Асинхронный двигатель работа с перегрузкой - Авто журнал "Гараж"
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель работа с перегрузкой

Работа трехфазных асинхронных электродвигателей на двух фазах

Работа электродвигателей на двух фазах является наиболее частой причиной выхода из строя трехфазных асинхронных электродвигателей низкого напряжения. Потеря одной фазы возможна из-за обрывов проводников, нарушений контактов, повреждений аппаратов (поломки, разрегулировки, выгорания контакта в магнитном пускателе), но чаще всего возникает из-за перегорания плавких вставок в предохранителях.

Как показывает опыт, в сетях, защищенных не предохранителями, а трехфазными автоматами, случаи потери одной фазы бывают значительно реже.

При включении остановленного двигателя на две фазы двигатель не может запуститься, так как магнитное поле статора в этом случае оказывается не вращающимся, а пульсирующим. Вращающий момент двигателя при этом равен нулю, но из сети потребляется ток, равный 0,866 I пуск . Этот ток хотя несколько меньше пускового, соответствующего включению двигателя на три фазы, нозначительно больше номинального тока двигателя данного типа. Поэтому, если держать двигатель некоторое время в таком режиме, то его обмотки будут повреждены.

Исчезновение одной фазы на вращающемся двигателе в зависимости от его конструкции и величины загрузки может иметь различные последствия. Полностью загруженный двигатель, имеющий кратность максимального момента больше 2, будет продолжать вращаться на двух фазах, а при кратности меньшем 2 произойдет «опрокидывание» и двигатель остановится.

Для двигателя с наиболее распространенной кратностью максимального момента равном 2 ток опрокидывания в трехфазном режиме равен примерно 3,5 I ном. В двухфазном режиме ток статора такого, полностью загруженного двигателя на границе опрокидывания составляет примерно 2,4—2,5 I ном .

Чем больше величина кратности максимального момента, тем меньше кратность перегрузки двигателя при работе на двух фазах. Она зависит и от нагрузки двигателя. Так, двигатель с кратностью 2, нагруженный только на 50%, при работе на двух фазах потребляет ток порядка номинального, т. е. может продолжать вращаться практически без перегрузки.

Любой асинхронный трехфазный двигатель при неизменной нагрузке на его валу после потери одной фазы начинает потреблять ток больший, чем в предшествовавшем трехфазном симметричном режиме. На холостом ходу ток при потере фазы возрастает в 1,73 раза, а по мере увеличения нагрузки двигателя возрастает и это соотношение.

Следовательно, самая большая перегрузка сопровождающаяся током, равным 0,866 I пуск, возникает при питании двумя фазами не вращающегося двигателя, а вращение двигателя на двух фазах в зависимости от загрузки может происходить как без перегрузки, так и с различной по величине перегрузкой, в том числе и с опасной для его обмоток. Наиболее распространенной защитой от перегрузки низковольтных двигателей является тепловая (тепловые реле).

От пусковых токов эта защита отстраивается выдержкой времени, создающейся за счет тепловой инерции нагрева. Поэтому ток ее срабатывания по сравнению с другими видами защиты может быть взят ближе к номинальному току двигателя. Однако необходимо иметь какой-то запас, иначе защита будет отключать двигатель в нормальных режимах, например при эксплуатационных колебаниях напряжения и окружающей температуры.

Обычно ток срабатывания тепловой защиты выбирается не меньше 110% номинального тока двигателя, а чаще составляет 120 и даже 130% (тепловые элементы не всегда удается точно подобрать по мощности двигателя).

Таким образом, тепловые элементы защищают двигатель от работы на двух фазах не во всех случаях. В зависимости от загрузки двигателя возможен и такой режим, когда ток окажется больше номинального, но меньше тока срабатывания защиты. Поэтому для защиты трехфазных асинхронных электродвигателей при работе на двух фазах разные конструкции специальных защитных реле.

