо DB3 допустимо установить отечественный динистор KP1125.
Схема безконденсаторного запуска электродвигателей с большими пусковыми моментами
Она же хорошо подходит под управление двигателями, собранными для вращения со скоростью 3000 оборотов в минуту. С этой целью у нее изменена система подключения обмоток с треугольника на разомкнутую звезду.
На картинке ниже их полярность показана точками.
В этой ситуации создается больший крутящий момент для запуска ротора.
Рассматриваемая схема отличается от предыдущей дополнительным электронным ключом, подключенным к обмотке «A», создающим дополнительно сдвиг фазы тока. Он необходим для трудных условий работы.
Рекомендации автора по наладке и работе не изменились.
Преимущества схемы тиристорного преобразователя: автор В Соломыков
Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.
Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.
Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.
Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.
Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:
- DD1 — К176ЛЕ5;
- DD2 — К176 ИР2.
Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.
Логическая часть
Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.
Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.
Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.
Таблица данных К176ИР2 и состояний регистров
Запуск трехфазных электродвигателей с помощью конденсаторов
Запуск трехфазных электродвигателей с помощью конденсаторов, подключая их к бытовой однофазной электросети, можно осуществлять только в исключительных случаях (когда нет возможности подключиться к трехфазной сети), поскольку в ней сразу возникает вращающееся магнитное поле, создающее условия для того, чтобы ротор вращался в статоре. Помимо прочего, этот режим позволяет достичь максимальной мощности и эффективности работы электромотора.
Для того чтобы достичь максимальной выходной мощности электродвигателя (максимум 70% сравнительно с трехфазным подключением), при подключении к домашней однофазной электросети совершают три обмотки по схеме «треугольник». При подключении по схеме «звезда» максимальная мощность достигает не более 50% от возможной. При однофазном подключении на два выхода создается возможность подключения фазы и ноля без третьей фазы, которую восполняет конденсатор.
От того, как сформирован третий контакт (через фазу или ноль), зависит направление вращения ротора. В режиме одной фазы достигается идентичность частоты вращения трехфазному режиму.
Как подключить электромотор с конденсатором
Асинхронные электромоторы мощностью до 1.5кВт, запускающиеся без нагрузки, требуют для своего подключения только рабочий конденсатор. Один конец конденсатора подключают к нулю, а второй – к третьему выходу треугольника. Для изменения направления вращения ротора подключение конденсатора ведут от фазы.
Если мотор сразу при запуске работает под нагрузкой или его мощность превышает 1.5кВт, в схему вводят пусковой конденсатор, включающийся в работу параллельно рабочему. Он включается всего на несколько секунд и увеличивает пусковой толчок во время старта. При кнопочном подключении пускового конденсатора остальную схему подключают от сети через тумблер или через кнопку с двумя фиксирующими положениями.
Для запуска подключают питание через тумблер или двухпозиционную кнопку, затем нажимают на пусковую кнопку и удерживают ее до запуска электромотора. По осуществлении запуска кнопку отпускают, и ее пружина размыкает контакты и отключает пусковую емкость.
Для реверсивного запуска трехфазных электродвигателей с помощью конденсаторов в сети 220В в схему вводят тумблер переключения, который служит для подключения одного конца рабочего конденсатора к фазе и к нулю.
Если мотор не запускается или слишком медленно набирает обороты, в схему вводят пусковой конденсатор, подключаемый через кнопку «Пуск». Обычно на схемах провода, предназначенные для подключения этой кнопки в режиме реверса, обозначаются фиолетовым цветом. Если реверс не нужен, кнопка с проводами и правый пусковой конденсатор в схему не вводятся. Для запуска двигателя, рассчитанного на 220В, конденсаторы не нужны.
Выбор конденсаторов для электромоторов
Для подключения трехфазных электромоторов к бытовой сети нужно использовать только модели типа МБГЧ, МБПГ, МБГО и БГТ с рабочим напряжением (U раб.) минимум 300 вольт. Обозначение и величина емкости конденсатора указываются на его корпусе.
Расчет емкости
- Для подключения звездой используют формулу Сраб.=2800х(I/U), а для подключения треугольником – Сраб.=4800х(I/U), где Сраб. – это емкость рабочего конденсатора в мкФ, I – потребляемый мотором ток (по паспорту), U – напряжение сети, равное 220 вольтам. Емкость пусковых конденсаторов, обычно превышающую емкость рабочих конденсаторов вдвое-втрое, подбирают экспериментальным путем.
- Расчет надо составлять на номинальную мощность, поскольку при работе в половину силы электромотор будет нагреваться. Для уменьшения тока в обмотке необходимо уменьшить емкость рабочего конденсатора. Если емкости не хватает до необходимой, электродвигатель будет развивать низкую мощность.
- Лучше всего начинать подбор конденсатора для трехфазного электродвигателя с наименьшего допустимого значения емкости, и постепенно увеличивать показатель до оптимальной величины.
- При долгой работе без нагрузки электромотор, переделанный с 380В на 220В, сгорит.
- После отключения агрегата на выводах конденсаторов долго сохраняется напряжение опасной величины, поэтому их надо ограждать во избежание случайного прикосновения.
- Необходимо разряжать конденсаторы каждый раз перед началом их эксплуатации.
- Трехфазный электромотор мощностью свыше 3кВт нельзя подключать к домашней электросети на 220 вольт, потому что при неправильно подобранной защите будет плавиться изоляция проводов и выбиваться пробки, в худшем случае возможно возгорание.
При соблюдении вышеперечисленных правил и рекомендаций подключение трехфазного электродвигателя к бытовой сети не представляет сложности. Не следует только забывать о технике безопасности.