Асинхронный двигатель работа с перегрузкой

  • О компании
    • Представители
    • Миссия компании
    • Наши сертификаты
    • Менеджеры компании
    • Баннеры компании
  • Производители
    • Наши поставщики
    • Каталоги производителей
  • Каталог товаров
    • Категории товаров
    • Прайс-листы
    • Статьи
  • Статьи с Видео
    • Электродвигатели
    • Генераторы
    • Стабилизаторы
    • Компрессоры
    • Насосы
    • Станки
    • ИБП
    • Люстры
    • Трансформаторы
    • Инструмент строительный
    • Инструмент садовый
    • Пуско-зарядные устройства
    • Аккумуляторы
    • Бытовые товары
    • Оборудование для ресторанов
  • Акции-Новости
    • Акции
    • Новости
  • Контакты

ICQ консультация по любому электродвигателю:

408-575-712 — Ольга —

Токовые перегрузки электродвигателя.

Основная причина выхода из строя электродвигателя – разрушение изоляции вследствие перегрева.

Температура нагрева двигателя зависит от температуры окружающей среды и характеристик самого электродвигателя. При работе двигателя выделяется тепло, часть которого идет в окружающую среду, а часть на нагрев двигателя. На нагрев двигателя имеют влияние значения теплоотдачи и теплоемкости. В зависимости от температуры окружающей среды и температуры двигателя степень их влияния может быть разной. Если разница в температуре окружающей среды и двигателя небольшая, а выделяемая энергия значительна, то она в основном идет на нагрев магнитопровода статора, медной обмотки, корпуса и ротора, вследствие чего происходит сильный нагрев изоляционных материалов.

Читать еще:  Аэросани своими руками с двигателем жигули

Больше проявляется процесс теплоотдачи. Процесс приостанавливается после того, как достигается равновесие между выделенным теплом и теплом которое выделяется в атмосферу. Превышение тока сверх номинального не сразу приводит к аварии. На это требуется некоторое время. Защита не должна отключать двигатель при каждом скачке тока, а только тогда, когда есть опасность быстрого износа изоляции. На нагрев изоляции влияет длительность протекания и величина тока превышающего номинальный. Это зависит от технологического процесса.

В связи с увеличением момента на валу электродвигателя возникает перегрузка. В таких устройствах мощность двигателя меняется, что приводит к постоянному изменению значения электрического тока в двигателе. На валу возникают большие моменты сопротивления, которые создают скачки тока. Такие перегрузки не создают значительного перегрева, т.к. протекают очень быстро. Но если эти процессы очень часто повторяются и протекают достаточно долго, это приводит к критическому нагреву обмотки. Защита должна реагировать только на длительные скачки нагрузки, а не на кратковременные.

В других устройствах возникают небольшие перегрузки, но длительные по времени. Происходит постепенный нагрев обмотки до критического значения температуры. Двигатель обычно имеет запас по нагреву, и несмотря на продолжительность, небольшое превышение значения номинального тока не приведут к возникновению опасной ситуации. В данном случае защита не обязательно должна срабатывать. Т.е. защита должна распознавать критическую перегрузку и не критическую.

Кроме перегрузок технологических, в двигателе возникают и аварийные перегрузки, которые могут быть связаны с заклиниванием движущихся частей оборудования, снижением напряжения и авариями в питающей сети. Это приводит к своеобразным режимам работы и требует другие средства защиты.

Асинхронные электродвигатели выбирают с запасом по мощности. Основную часть времени двигатели работают в недогруженном режиме, ток в двигателе ниже номинала. Перегрузка возникает при поломках, заклинивании механизмов и нарушении технологического процесса. Например, такие агрегаты как ленточные конвейеры, насосы, вентиляторы работают при постоянной нагрузке или нагрузке, которая меняется незначительно. Если подача материала меняется кратковременно, это не влияет на нагрев двигателя. Ими можно пренебречь. Совсем другое дело, если нарушение работы протекает длительный период времени. Подавляющее большинство приводов рассчитывается на запас мощности. К механическим перегрузкам в основном приводят поломки деталей машины. Но эти поломки носят случайный характер и не обязательно, что при этом окажется перегруженным и электродвигатель. К примеру, это может произойти с двигателем транспортеров. Если поменяются свойства материала, который транспортируется, такие как размер частиц, их влажность, это скажется на мощности, которая требуется для перемещения. Защита должна отключить двигатель при возникновении перегрузок, которые вызывают перегрев обмотки.

Если рассматривать влияния длительных превышений тока на изоляцию существует два вида перегрузок: небольшие (до 50%) и большие (более 50%).

Первые проявляются не сразу, а постепенно, вторые проявляются через короткое время. При незначительном превышении температуры над допустимым значением старение изоляции протекает медленно. Изменение структуры изоляции проходит постепенно. Когда температура возрастает, процесс ускоряется. При перегреве обмотки двигателя выше допустимого значения на каждые 8-10 °С происходит сокращение срока службы изоляции в 2 раза. Т.е. при перегреве на 40 °С срок службы изоляции сокращается в 32 раза. Но не смотря на это процесс обнаруживается после многих месяцев работы.

При перегрузке больше 50 % под действием температуры изоляция стареет быстро.

При повышении тока увеличиваются переменные потери. Происходит нагрев обмотки. Через некоторое время температура достигнет значения, допустимого для данного класса изоляции. При малых перегрузках время будет длиннее, при больших – короче. Каждому значению перегрузки соответствует свое допустимое безопасное время перегрева.

Зависимость допустимой длительности перегрузки от ее величины называется перегрузочной характеристикой электродвигателя.

Контроль качества электроэнергии на предприятиях с большим количеством асинхронных двигателей

Сегодня трудно представить себе наш мир без электрического двигателя. Разнообразие двигателей очень широко: от мощных и дорогостоящих высоковольтных асинхронных двигателей, которые приводят в движение крупные установки (вентиляторы, насосы, дробилки), до небольших двигателей, которые можно встретить в домашних хозяйствах (мясорубки, комбайны, стиральные машины). Электрический двигатель является также одним из самых популярных потребителей энергии среди всех электроустановок.

Читать еще:  Быстро нагрелся двигатель на холостых

Наиболее распространённый тип используемого двигателя — трёхфазный асинхронный двигатель; более 80% всех двигателей в промышленности являются асинхронными. Одна из причин высокой популярности асинхронных двигателей — их надёжность, но они также могут преждевременно выйти из строя по причине перегрузки, неправильного режима эксплуатации, несвоевременного контроля за смазкой подшипников. Все указанные проблемы имеют общий корень — температура, перегрев частей асинхронного двигателя и, как следствие, ускоренный выход из строя.

Стационарно установленный измерительный прибор SATEC РМ175 или другой подобный МИП может обеспечить получение важной информации об условиях работы асинхронного двигателя. Контролируя напряжение, ток, мощность и температуру (с помощью аналоговых входов прибора), мы можем получать данные по многим аспектам работы асинхронного двигателя, в том числе:

Качество напряжения на клеммах двигателя

Потребляемая мощность (энергия)

Каждый из этих параметров имеет важное значение, однако мы остановимся на выявлении проблем, связанных с контролем качества напряжения, что, в итоге, позволяет увеличить срок службы асинхронного двигателя.

Качество напряжения на клеммах двигателя зависит от многих факторов. Отклонения от нормальных значений ПКЭ могут снизить срок службы асинхронных двигателей. Все ПКЭ можно разделить на семь категорий, которые могут повлиять на работу асинхронных двигателей:

Несимметрия по напряжению

Пониженное напряжение и перенапряжение

Асинхронный двигатель предназначен для работы в узком диапазоне номинальных напряжений (как правило, ± 10% от номинального значения). При полной нагрузке повышенное более, чем на 10% напряжение на контактах двигателя приводит к существенному увеличению потерь в сердечнике электродвигателя в результате перегрева. Низкое напряжение на клеммах полностью загруженного двигателя также приводит к дополнительному нагреву из-за повышенного тока двигателя.

Несимметрия питающего напряжения

Несимметрия напряжения — одна из самых серьёзных угроз для нормальной работы асинхронного двигателя. На рис.1 представлена зависимость между снижением эффективности работы электродвигателя и несимметрией по напряжению. Несимметрия тока приводит к дополнительным потерям в двигателе и повышению температуры частей двигателя. На рис. 2 показана зависимость между несимметрией по напряжению и ростом температуры двигателя. Повышенный нагрев сокращает срок службы изоляции двигателя и, ка следствие, сокращает срок службы самого двигателя.

Рис. 1. Уменьшение мощности электродвигателя из-за несимметрии напряжения

Рис. 2. Связь между несимметрией по напряжению и ростом температуры двигателя

Гармонические искажения

В двигателях гармоники напряжения и тока приводят к появлению добавочных потерь в обмотках ротора, в цепях статора, а также в стали статора и ротора. Из-за вихревых токов и поверхностного эффекта (SKIN EFFECT) потери в проводниках статора и ротора больше, чем определяемые омическим сопротивлением. Токи утечки, вызываемые гармониками в торцевых зонах статора и ротора, также приводят к дополнительным потерям. Всё это приводит к повышению общей температуры машины и к местным перегревам, наиболее вероятным в роторе, что может привести к аварийным последствиям. Также следует отметить, что при определённых условиях наложения гармоник может возникнуть механическая вибрация ротора, что приводит к разбиванию подшипников двигателя.

Гармоники напряжения можно разложить на положительную, отрицательную и нулевую последовательности (Symmetrical Components). Положительные последовательности приводят к появлению дополнительного крутящего момента в том же направлении, что и вращение двигателя. Отрицательная последовательность вызывает крутящий момент в противоположном направлении, что также приводит к дополнительным потерям электроэнергии (см. Таб. 1).

Номер гармоники Симметричные составляющие
1-яПоложительная
2-яОтрицательная
3-яНулевая
4-яПоложительная
5-яОтрицательная
6-яНулевая
7-яПоложительная
8-яОтрицательная
9-яНулевая

Транзиентные перенапряжения

Транзиентные напряжения приводят к ускоренному старению изоляции. Как правило, в результате мы видим пробой изоляции и выгорание первого или второго витка обмотки.

Способность прибора SATEC регистрировать кратковременные пики напряжения (20 мск) является жизненно важным для надёжной работы двигателя. Обнаружение таких коротких процессов требует большой скорости работы АЦП прибора. Для того чтобы свести к минимуму эффект фильтрации перенапряжения подводящими линиями, напряжение должно контролироваться вблизи к клеммам двигателя.

Контроль качества электроэнергии на объектах с большим числом электродвигателей позволяет контролировать все режимы работы и, таким образом, значительно продлить срок службы оборудования. Прибор SATEC PM180 также позволяет регистрировать и осциллографировать и пусковые токи двигателей, и различные перегрузки, которые могут появляться в процессе работы привода и механизма.

Читать еще:  Что такое рабочая смесь в двигателе

Поддержка

Защита электродвигателя

В электродвигателях, как и в многих других электротехнических, устройствах, могут возникать аварийные ситуации. Если вовремя не принять меры, то в худшем случае, из-за поломки электродвигателя, могут выйти из строя и другие элементы энергосистемы.

Для повышения ресурса безаварийной работы двигателя и повышения эксплуатационной надежности, концерн Русэлпром предлагает использовать защиту двигателей.

Применение защиты удорожает двигатель, поэтому выбор типа и количества защит определяется не только технической, но и экономической целесообразностью их установки. Правильный выбор защиты двигателя позволяет получить необходимый эффект с обоснованными затратами.

Как правило, для двигателей напряжением до 1000 Вт предусматривается:

  • защита от коротких замыканий;
  • защита от перегрузки.

Короткое замыкание в электродвигателе может привести к росту тока, более чем в 12 раз в течение очень короткого промежутка времени (около 10 мс). Для защиты двигателей от коротких замыканий должны применяться предохранители или автоматические выключатели.

Защита от перегрузки устанавливается в тех случаях, когда возможна перегрузка механизма по технологическим причинам, а также при тяжелых условиях пуска и для ограничения длительности пуска при пониженном напряжении.

Для защиты двигателя от перегрузки используется:

  • Тепловая защита;
  • Температурная защита;
  • Максимально токовая защита;
  • Минимально токовая защита;
  • Фазочувствительная защита.

Температурная защита

Наиболее эффективной защитой двигателей является температурная защита.

Температурная защита реагирует на увеличение температуры наиболее нагретых частей двигателя с мощью встроенных температурных датчиков и через устройства температурной защиты воздействует на цепь управления контактора или пускателя и отключает двигатель.

Любой двигатель производства концерна «Русэлпром» по заказу потребителя может быть укомплектован встроенными температурными датчиками для защиты двигателей в аварийных режимах, следствием которых может быть нагрев обмотки до недопустимой температуры.

В качестве датчиков используются полупроводниковые терморезисторы с положительным температурным коэффициентом — позисторы. Датчики встраиваются в лобовые части обмотки статора со стороны противоположной вентилятору наружного обдува по одному в каждую фазу, соединяются последовательно. Концы цепи датчиков выводятся на специальные клеммы в коробке выводов. К этим клеммам подключают реле или иной аппарат, реагирующий на сигнал датчиков.

Датчики реагируют только на температуру, и их действие не зависит от причин возникновения опасного нагрева. Поэтому такая система обеспечивает защиту двигателя как в режимах с медленным нагреванием (перегрузка, работа на двух фазах), так и в режимах с быстрым нагреванием (заклинивание ротора, выход из строя подшипников и другое).

Согласно требованиям ГОСТ 27895 (МЭК 60034$11) температура срабатывания защиты должна соответствовать значениям, приведенным в таблице.

Пороги термозащиты

Тепловой режимЗначение температуры обмотки статора для систем изоляции класса нагревостойкости, град. С
BFH
Установившийся (Предельно допустимое среднее значение)120140165
Медленной нагревание (Срабатывание защиты)145170195
Быстрое нагревание (Срабатывание защиты)200225250

Характеристики датчиков температурной защиты

Двигатели с датчиками температурной защиты имеют встроенные в каждую фазу обмотки и соединённые последовательно терморезисторы типа СТ14-2-145 по ТУ11-85 ОЖО468.165ТУ или другие терморезисторы с аналогичными параметрами.

В вводном устройстве двигателей предусмотрены клеммы для подсоединения цепи терморезисторов к исполнительному устройству температурной защиты.

Температура срабатывания датчиков температурной защиты:

Класс нагревостойкости изоляции двигателяОбозначения типа позистора по ТУ11-85 ОЖО468.165ТУПороговая температура срабатывания позистора, град. С.
ВCТ-14А-2-130130
FCТ-14А-2-145145
HCТ-14А-2-160160

Срабатывание температурной защиты происходит при возрастании температуры обмотки до значения, указанного в таблице 13, и температуре позистора, указанной в таблице 13.1. Время срабатывания защиты не превышает 15 с. Исполнительное устройство температурной защиты должно отключать силовую цепь двигателя при достижении сопротивления цепи термодатчиков 2100- 450 Ом.

Сопротивление одного позистора составляет 30 — 140 Ом при 25 градусах C, сопротивление цепи из 3 позисторов составляет 250±160 Ом.

Сопротивление изоляции цепи терморезисторов относительно обмоток статора двигателя при температуре окружающей среды (25 +5)°C составляет:

  • В практически холодном состоянии двигателя находится в пределах от 120 до 480 Ом. Измерительное напряжение при контроле не более 2,5 В.
  • В номинальном режиме работы двигателей при установившемся тепловом состоянии (температура обмотки двигателя

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты